Pub. online:23 Mar 2020Type:Research ArticleOpen Access
Journal:Informatica
Volume 31, Issue 1 (2020), pp. 131–142
Abstract
The Industry 4.0 and smart city solutions are impossible to be implemented without using IoT devices. There can be several problems in acquiring data from these IoT devices, problems that can lead to missing values. Without a complete set of data, the automation of processes is not possible or is not satisfying enough. The aim of this paper is to introduce a new algorithm that can be used to fill in the missing values of signals sent by IoT devices. In order to do that, we introduce Shepard local approximation operators in Riesz MV-algebras for one variable function and we structure the set of possible values of the IoT devices signals as Riesz MV-algebra. Based on these local approximation operators we define a new algorithm and we test it to prove that it can be used to fill in the missing values of signals sent by IoT devices.
Journal:Informatica
Volume 17, Issue 1 (2006), pp. 13–24
Abstract
We study single machine scheduling problems, where processing times of the jobs are exponential functions of their start times. For increasing functions, we prove strong NP-hardness of the makespan minimization problem with arbitrary job release times. For decreasing functions, maximum lateness minimization problem is proved to be strongly NP-hard and total weighted completion time minimization problem is proved to be ordinary NP-hard. Heuristic algorithms are presented and computationally tested for these problems.