Journal:Informatica
Volume 20, Issue 2 (2009), pp. 165–172
Abstract
Recent changes in the intersection of the fields of intelligent systems optimization and statistical learning are surveyed. These changes bring new theoretical and computational challenges to the existing research areas racing from web page mining to computer vision, pattern recognition, financial mathematics, bioinformatics and many other ones.
Journal:Informatica
Volume 20, Issue 1 (2009), pp. 35–50
Abstract
We tested the ability of humans and machines (data mining techniques) to assign stress to Slovene words. This is a challenging comparison for machines since humans accomplish the task outstandingly even on unknown words without any context. The goal of finding good machine-made models for stress assignment was set by applying new methods and by making use of a known theory about rules for stress assignment in Slovene. The upgraded data mining methods outperformed expert-defined rules on practically all subtasks, thus showing that data mining can more than compete with humans when constructing formal knowledge about stress assignment is concerned. Unfortunately, compared to humans directly, the data mining methods still failed to achieve as good results as humans on assigning stress to unknown words.
Journal:Informatica
Volume 19, Issue 1 (2008), pp. 135–156
Abstract
Data stream mining has become a novel research topic of growing interest in knowledge discovery. Most proposed algorithms for data stream mining assume that each data block is basically a random sample from a stationary distribution, but many databases available violate this assumption. That is, the class of an instance may change over time, known as concept drift. In this paper, we propose a Sensitive Concept Drift Probing Decision Tree algorithm (SCRIPT), which is based on the statistical X2 test, to handle the concept drift problem on data streams. Compared with the proposed methods, the advantages of SCRIPT include: a) it can avoid unnecessary system cost for stable data streams; b) it can immediately and efficiently corrects original classifier while data streams are instable; c) it is more suitable to the applications in which a sensitive detection of concept drift is required.
Journal:Informatica
Volume 14, Issue 3 (2003), pp. 277–288
Abstract
In the paper, we present an algorithm that can be applied to protect data before a data mining process takes place. The data mining, a part of the knowledge discovery process, is mainly about building models from data. We address the following question: can we protect the data and still allow the data modelling process to take place? We consider the case where the distributions of original data values are preserved while the values themselves change, so that the resulting model is equivalent to the one built with original data. The presented formal approach is especially useful when the knowledge discovery process is outsourced. The application of the algorithm is demonstrated through an example.
Journal:Informatica
Volume 13, Issue 4 (2002), pp. 455–464
Abstract
Application of knowledge discovery in databases (data mining) for medical decision support is discussed in this work. The aim of the study was to use decision support algorithm for the differential diagnosis of intraocular tumors using parameters from eye images obtained by the ultrasound examination. Application of predictive modeling algorithm for decision tree formation using See5.0/C5.0 data mining system is presented. The decision tree was build using tumor geometry and microstructure parameters. The use of decision tree allows to differentiate tumors from other tumor-like formations. Low percentage of diagnostic errors shows that decision tree is reliable enough to offer it as “second opinion” for physician's decision support.