Pub. online:15 Nov 2021Type:Research ArticleOpen Access
Journal:Informatica
Volume 32, Issue 4 (2021), pp. 741–757
Abstract
Computed tomography coronary angiography (CTCA) is a non-invasive, powerful image processing technique for assessing coronary artery disease. The aim of the paper is to evaluate the diagnostic role of CTCA using optimal scanning parameters and to investigate the effect of low kilovoltage CTCA on the qualitative and quantitative image parameters and radiation dose in overweight and obese patients. Consolidation of knowledge in medicine and image processing was used to achieve the aim, and performance was evaluated in a clinical setting. Elevated body mass index is one of the factors causing increased radiation dose to patients. This study examined the feasibility of 80-kV and 100-kV CTCA in overweight and obese adult patients, comparing radiation doses and image quality versus standardized 100-kV protocols in the group of overweight patients and 120-kV CTCA in the group of obese patients. Qualitative and quantitative image parameters were determined in proximal and distal segments of the coronary arteries. Quantitative assessment was determined by the contrast-to-noise ratio and signal-to-noise ratio. The results of the study showed that in overweight and obese patients, the low dose protocol affords radiation dose reduction of 35% and 41%, respectively. Image quality was found to be diagnostically acceptable in all cases.
Pub. online:1 Jan 2017Type:Research ArticleOpen Access
Journal:Informatica
Volume 28, Issue 3 (2017), pp. 439–452
Abstract
Radiologists need to find a position of a slice of one computed tomography (CT) scan in another scan. The image registration is a technique used to transform several images into one coordinate system and to compare them. Such transversal plane images obtained by CT scans are considered, where ribs are visible, but it does not lessen the significance of our work because many important internal organs are located here: liver, heart, stomach, pancreas, lungs, etc. The new method is developed for registration based on the mathematical model describing the rib-bounded contour. Parameters of the mathematical model and of distribution of the bone tissue on the CT scan slice form a set of features describing a particular slice. The registration method applies translation, rotation, and scaling invariances. Several strategies of translation invariance and options of the unification of scales are proposed. The method is examined on real CT scans seeking for its best performance.
Journal:Informatica
Volume 15, Issue 2 (2004), pp. 283–290
Abstract
The paper describes a new method to segment ischemic stroke region on computed tomography (CT) images by utilizing joint features from mean, standard deviation, histogram, and gray level co‐occurrence matrix methods. Presented unsupervised segmentation technique shows ability to segment ischemic stroke region.
Journal:Informatica
Volume 11, Issue 4 (2000), pp. 455–468
Abstract
Methods for solving stochastic optimization problems by Monte-Carlo simulation are considered. The stoping and accuracy of the solutions is treated in a statistical manner, testing the hypothesis of optimality according to statistical criteria. A rule for adjusting the Monte-Carlo sample size is introduced to ensure the convergence and to find the solution of the stochastic optimization problem from acceptable volume of Monte-Carlo trials. The examples of application of the developed method to importance sampling and the Weber location problem are also considered.