Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 3 (2018), pp. 499–516
Abstract
Crossover operators play a very important role by creation of genetic algorithms (GAs) which are applied in various areas of computer science, including combinatorial optimization. In this paper, fifteen genetic crossover procedures are designed and implemented using a modern C# programming language. The computational experiments have been conducted with these operators by solving the famous combinatorial optimization problem – the quadratic assignment problem (QAP). The results of the conducted experiments on the characteristic benchmark instances from the QAP instances library QAPLIB illustrate the relative performance of the examined crossover operations.
All crossover procedures are publicly available with the intention that the GA researchers will choose a procedure which suits the individual demand at the highest degree.
Journal:Informatica
Volume 20, Issue 2 (2009), pp. 255–272
Abstract
In this paper, an efficient hybrid genetic algorithm (HGA) and its variants for the well-known combinatorial optimization problem, the quadratic assignment problem (QAP) are discussed. In particular, we tested our algorithms on a special type of QAPs, the structured quadratic assignment problems. The results from the computational experiments on this class of problems demonstrate that HGAs allow to achieve near-optimal and (pseudo-)optimal solutions at very reasonable computation times. The obtained results also confirm that the hybrid genetic algorithms are among the most suitable heuristic approaches for this type of QAPs.
Journal:Informatica
Volume 11, Issue 3 (2000), pp. 281–296
Abstract
In this paper we present an algorithm for generating quadratic assignment problem (QAP) instances with known provably optimal solution. The flow matrix of such instances is constructed from the matrices corresponding to special graphs whose size may reach the dimension of the problem. In this respect, the algorithm generalizes some existing algorithms based on the iterative selection of triangles only. The set of instances which can be produced by the algorithm is NP-hard. Using multi-start descent heuristic for the QAP, we compare experimentally such test cases against those created by several existing generators and against Nugent-type problems from the QAPLIB as well.
Journal:Informatica
Volume 8, Issue 3 (1997), pp. 377–400
Abstract
In this paper we define a class of edge-weighted graphs having nonnegatively valued bisections. We show experimentally that complete such graphs with more than three vertices and also some special graphs with only positive edges can be applied to improve the existing lower bounds for a version of the quadratic assignment problem, namely with a matrix composed of rectilinear distances between points in the Euclidean space.
Journal:Informatica
Volume 1, Issue 1 (1990), pp. 20–39
Abstract
In this paper we deal with the problem of extremal parameter grouping. The problem formulation, the algorithms of parameter grouping and the fields of implementation are presented. The deterministic algorithms of extremal parameter grouping often find the local maximum of the functional, characterizing the quality of a partition. The problem has been formulated as a problem of combinatorial optimization and attempted to be solved using the simulated annealing strategy. The algorithms, realizing such a strategy and devoted to the solving of the problem concerned, are proposed and investigated.