Pub. online:22 May 2024Type:Research ArticleOpen Access
Journal:Informatica
Volume 35, Issue 3 (2024), pp. 529–556
Abstract
Artificial Intelligence (AI) in the price management process is being applied in business practice and research to a variety of pricing use cases that can be augmented or automated, providing opportunities as a forecasting tool or for price optimization. However, the complexity of evaluating the technology to prioritize implementation is challenging, especially for small and medium enterprises (SMEs), and guidance is sparse. Which are the relevant stakeholder criteria for a sustainable implementation of AI for pricing purpose? Which type of AI supported price functions meet these criteria best? Theoretically motivated by the hedonic price theory and advances in AI research, we identify nine criteria and eight AI supported price functions (AISPF). A multiple attribute decision model (MADM) using the fuzzy Best Worst Method (BWM) and fuzzy combined compromise solution (CoCoSo) is set up and evaluated by pricing experts from Germany and Spain. To validate our results and model stability, we carried out several random sensitivity analyses based on the weight of criteria exchange. The results suggest accuracy and reliability as the most prominent attribute to evaluate AISPF, while ethical and sustainable criteria are sorted as least important. The AISPF which best meet the criteria are financial prices followed by procurement prices.
Pub. online:1 Jan 2019Type:Research ArticleOpen Access
Journal:Informatica
Volume 30, Issue 1 (2019), pp. 73–90
Abstract
Integration of algorithms of investment theory and artificial intelligence allows one to create a support system for investors in exchange markets based on the ensemble of long-short-term-memory (LSTM) based recurrent neural networks (RNN). The proposed support system contains five stages: preparation of historical data, prediction by an ensemble of LSTM RNNs, assessment of prediction distributions, investment portfolio formation and verification. The prediction process outputs a multi-modal distribution, which provides useful information for investors. The research compares four different strategies based on a combination of distribution forecasting models. The high-low strategy helps decision-makers in exchange markets to recognize signals of transactions and fix limits for expectations. A combination of high-low-daily-weekly predictions helps investors to make daily transactions with knowing distribution of exchange rates during the week. The shift in time of five hours between London and New York inspired us to create a UK-NY strategy, which allows investors to recognize the signals of the market in a very short time. The joined high-low-UK-NY strategy increases the possibility of recognizing the signals of transactions in a very short time and of fixing the limits for day trading. So, this support system for investors is verified as a profitable tool for speculators in the relatively risky currency market.
Journal:Informatica
Volume 25, Issue 1 (2014), pp. 155–184
Abstract
In the paper we propose a genetic algorithm based on insertion heuristics for the vehicle routing problem with constraints. A random insertion heuristic is used to construct initial solutions and to reconstruct the existing ones. The location where a randomly chosen node will be inserted is selected by calculating an objective function. The process of random insertion preserves stochastic characteristics of the genetic algorithm and preserves feasibility of generated individuals. The defined crossover and mutation operators incorporate random insertion heuristics, analyse individuals and select which parts should be reinserted. Additionally, the second population is used in the mutation process. The second population increases the probability that the solution, obtained in the mutation process, will survive in the first population and increase the probability to find the global optimum. The result comparison shows that the solutions, found by the proposed algorithm, are similar to the optimal solutions obtained by other genetic algorithms. However, in most cases the proposed algorithm finds the solution in a shorter time and it makes this algorithm competitive with others.
Journal:Informatica
Volume 13, Issue 4 (2002), pp. 465–484
Abstract
The presented article is about a research using artificial neural network (ANN) methods for compound (technical and fundamental) analysis and prognosis of Lithuania's National Stock Exchange (LNSE) indices LITIN, LITIN-A and LITIN-VVP. We employed initial pre-processing (analysis for entropy and correlation) for filtering out model input variables (LNSE indices, macroeconomic indicators, Stock Exchange indices of other countries such as the USA – Dow Jones and S&P, EU – Eurex, Russia – RTS). Investigations for the best approximation and forecasting capabilities were performed using different backpropagation ANN learning algorithms, configurations, iteration numbers, data form-factors, etc. A wide spectrum of different results has shown a high sensitivity to ANN parameters. ANN autoregressive, autoregressive causative and causative trend model performances were compared in the approximation and forecasting by a linear discriminant analysis.
Journal:Informatica
Volume 13, Issue 2 (2002), pp. 177–208
Abstract
The objective of expert systems is the use of Artificial Intelligence tools so as to solve problems within specific prefixed applications. Even when such systems are widely applied in diverse applications, as manufacturing or control systems, until now, there is an important gap in the development of a theory being applicable to a description of the involved problems in a unified way. This paper is an attempt in supplying a simple formal description of expert systems together with an application to a robot manipulator case.