Pub. online:1 Jan 2019Type:Research ArticleOpen Access
Journal:Informatica
Volume 30, Issue 4 (2019), pp. 629–645
Abstract
Machine Translation has become an important tool in overcoming the language barrier. The quality of translations depends on the languages and used methods. The research presented in this paper is based on well-known standard methods for Statistical Machine Translation that are advanced by a newly proposed approach for optimizing the weights of translation system components. Better weights of system components improve the translation quality. In most cases, machine translation systems translate to/from English and, in our research, English is paired with a Slavic language, Slovenian. In our experiment, we built two Statistical Machine Translation systems for the Slovenian-English language pair of the Acquis Communautaire corpus. Both systems were optimized using self-adaptive Differential Evolution and compared to the other related optimization methods. The results show improvement in the translation quality, and are comparable to the other related methods.
Journal:Informatica
Volume 22, Issue 4 (2011), pp. 489–505
Abstract
In this paper, we consider the so-called structured low rank approximation (SLRA) problem as a problem of optimization on the set of either matrices or vectors. Briefly, SLRA is defined as follows. Given an initial matrix with a certain structure (for example, Hankel), the aim is to find a matrix of specified lower rank that approximates this initial matrix, whilst maintaining the initial structure. We demonstrate that the optimization problem arising is typically very difficult; in particular, the objective function is multiextremal even in simple cases. We also look at different methods of solving the SLRA problem. We show that some traditional methods do not even converge to a locally optimal matrix.
Journal:Informatica
Volume 22, Issue 4 (2011), pp. 471–488
Abstract
We describe an adaptive algorithm for approximating the global minimum of a continuous univariate function. The convergence rate of the error is studied for the case of a random objective function distributed according to the Wiener measure.
Journal:Informatica
Volume 20, Issue 2 (2009), pp. 165–172
Abstract
Recent changes in the intersection of the fields of intelligent systems optimization and statistical learning are surveyed. These changes bring new theoretical and computational challenges to the existing research areas racing from web page mining to computer vision, pattern recognition, financial mathematics, bioinformatics and many other ones.
Journal:Informatica
Volume 5, Issues 3-4 (1994), pp. 364–372
Abstract
We consider finite population slotted ALOHA where each of n terminals has its own transmission probability pi. Given the overall traffic load λ, the probabilities pi are determined in such a way as to maximize throughput. This is achieved by solving a constrained optimization problem. The results of Abramson (1970) are obtained as a special case. Our recent results are improved (Mathar and Žilinskas, 1993).