Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 1 (2018), pp. 21–39
Abstract
The heliostat field of Solar Central Receiver Systems takes up to 50% of the initial investment and can cause up to 40% of energetic loss in operation. Hence, it must be carefully optimized. Design procedures usually rely on particular heliostat distribution models. In this work, optimization of the promising biomimetic distribution model is studied. Two stochastic population-based optimizers are applied to maximize the optical efficiency of fields: a genetic algorithm, micraGA, and a memetic one, UEGO. As far as the authors know, they have not been previously applied to this problem. However, they could be a good option according to their structure. Additionally, a Brute-Force Grid is used to estimate the global optimum and a Pure-Random Search is applied as a baseline reference. Our empirical results show that many different configurations of the distribution model lead to very similar solutions. Although micraGA exhibits poor performance, UEGO achieves the best results in a reduced time and seems appropriate for the problem at hand.
Journal:Informatica
Volume 27, Issue 2 (2016), pp. 323–334
Abstract
This paper reviews the interplay between global optimization and probability models, concentrating on a class of deterministic optimization algorithms that are motivated by probability models for the objective function. Some complexity results are described for the univariate and multivariate cases.
Journal:Informatica
Volume 10, Issue 3 (1999), pp. 297–312
Abstract
In the previous paper (Pupeikis, 1998), the problem of recursive estimation of the state of linear dynamic systems, described by an autoregressive model (AR), in the presence of time-varying outliers in observations to be processed has been considered. An approach to the robust recursive state estimation has been obtained and proved by estimating the real chemical process (Box and Jenkins, 1970). The aim of the given paper is the development of the abovementioned approach for the robust recursive state estimation of an autoregressive-moving average (ARMA) process in a case of additive noises with patchy outliers. The results of numerical simulation and the state estimation of the AR model (Figs. 1–4) and the real chemical process, described by the ARMA model, which is chosen from the same book of Box and Jenkins (Figs. 5–8) are given.
Journal:Informatica
Volume 9, Issue 3 (1998), pp. 325–342
Abstract
In the previous papers (Masreliez and Martin, 1977; Novovičova, 1987; Schick and Mitter, 1994) the problem of recursive estimation of linear dynamic systems parameters and of the state of such systems in the presence of outliers in observations have been considered. In this connection various ordinary recursive techniques are worked out, when systems output is corrupted by an additive noise with a time homogeneous contamination of outliers. The aim of the given paper is the development of an approach for robust recursive state estimation of linear dynamic systems in a case of additive noises with time-varying outliers. The recursive technique based on the abovementioned theoretical results is obtained and proved by state estimation of the real chemical process (Box and Jenkins, 1970). The results of numerical simulation by computer (Fig. 1–3) are given.
Journal:Informatica
Volume 5, Issues 3-4 (1994), pp. 364–372
Abstract
We consider finite population slotted ALOHA where each of n terminals has its own transmission probability pi. Given the overall traffic load λ, the probabilities pi are determined in such a way as to maximize throughput. This is achieved by solving a constrained optimization problem. The results of Abramson (1970) are obtained as a special case. Our recent results are improved (Mathar and Žilinskas, 1993).