Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 3 (2018), pp. 499–516
Abstract
Crossover operators play a very important role by creation of genetic algorithms (GAs) which are applied in various areas of computer science, including combinatorial optimization. In this paper, fifteen genetic crossover procedures are designed and implemented using a modern C# programming language. The computational experiments have been conducted with these operators by solving the famous combinatorial optimization problem – the quadratic assignment problem (QAP). The results of the conducted experiments on the characteristic benchmark instances from the QAP instances library QAPLIB illustrate the relative performance of the examined crossover operations.
All crossover procedures are publicly available with the intention that the GA researchers will choose a procedure which suits the individual demand at the highest degree.
Journal:Informatica
Volume 20, Issue 2 (2009), pp. 255–272
Abstract
In this paper, an efficient hybrid genetic algorithm (HGA) and its variants for the well-known combinatorial optimization problem, the quadratic assignment problem (QAP) are discussed. In particular, we tested our algorithms on a special type of QAPs, the structured quadratic assignment problems. The results from the computational experiments on this class of problems demonstrate that HGAs allow to achieve near-optimal and (pseudo-)optimal solutions at very reasonable computation times. The obtained results also confirm that the hybrid genetic algorithms are among the most suitable heuristic approaches for this type of QAPs.
Journal:Informatica
Volume 17, Issue 2 (2006), pp. 237–258
Abstract
Recently, genetic algorithms (GAs) and their hybrids have achieved great success in solving difficult combinatorial optimization problems. In this paper, the issues related to the performance of the genetic search in the context of the grey pattern problem (GPP) are discussed. The main attention is paid to the investigation of the solution recombination, i.e., crossover operators which play an important role by developing robust genetic algorithms. We implemented seven crossover operators within the hybrid genetic algorithm (HGA) framework, and carried out the computational experiments in order to test the influence of the recombination operators to the genetic search process. We examined the one point crossover, the uniform like crossover, the cycle crossover, the swap path crossover, and others. A so-called multiple parent crossover based on a special type of recombination of several solutions was tried, too. The results obtained from the experiments on the GPP test instances demonstrate promising efficiency of the swap path and multiple parent crossovers.
Journal:Informatica
Volume 8, Issue 3 (1997), pp. 377–400
Abstract
In this paper we define a class of edge-weighted graphs having nonnegatively valued bisections. We show experimentally that complete such graphs with more than three vertices and also some special graphs with only positive edges can be applied to improve the existing lower bounds for a version of the quadratic assignment problem, namely with a matrix composed of rectilinear distances between points in the Euclidean space.
Journal:Informatica
Volume 1, Issue 1 (1990), pp. 20–39
Abstract
In this paper we deal with the problem of extremal parameter grouping. The problem formulation, the algorithms of parameter grouping and the fields of implementation are presented. The deterministic algorithms of extremal parameter grouping often find the local maximum of the functional, characterizing the quality of a partition. The problem has been formulated as a problem of combinatorial optimization and attempted to be solved using the simulated annealing strategy. The algorithms, realizing such a strategy and devoted to the solving of the problem concerned, are proposed and investigated.