1 Introduction
2 Fundamental Definition of GL Fractional Derivative
3 Novel Approach
3.1 Development of Fractional Differential Masks
Table 1
0 | 0 | $\frac{\alpha (\alpha -1)(\alpha -2)(\alpha -3)}{4}$ | 0 | 0 |
0 | 0 | $-\frac{\alpha (\alpha -1)(\alpha -2)}{3}$ | 0 | 0 |
0 | 0 | $\frac{\alpha (\alpha -1)}{2}$ | 0 | 0 |
0 | 0 | $-\alpha $ | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 |
1 | $-\alpha $ | $\frac{\alpha (\alpha -1)}{2}$ | $-\frac{\alpha (\alpha -1)(\alpha -2)}{3}$ | $\frac{\alpha (\alpha -1)(\alpha -2)(\alpha -3)}{4}$ |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | $\frac{\alpha (\alpha -1)(\alpha -2)(\alpha -3)}{4}$ |
0 | 0 | 0 | $-\frac{\alpha (\alpha -1)(\alpha -2)}{3}$ | 0 |
0 | 0 | $\frac{\alpha (\alpha -1)}{2}$ | 0 | 0 |
0 | $-\alpha $ | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
Table 2
$\frac{{\alpha _{1}}}{18}$ | $\frac{{\alpha _{1}}}{18}$ | $\frac{{\alpha _{1}}}{18}$ | $-\frac{{\alpha _{2}}}{15}$ | $\frac{{\alpha _{3}}}{20}$ |
$-\frac{\alpha }{5}$ | $-\frac{\alpha }{5}$ | $\frac{{\alpha _{1}}}{18}$ | $-\frac{{\alpha _{2}}}{15}$ | $\frac{{\alpha _{3}}}{20}$ |
1 | $-\frac{\alpha }{5}$ | $\frac{{\alpha _{1}}}{18}$ | $-\frac{{\alpha _{2}}}{15}$ | $\frac{{\alpha _{3}}}{20}$ |
$-\frac{\alpha }{5}$ | $-\frac{\alpha }{5}$ | $\frac{{\alpha _{1}}}{18}$ | $-\frac{{\alpha _{2}}}{15}$ | $\frac{{\alpha _{3}}}{20}$ |
$\frac{{\alpha _{1}}}{18}$ | $\frac{{\alpha _{1}}}{18}$ | $\frac{{\alpha _{1}}}{18}$ | $-\frac{{\alpha _{2}}}{15}$ | $\frac{{\alpha _{3}}}{20}$ |
$\frac{{\alpha _{3}}}{20}$ | $\frac{{\alpha _{3}}}{20}$ | $\frac{{\alpha _{3}}}{20}$ | $\frac{{\alpha _{3}}}{20}$ | $\frac{{\alpha _{3}}}{20}$ |
$-\frac{{\alpha _{2}}}{15}$ | $-\frac{{\alpha _{2}}}{15}$ | $-\frac{{\alpha _{2}}}{15}$ | $-\frac{{\alpha _{2}}}{15}$ | $-\frac{{\alpha _{2}}}{15}$ |
$\frac{{\alpha _{1}}}{18}$ | $\frac{{\alpha _{1}}}{18}$ | $\frac{{\alpha _{1}}}{18}$ | $\frac{{\alpha _{1}}}{18}$ | $\frac{{\alpha _{1}}}{18}$ |
$\frac{{\alpha _{1}}}{18}$ | $-\frac{\alpha }{5}$ | $-\frac{\alpha }{5}$ | $-\frac{\alpha }{5}$ | $\frac{{\alpha _{1}}}{18}$ |
$\frac{{\alpha _{1}}}{18}$ | $-\frac{\alpha }{5}$ | 1 | $-\frac{\alpha }{5}$ | $\frac{{\alpha _{1}}}{18}$ |
$\frac{{\alpha _{3}}}{36}$ | $\frac{{\alpha _{3}}}{36}$ | $\frac{{\alpha _{3}}}{36}$ | $\frac{{\alpha _{3}}}{36}$ | $\frac{{\alpha _{3}}}{36}$ |
$-\frac{{\alpha _{2}}}{21}$ | $-\frac{{\alpha _{2}}}{21}$ | $-\frac{{\alpha _{2}}}{21}$ | $-\frac{{\alpha _{2}}}{21}$ | $\frac{{\alpha _{3}}}{36}$ |
$\frac{{\alpha _{1}}}{15}$ | $\frac{{\alpha _{1}}}{15}$ | $\frac{{\alpha _{1}}}{15}$ | $-\frac{{\alpha _{2}}}{21}$ | $\frac{{\alpha _{3}}}{36}$ |
$-\frac{\alpha }{3}$ | $-\frac{\alpha }{3}$ | $\frac{{\alpha _{1}}}{15}$ | $-\frac{{\alpha _{2}}}{21}$ | $\frac{{\alpha _{3}}}{36}$ |
1 | $-\frac{\alpha }{3}$ | $\frac{{\alpha _{1}}}{15}$ | $-\frac{{\alpha _{2}}}{21}$ | $\frac{{\alpha _{3}}}{36}$ |
Table 3
$\frac{{\alpha _{3}}}{20}$ | $\frac{{\alpha _{3}}}{36}$ | $\frac{{\alpha _{3}}}{10}$ | $\frac{7{\alpha _{3}}}{90}$ | $\frac{19{\alpha _{3}}}{180}$ | $\frac{7{\alpha _{3}}}{90}$ | $\frac{7{\alpha _{3}}}{90}$ | $\frac{{\alpha _{3}}}{36}$ | $\frac{{\alpha _{3}}}{36}$ |
$\frac{7{\alpha _{3}}}{90}$ | $-\frac{{\alpha _{2}}}{21}$ | $-\frac{4{\alpha _{2}}}{35}$ | $-\frac{4{\alpha _{2}}}{35}$ | $-\frac{17{\alpha _{2}}}{105}$ | $-\frac{4{\alpha _{2}}}{35}$ | $-\frac{4{\alpha _{2}}}{35}$ | $-\frac{{\alpha _{2}}}{21}$ | $\frac{{\alpha _{3}}}{36}$ |
$\frac{7{\alpha _{3}}}{90}$ | $-\frac{4{\alpha _{2}}}{35}$ | $\frac{{\alpha _{1}}}{5}-\frac{{\alpha _{2}}}{15}$ | $\frac{{\alpha _{1}}}{5}-\frac{\alpha }{9}$ | $\frac{3{\alpha _{1}}}{10}-\frac{2\alpha }{9}$ | $\frac{{\alpha _{1}}}{5}-\frac{\alpha }{9}$ | $\frac{3{\alpha _{1}}}{10}$ | $-\frac{4{\alpha _{2}}}{35}$ | $\frac{7{\alpha _{3}}}{90}$ |
$\frac{7{\alpha _{3}}}{90}$ | $-\frac{4{\alpha _{2}}}{35}$ | $\frac{{\alpha _{1}}}{5}-\frac{\alpha }{9}$ | $-\frac{5\alpha }{9}$ | $-\alpha $ | $-\frac{5\alpha }{9}$ | $\frac{2{b_{2}}}{5}-\frac{\alpha }{9}$ | $-\frac{4{\alpha _{2}}}{35}$ | $\frac{7{\alpha _{3}}}{90}$ |
$\frac{19{\alpha _{3}}}{180}$ | $-\frac{17{\alpha _{2}}}{105}$ | $-\frac{2\alpha }{9}+\frac{3{\alpha _{1}}}{10}$ | $-\alpha $ | 8 | $-\alpha $ | $\frac{3{\alpha _{1}}}{10}-\frac{2\alpha }{9}$ | $-\frac{2{\alpha _{2}}}{21}-\frac{{\alpha _{2}}}{15}$ | $\frac{19{\alpha _{3}}}{180}$ |
$\frac{7{\alpha _{3}}}{90}$ | $-\frac{4{\alpha _{2}}}{35}$ | $\frac{{\alpha _{1}}}{5}-\frac{\alpha }{9}$ | $-\frac{5\alpha }{9}$ | $-\alpha $ | $-\frac{5\alpha }{9}$ | $\frac{{\alpha _{1}}}{5}-\frac{\alpha }{9}$ | $-\frac{4{\alpha _{2}}}{35}$ | $\frac{7{\alpha _{3}}}{90}$ |
$\frac{7{\alpha _{3}}}{90}$ | $-\frac{4{\alpha _{2}}}{35}$ | $\frac{3{\alpha _{1}}}{10}$ | $\frac{{\alpha _{1}}}{5}-\frac{\alpha }{9}$ | $-\frac{2\alpha }{9}+\frac{3{\alpha _{1}}}{10}$ | $\frac{{\alpha _{1}}}{5}-\frac{\alpha }{9}$ | $\frac{3{\alpha _{1}}}{10}$ | $-\frac{4{\alpha _{2}}}{35}$ | $\frac{7{\alpha _{3}}}{90}$ |
$\frac{{\alpha _{3}}}{36}$ | $-\frac{{\alpha _{2}}}{21}$ | $-\frac{4{\alpha _{2}}}{35}$ | $-\frac{4{\alpha _{2}}}{35}$ | $-\frac{2{\alpha _{2}}}{21}-\frac{{\alpha _{2}}}{15}$ | $-\frac{4{\alpha _{2}}}{35}$ | $-\frac{4{\alpha _{2}}}{35}$ | $-\frac{{\alpha _{2}}}{21}$ | $\frac{{\alpha _{3}}}{36}$ |
$\frac{{\alpha _{3}}}{36}$ | $\frac{{\alpha _{3}}}{36}$ | $\frac{7{\alpha _{3}}}{90}$ | $\frac{7{\alpha _{3}}}{90}$ | $\frac{19{\alpha _{3}}}{180}$ | $\frac{7{\alpha _{3}}}{90}$ | $\frac{7{\alpha _{3}}}{90}$ | $\frac{{\alpha _{3}}}{36}$ | $\frac{{\alpha _{3}}}{36}$ |
3.2 Choosing the Appropriate Fractional Order
Table 4
$-\frac{1}{8}$ | $-\frac{1}{8}$ | $-\frac{1}{8}$ |
$-\frac{1}{8}$ | 1 | $-\frac{1}{8}$ |
$-\frac{1}{8}$ | $-\frac{1}{8}$ | $-\frac{1}{8}$ |
Table 5
$-\frac{1}{24}$ | $-\frac{1}{24}$ | $-\frac{1}{24}$ | $-\frac{1}{24}$ | $-\frac{1}{24}$ |
$-\frac{1}{24}$ | $-\frac{1}{24}$ | $-\frac{1}{24}$ | $-\frac{1}{24}$ | $-\frac{1}{24}$ |
$-\frac{1}{24}$ | $-\frac{1}{24}$ | 1 | $-\frac{1}{24}$ | $-\frac{1}{24}$ |
$-\frac{1}{24}$ | $-\frac{1}{24}$ | $-\frac{1}{24}$ | $-\frac{1}{24}$ | $-\frac{1}{24}$ |
$-\frac{1}{24}$ | $-\frac{1}{24}$ | $-\frac{1}{24}$ | $-\frac{1}{24}$ | $-\frac{1}{24}$ |
Table 6
$-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ |
$-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ |
$-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ |
$-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ | 1 | $-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ |
$-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}\hspace{2.5pt}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ |
$-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ |
$-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ | $-\frac{1}{48}$ |
(4)
\[ \alpha =\left\{\begin{array}{l@{\hskip4.0pt}l}0.1,\hspace{1em}& G(i,j)\leqslant {t_{1}},\\ {} \kappa ,\hspace{1em}& {t_{1}}\lt G(i,j)\lt {t_{2}},\\ {} 0.9,\hspace{1em}& G(i,j)\geqslant {t_{2}},\end{array}\right.\]Fig. 1
-
1. Start with a grayscale image I.
-
4. Assign a fractional order using the relation (4) for each pixel.
4 Empirical Findings and Discussions
4.1 PSNR
Table 7
Proposed method | MGL (Hemalatha and Anouncia, 2018) | |||||
Image | Blurred image | Deblurred image | Adaptive (Wadhwa and Bhardwaj, 2020) | ADFA (Li and Xie, 2015) | $\alpha =0.5$ | $\alpha =0.9$ |
a | 22.5824 | $\mathbf{39.1837}$ | 31.0507 | 17.7232 | 28.5643 | 15.3211 |
b | 19.5427 | $\mathbf{37.7322}$ | 30.8592 | 16.916 | 24.5577 | 12.6556 |
c | 22.5329 | 36.3296 | $\mathbf{38.3346}$ | 20.6807 | 33.2279 | 17.1651 |
d | 22.6419 | $\mathbf{40.2910}$ | 35.9398 | 19.7146 | 28.2865 | 13.9391 |
e | 21.5470 | $\mathbf{37.6767}$ | 33.9197 | 19.5176 | 29.3097 | 16.7414 |
f | 21.6181 | $\mathbf{38.6181}$ | 35.3671 | 19.847 | 30.7506 | 17.3028 |
g | 20.8060 | $\mathbf{39.6382}$ | 32.5681 | 18.4106 | 27.6775 | 13.783 |
h | 20.1791 | $\mathbf{38.7736}$ | 31.9848 | 16.9364 | 24.5164 | 12.6009 |
4.2 AMBE
Table 8
Proposed method | MGL (Hemalatha and Anouncia, 2018) | ||||
Image | Deblurred image | Adaptive (Wadhwa and Bhardwaj, 2020) | ADFA (Li and Xie, 2015) | $\alpha =0.5$ | $\alpha =0.9$ |
a | 0.0184 | 0.3521 | 5.0795 | 0.6157 | 8.0261 |
b | 0.0380 | 0.5516 | 6.9137 | 1.7944 | 15.881 |
c | 0.1048 | 0.1595 | 2.6175 | 0.4138 | 4.0873 |
d | 0.0268 | 0.205 | 3.8883 | 0.7204 | 11.3506 |
e | 0.0357 | 0.2615 | 2.9863 | 0.5015 | 4.3518 |
f | 0.0338 | 0.1754 | 2.6159 | 0.3969 | 4.155 |
g | 0.0342 | 0.4024 | 5.5945 | 1.031 | 12.9937 |
h | 0.0366 | 0.3983 | 6.5385 | 1.6116 | 14.7137 |
Table 9
$\text{METHODS}$ | $\text{PSNR}$ | $\text{AMBE}$ |
Proposed | $38.31\pm 1.98$ | $0.062\pm 0.04$ |
Fuzzy (Wadhwa and Bhardwaj, 2024) | $37.03\pm 2.25$ | $1.91\pm 0.57$ |
Morphology (Wadhwa and Bhardwaj, 2021) | $20.78\pm 2.72$ | $8.03\pm 3.95$ |
Chaira (Ensafi and Tizhoosh, 2005) | $30.04\pm 1.82$ | $4.7\pm 1.24$ |
CLAHE (Li and Xie, 2015) | $17.07\pm 1.73$ | $31.29\pm 5.97$ |
HE (Li and Xie, 2015) | $4.80\pm 0.59$ | $146.15\pm 9.42$ |
GC (Li and Xie, 2015) | $20.17\pm 1.46$ | $11.40\pm 1.26$ |
ADFA (Li and Xie, 2015) | $18.99\pm 1.49$ | $4.21\pm 1.67$ |
MGL (Hemalatha and Anouncia, 2018) | $22.75\pm 2.50$ | $7.31\pm 5.26$ |
4.3 Entropy
Table 10
Proposed method | MGL (Hemalatha and Anouncia, 2018) | |||||
Image | Blurred | Deblurred image | Adaptive (Wadhwa and Bhardwaj, 2020) | ADFA (Li and Xie, 2015) | $\alpha =0.5$ | $\alpha =0.9$ |
a | 3.9288 | 4.3115 | 3.2035 | 2.8469 | 3.0903 | 2.4986 |
b | 4.7521 | 5.0517 | 3.8652 | 3.295 | 3.5492 | 2.4328 |
c | 4.1223 | 4.3227 | 3.3237 | 3.1764 | 3.2533 | 3.0656 |
d | 5.1789 | 5.5790 | 4.5531 | 4.299 | 4.4412 | 3.7025 |
e | 4.4722 | 4.7190 | 3.6527 | 3.2962 | 3.5781 | 3.2188 |
f | 4.0355 | 4.3960 | 3.2814 | 2.9551 | 3.2641 | 2.9198 |
g | 4.7184 | 5.1486 | 4.1601 | 3.8553 | 4.005 | 3.2697 |
h | 4.7142 | 5.0675 | 4.0502 | 3.5105 | 3.7824 | 2.6725 |