Informatica logo


Login Register

  1. Home
  2. Issues
  3. Volume 35, Issue 3 (2024)
  4. Offloaded Data Processing Energy Efficie ...

Informatica

Information Submit your article For Referees Help ATTENTION!
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Offloaded Data Processing Energy Efficiency Evaluation
Volume 35, Issue 3 (2024), pp. 649–669
Victor Prokhorenko ORCID icon link to view author Victor Prokhorenko details   Muhammad Ali Babar ORCID icon link to view author Muhammad Ali Babar details  

Authors

 
Placeholder
https://doi.org/10.15388/24-INFOR567
Pub. online: 24 July 2024      Type: Research Article      Open accessOpen Access

Received
1 September 2023
Accepted
1 July 2024
Published
24 July 2024

Abstract

The growing popularity of mobile and cloud computing raises new challenges related to energy efficiency. This work evaluates four various SQL and NoSQL database solutions in terms of energy efficiency. Namely, Cassandra, MongoDB, Redis, and MySQL are taken into consideration. This study measures energy efficiency of the chosen data storage solutions on a selected set of physical and virtual computing nodes by leveraging Intel RAPL (Running Average Power Limit) technology. Various database usage scenarios are considered in this evaluation including both local usage and remote offloading. Different workloads are benchmarked through the use of YCSB (Yahoo! Cloud Serving Benchmark) tool. Extensive experimental results show that (i) Redis and MongoDB are more efficient in energy consumption under most usage scenarios, (ii) remote offloading saves energy if the network latency is low and destination CPU is significantly more powerful, and (iii) computationally weaker CPUs may sometimes demonstrate higher energy efficiency in terms of J/ops. An energy efficiency measurement framework is proposed in order to evaluate and compare different database solutions based on the obtained experimental results.

References

 
Abdurachmanov, D., Elmer, P., Eulisse, G., Knight, R., Niemi, T., Nurminen, J.K., Nyback, F., Pestana, G., Ou, Z., Khan, K.N. (2014). Techniques and tools for measuring energy efficiency of scientific software applications. CoRR, abs/1410.3440.
 
Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., Rasin, A. (2009). HadoopDB: an architectural hybrid of MapReduce and DBMS technologies for analytical workloads. Proceedings of the VLDB Endowment, 2(1), 922–933.
 
Beyer, D., Wendler, P. (2020). CPU energy meter: a tool for energy-aware algorithms engineering. In: Biere, A., Parker, D. (Eds.), Tools and Algorithms for the Construction and Analysis of Systems - 26th International Conference, TACAS 2020, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25–30, 2020, Proceedings, Part II. Lecture Notes in Computer Science, Vol. 12079. Springer, pp. 126–133. https://doi.org/10.1007/978-3-030-45237-7_8.
 
Bourdon, A., Noureddine, A., Rouvoy, R., Seinturier, L. (2013). Powerapi: a software library to monitor the energy consumed at the process-level. ERCIM News, 2013(92).
 
Calandrini, G., Vicente, A.G., Muñoz, I.B., Revenga, P.A., Lázaro, J.L., Toledo-Moreo, F.J. (2013). Power measurement methods for energy efficient applications. Sensors, 13(6), 7786–7796. https://doi.org/10.3390/s130607786.
 
Capra, E., Francalanci, C., Slaughter, S. (2012). Measuring application software energy efficiency. IT Professional, 14(2), 54–61. https://doi.org/10.1109/MITP.2012.39.
 
Cheong, S.-K., Lim, C.S., Cho, B.-C. (2012). Database processing performance and energy efficiency evaluation of DDR-SSD and HDD storage system based on the TPC-C. In: 2012 International Conference on Cloud Computing and Social Networking (ICCCSN). IEEE, pp. 1–3.
 
Chong, F.T., Heck, M.J.R., Ranganathan, P., Saleh, A.A.M., Wassel, H.M.G. (2014). Data center energy efficiency: improving energy efficiency in data centers beyond technology scaling. IEEE Design and Test, 31(1), 93–104.
 
Colmant, M., Kurpicz, M., Felber, P., Huertas, L., Rouvoy, R., Sobe, A. (2015). Process-level power estimation in vm-based systems. In: Proceedings of the Tenth European Conference on Computer Systems, pp. 1–14.
 
Desrochers, S., Paradis, C., Weaver, V.M. (2016). A validation of DRAM RAPL power measurements. In: Jacob, B. (Ed.), Proceedings of the Second International Symposium on Memory Systems, MEMSYS 2016, October 3–6, 2016. ACM, pp. 455–470.
 
Fahad, M., Shahid, A., Manumachu, R.R., Lastovetsky, A. (2019). A comparative study of methods for measurement of energy of computing. Energies, 12(11), 2204.
 
Ghaleb, T.A. (2019). Software energy measurement at different levels of granularity. In: 2019 International Conference on Computer and Information Sciences (ICCIS). IEEE, pp. 1–6. 978-1-5386-8126-8. https://doi.org/10.1109/ICCISci.2019.8716456.
 
Gomes, C., Tavares, E., Junior, M.N.d.O. (2020). Energy consumption evaluation of nosql dbmss. In: Anais do XV Workshop em Desempenho de Sistemas Computacionais e de Comunicação, pp. 71–81. SBC.
 
Graefe, G. (2008). Database servers tailored to improve energy efficiency. In: Apel, S., Rosenmüller, M., Saake, G., Spinczyk, O. (Eds.), EDBT’08 Workshop on Software Engineering for Tailor-made Data Management, Proceedings, Nantes, France, March 29, 2008. University of Magdeburg, pp. 24–28.
 
Haas, S., Arnold, O., Nöthen, B., Scholze, S., Ellguth, G., Dixius, A., Höppner, S., Schiefer, S., Hartmann, S., Henker, S., Hocker, T., Schreiter, J., Eisenreich, H., Schlüßler, J., Walter, D., Seifert, T., Pauls, F., Hasler, M., Chen, Y., Hensel, H., Moriam, S., Matús, E., Mayr, C., Schüffny, R., Fettweis, G.P. (2016). An MPSoC for energy-efficient database query processing. In: Proceedings of the 53rd Annual Design Automation Conference, DAC 2016, Austin, TX, USA, June 5–9, 2016. ACM, pp. 112–11126.
 
Hackenberg, D., Ilsche, T., Schöne, R., Molka, D., Schmidt, M., Nagel, W.E. (2013). Power measurement techniques on standard compute nodes: a quantitative comparison. In: 2013 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE, pp. 194–204.
 
Härder, T., Hudlet, V., Ou, Y., Schall, D. (2011). Energy efficiency is not enough, energy proportionality is needed! In: Xu, J., Yu, G., Zhou, S., Unland, R. (Eds.), Database Systems for Adanced Applications - 16th International Conference, DASFAA 2011, International Workshops: GDB, SIM3, FlashDB, SNSMW, DaMEN, DQIS, Hong Kong, China, April 22–25, 2011. Proceedings. Lecture Notes in Computer Science, Vol. 6637. Springer, pp. 226–239.
 
Hudlet, V., Schall, D. (2011). Measuring energy consumption of a database cluster. In: Härder, T., Lehner, W., Mitschang, B., Schöning, H., Schwarz, H. (Eds.), Datenbanksysteme für Business, Technologie und Web (BTW), 14. Fachtagung des GI-Fachbereichs "Datenbanken und Informationssysteme" (DBIS), 2.-4.3.2011. LNI, Vol. P-180. GI, pp. 734–737.
 
Jiang, C., Wang, Y., Ou, D., Li, Y., Zhang, J., Wan, J., Luo, B., Shi, W. (2019). Energy efficiency comparison of hypervisors. Sustainable Computing: Informatics and Systems, 22, 311–321.
 
Jiang, C., Fan, T., Gao, H., Shi, W., Liu, L., Cérin, C., Wan, J. (2020). Energy aware edge computing: a survey. Computer Communications, 151, 556–580.
 
Jin, C., de Supinski, B.R., Abramson, D., Poxon, H., DeRose, L., Dinh, M.N., Endrei, M., Jessup, E.R. (2017). A survey on software methods to improve the energy efficiency of parallel computing. International Journal of High Performance Computing Applications, 31(6), 517–549.
 
Jin, Y., Xing, B., Jin, P. (2013). Towards a benchmark platform for measuring the energy consumption of database systems. Advanced Science and Technology Letters, 29, 385–389.
 
Johann, T., Dick, M., Naumann, S., Kern, E. (2012). How to measure energy-efficiency of software: metrics and measurement results. In: Kazman, R., Lago, P., Meyer, N., Morisio, M., Müller, H.A., Paulisch, F., Scanniello, G., Zimmermann, O. (Eds.), First International Workshop on Green and Sustainable Software, GREENS 2012, June 3, 2012. IEEE Computer Society, pp. 51–54.
 
Kalaitzoglou, G., Bruntink, M., Visser, J. (2014). A practical model for evaluating the energy efficiency of software applications. In: ICT for Sustainability 2014 (ICT4S-14), August 25, 2014. Atlantis Press.
 
Kavanagh, R.E., Djemame, K. (2019). Rapid and accurate energy models through calibration with IPMI and RAPL. Concurrency and Computation: Practice and Experience, 31(13). https://doi.org/10.1002/cpe.5124.
 
Khan, N.K. (2018). Energy Measurement and Modeling in High Performance Computing with Intel’s RAPL.
 
Khan, K.N., Hirki, M., Niemi, T., Nurminen, J.K., Ou, Z. (2018). RAPL in action: experiences in using RAPL for power measurements. TOMPECS, 3(2), 9–1926. https://doi.org/10.1145/3177754.
 
Kuhlenkamp, J., Klems, M., Röss, O. (2014). Benchmarking scalability and elasticity of distributed database systems. Proceedings of the VLDB Endowment, 7(12), 1219–1230.
 
Kumar, K., Lu, Y. (2010). Cloud computing for mobile users: can offloading computation save energy? IEEE Computer, 43(4), 51–56. https://doi.org/10.1109/MC.2010.98.
 
Li, T., Yu, G., Liu, X., Song, J. (2014). Analyzing the waiting energy consumption of NoSQL databases. In: IEEE 12th International Conference on Dependable, Autonomic and Secure Computing, DASC 2014, August 24–27, 2014. IEEE Computer Society, pp. 277–282. https://doi.org/10.1109/DASC.2014.56.
 
Lopez-Novoa, U. (2019). Exploring performance and energy consumption differences between recent intel Processors. In: 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation, SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI 2019, Leicester, United Kingdom, August 19–23, 2019. IEEE, pp. 263–267.
 
Lu, F., Gu, L., Yang, L.T., Shao, L., Jin, H. (2020). Mildip: an energy efficient code offloading framework in mobile cloudlets. Information Sciences, 513, 84–97. https://doi.org/10.1016/j.ins.2019.10.008.
 
Mansouri, Y., Babar, M.A. (2021). A review of edge computing: features and resource virtualization. Journal of Parallel and Distributed Computing, 150, 155–183.
 
Mansouri, Y., Prokhorenko, V., Babar, M.A. (2020). An automated implementation of hybrid cloud for performance evaluation of distributed databases. Journal of Network and Computer Applications, 167, 102740.
 
Owusu, F., Pattinson, C. (2012). The current state of understanding of the energy efficiency of cloud computing. In: Min, G., Wu, Y., Liu, L.C., Jin, X., Jarvis, S.A., Al-Dubai, A.Y. (Eds.), 11th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2012, June 25–27, 2012. IEEE Computer Society, pp. 1948–1953.
 
Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J.P., Saraiva, J. (2017). Energy efficiency across programming languages: how do energy, time, and memory relate? In: Combemale, B., Mernik, M., Rumpe, B. (Eds.), Proceedings of the 10th ACM SIGPLAN International Conference on Software Language Engineering, SLE 2017, Vancouver, BC, Canada, October 23–24, 2017. ACM, pp. 256–267.
 
Phung, J., Lee, Y.C., Zomaya, A.Y. (2019). Energy efficiency evaluation of distributed systems. In: Rodrigues, J.M.F., Cardoso, P.J.S., Monteiro, J., Lam, R., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J.J., Sloot, P.M.A. (Eds.), Computational Science – ICCS 2019. Springer International Publishing, Cham, pp. 756–763. 978-3-030-22750-0.
 
Pinto, G., Castor, F. (2017). Energy efficiency: a new concern for application software developers. Communications of the ACM, 60(12), 68–75. https://doi.org/10.1145/3154384.
 
Pisharath, J., Choudhary, A.N., Kandemir, M.T. (2004). Reducing energy consumption of queries in memory-resident database systems. In: Irwin, M.J., Zhao, W., Lavagno, L., Mahlke, S.A. (Eds.), Proceedings of the 2004 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, CASES 2004, September 22–25, 2004. ACM, pp. 35–45.
 
Prokhorenko, V., Babar, M.A. (2023). Energy Efficiency Evaluation of Local and Offloaded Data Processing. CSIT. https://doi.org/10.51408/csit2023_12.
 
Rabl, T., Gómez-Villamor, S., Sadoghi, M., Muntés-Mulero, V., Jacobsen, H.-A., Mankovskii, S. (2012). Solving big data challenges for enterprise application performance management. Proceedings of the VLDB Endowment, 5(12), 1724–1735.
 
Rauber, T., Rünger, G., Schwind, M. (2014). Energy measurement and prediction for multi-threaded programs. In: 2014 Spring Simulation Multiconference, SpringSim ’14, Proceedings of the High Performance Computing Symposium. ACM, p. 20.
 
Rodríguez-Martínez, M., Valdivia, H., Seguel, J., Greer, M. (2011). Estimating power/energy consumption in database servers. In: Dagli, C.H. (Ed.), Proceedings of the Complex Adaptive Systems 2011 Conference, Chicago, Illinois, USA, October 31–November 2, 2011. Procedia Computer Science, Vol. 6. Elsevier, pp. 112–117.
 
Rotem, E., Naveh, A., Ananthakrishnan, A., Weissmann, E., Rajwan, D. (2012). Power-management architecture of the intel microarchitecture code-named sandy bridge. IEEE Micro, 32(2), 20–27.
 
Saxe, E. (2010). Power-efficient software. ACM Queue, 8(1), 10. https://doi.org/10.1145/1698223.1698225.
 
Schall, D., Hudlet, V., Härder, T. (2010). Enhancing energy efficiency of database applications using SSDs. In: Desai, B.C., Leung, C.K., Mudur, S.P. (Eds.), Canadian Conference on Computer Science & Software Engineering, C3S2E 2010, Montreal, Quebec, Canada, May 19–20, 2010, Proceedings. ACM International Conference Proceeding Series. ACM, pp. 1–9.
 
Stier, C., Koziolek, A., Groenda, H., Reussner, R.H. (2015). Model-based energy efficiency analysis of software architectures. In: Weyns, D., Mirandola, R., Crnkovic, I. (Eds.), Software Architecture – 9th European Conference, ECSA 2015, Dubrovnik/Cavtat, Croatia, September 7–11, 2015, Proceedings. Lecture Notes in Computer Science, Vol. 9278. Springer, pp. 221–238.
 
Tsirogiannis, D., Harizopoulos, S., Shah, M.A. (2010). Analyzing the energy efficiency of a database server. In: Elmagarmid, A.K., Agrawal, D. (Eds.), Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2010, June 6–10, 2010. ACM, pp. 231–242.
 
Weaver, V.M., Johnson, M., Kasichayanula, K., Ralph, J., Luszczek, P., Terpstra, D., Moore, S. (2012). Measuring energy and power with PAPI. In: 2012 41st International Conference on Parallel Processing Workshops. IEEE, pp. 262–268.
 
Xu, C., Zhao, Z., Wang, H., Shea, R., Liu, J. (2015). Energy efficiency of cloud virtual machines: from traffic pattern and CPU affinity perspectives. IEEE Systems Journal, 11(2), 835–845.
 
Xu, Z., Tu, Y., Wang, X. (2012). PET: reducing database energy cost via query optimization. PVLDB, 5(12), 1954–1957. https://doi.org/10.14778/2367502.2367546.
 
Yang, P., Jin, P., Yue, L. (2014). Exploiting the performance-energy tradeoffs for mobile database applications. Journal of Universal Computer Science,, 20(10), 1488–1498. https://doi.org/10.3217/jucs-020-10-1488.
 
Zhang, H., Hoffman, H. (2015). A quantitative evaluation of the RAPL power control system. Feedback Computing.
 
Zhou, Y., Taneja, S., Qin, X., Ku, W., Zhang, J. (2020). EDOM: Improving energy efficiency of database operations on multicore servers. Future Generation Computer Systems, 105, 1002–1015.

Biographies

Prokhorenko Victor
https://orcid.org/0000-0003-1012-6216
victor.prokhorenko@adelaide.edu.au

V. Prokhorenko received the PhD degree in computer science from The University of South Australia, in 2017. He is a researcher with the Centre for Research on Engineering Software Technologies, The University of Adelaide, Adelaide. He has more than 14 years of experience in software engineering with main areas of expertise, including the investigation of technologies related to software resilience, trust management, and big data solutions hosted within OpenStack and Microsoft Azure cloud platforms.

Babar Muhammad Ali
https://orcid.org/0000-0001-9696-3626
ali.babar@adelaide.edu.au

M.A. Babar is a professor in the School of Computer Science, University of Adelaide. Prof. Babar has established an interdisciplinary research centre called CREST (Centre for Research on Engineering Software Technologies), where he directs the research, education, and engineering activities of more than 25 researchers and engineers. He also leads a theme on architecture and platform for security as a service in the Cyber Security Cooperative Research Centre. Prof. Babar has initiated and led several interdisciplinary R&DI programs in collaboration with industry/govt partners in Australia and Europe. Professor Babar has authored/co-authored more than 280 peer-reviewed papers at premier software journals and conferences. Professor Babar obtained a PhD in computer science and engineering from the school of computer science and engineering of the University of New South Wales, Australia.


Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2024 Vilnius University
by logo by logo
Open access article under the CC BY license.

Keywords
energy measurement NoSQL databases SQL database cloud computing edge computing performance

Metrics
since January 2020
291

Article info
views

148

Full article
views

88

PDF
downloads

44

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

INFORMATICA

  • Online ISSN: 1822-8844
  • Print ISSN: 0868-4952
  • Copyright © 2023 Vilnius University

About

  • About journal

For contributors

  • OA Policy
  • Submit your article
  • Instructions for Referees
    •  

    •  

Contact us

  • Institute of Data Science and Digital Technologies
  • Vilnius University

    Akademijos St. 4

    08412 Vilnius, Lithuania

    Phone: (+370 5) 2109 338

    E-mail: informatica@mii.vu.lt

    https://informatica.vu.lt/journal/INFORMATICA
Powered by PubliMill  •  Privacy policy