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Abstract. The growing popularity of mobile and cloud computing raises new challenges related to
energy efficiency. This work evaluates four various SQL and NoSQL database solutions in terms
of energy efficiency. Namely, Cassandra, MongoDB, Redis, and MySQL are taken into considera-
tion. This study measures energy efficiency of the chosen data storage solutions on a selected set
of physical and virtual computing nodes by leveraging Intel RAPL (Running Average Power Limit)
technology. Various database usage scenarios are considered in this evaluation including both local
usage and remote offloading. Different workloads are benchmarked through the use of YCSB (Ya-
hoo! Cloud Serving Benchmark) tool. Extensive experimental results show that (i) Redis and Mon-
goDB are more efficient in energy consumption under most usage scenarios, (ii) remote offloading
saves energy if the network latency is low and destination CPU is significantly more powerful, and
(iii) computationally weaker CPUs may sometimes demonstrate higher energy efficiency in terms of
J/ops. An energy efficiency measurement framework is proposed in order to evaluate and compare
different database solutions based on the obtained experimental results.
Key words: energy measurement, NoSQL databases, SQL database, cloud computing, edge
computing, performance.

1. Introduction

Energy efficiency is becoming increasingly important with the adoption of resource-
constrained mobile and wearable devices (Pinto and Castor, 2017; Saxe, 2010). Further-
more, popularity of large-scale and distributed data centres hosting thousands of servers
raises additional energy-related challenges (Chong et al., 2014; Owusu and Pattinson,
2012). Energy usage optimization techniques range from individual device sleeping state
management to large-scale energy usage consolidation. Two main energy optimization
goals can be highlighted.

Firstly, minimizing energy usage in order to prolong system operation is the main goal
for wearable and mobile systems. Such systems typically aim to operate for prolonged time
periods. Typical examples include mobile phones and smart watches. Given the miniature
size, such systems suffer from low energy and computing power capacity. Despite the sig-
nificant progress in CPU development and manufacturing, user needs commonly exceed
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the capacity of current hardware. Thus, apart from improving the underlying hardware,
two techniques commonly used in conjunction are employed in order to improve overall
user experience. These include idle state management and computation offloading. Both
measures can significantly increase system operational time (Mansouri and Babar, 2021;
Jiang et al., 2020).

Secondly, consolidating energy usage for multiple devices is applicable to data-centres.
Perhaps the most popular approach is to virtualize multiple nodes and co-host them on the
same hardware. Also, migrating virtual machines between hardware servers based on cur-
rent workloads can be beneficial under certain conditions. The main goal of such dynamic
VM migration is to pack the running tasks into a lower number of hardware servers. Con-
sequently, this allows to power down (or transition to a low energy consumption state)
the currently unused hardware. Two main obstacles in this area are the unpredictability of
workload and large overheads associated with workload migration.

In this study, we focus on database-level workload offloading energy efficiency. We
selected modern and popular databases including Cassandra,1 MongoDB,2 and Redis3 as
NoSQL databases and MySQL4 as a relational database. We considered two different sit-
uations in regard to database server and client locations, namely same node or different
nodes. We explore the impact of both CPU power and distance between client and database
server nodes on the energy consumption. We made a setup of two physical nodes including
a laptop and a powerful server and one virtual computing node managed through Open-
Stack virtualization platform. We further refer to the laptop and the powerful sever as
mid-range and high-end CPU respectively, indicating that the server hardware we use is
significantly more powerful than the laptop.

With the advent of NoSQL databases in last decade, a myriad of studies explored
the performance of these databases, mainly including Cassandra, MongoDB, CouchDB,5
Riak6, Redis and compared their performance with the well-known relational databases
like MySQL, PostgreSQL,7 and SQL server. The evaluation of these databases was con-
ducted on a variety of hardware infrastructures. Rabl et al. (2012) measured the perfor-
mance of NoSQL and relational databases on a private cloud. Kuhlenkamp et al. (2014)
performed experiments on the public cloud to evaluate how scalable and elastic NoSQL
databases are. We have also recently measured the performance of NoSQL and relation
databases on the hybrid cloud (Mansouri et al., 2020). The closest work to ours is energy
measurement of three NoSQL databases (Cassandra, MongoDB, and Redis) running on a
hardware server (Phung et al., 2019).

We focused on the evaluation of energy efficiency, taking into consideration the CPU
power and distance between client and server through the following research questions
(RQ).

1Cassandra:https://cassandra.apache.org/
2MongoDB:https://www.mongodb.com/
3Redis: https://redis.io/
4MySQL: https://www.mysql.com/
5CouchDB: https://couchdb.apache.org/
6Riak: https://riak.com/
7PostgreSQL: https://www.postgresql.org/

https://cassandra.apache.org/
https://www.mongodb.com/
https://redis.io/
https://www.mysql.com/
https://couchdb.apache.org/
https://riak.com/
https://www.postgresql.org/
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• RQ1: Which database solution is more energy efficient under typical local usage?
• RQ2: How is the database energy efficiency affected by multiple threads?
• RQ3: In terms of energy efficiency, what is the role of CPU computational power in

typical database workloads?
• RQ4: How beneficial is database workload offloading in terms of energy efficiency?
• RQ5: How does the network latency affect offloading energy efficiency?

To answer these questions, a set of experiments has been conducted in various condi-
tions and environments. The main contributions of this study include insights on energy
efficiency of the selected database under different scenarios as well as the goal-oriented
database workload offloading energy efficiency evaluation and comparison framework.

The rest of this paper is organised as follows. A review of related literature is presented
in Section 2. Section 3 provides a description of our infrastructure and experimental setup.
Corresponding experiment results are outlined in Sections 4–6. Section 7 discusses the
proposed goal-oriented energy efficiency evaluation framework. Result summary and re-
search limitations are discussed in Section 8. Lastly, Section 9 concludes this study and
outlines future research directions.

2. Related Work

Energy measurement approaches can be categorized into hardware-based monitoring and
software-based estimation.8 Hardware-based approaches require energy monitors which
can be expensive depending on the precision provided. Such monitoring devices range
from simple analogue Watt-meters to complex internet-connected systems. While costing
more, smart monitoring systems enable data offloading to remote hosts for further anal-
ysis (Hackenberg et al., 2013; Hudlet and Schall, 2011). A detailed taxonomy of energy
measurement approaches for battery-powered devices at various levels of granularity is
presented in Ghaleb (2019).

Software-based energy estimation approaches, though less precise, enable estimating
the energy usage based on a pre-built power model for a given hardware. Such models
are typically based on various performance counters and I/O load observable within the
system (Rodríguez-Martínez et al., 2011; Kavanagh and Djemame, 2019; Rauber et al.,
2014). Common examples include CPU and RAM frequency. Energy estimation models
have been shown to be less precise compared to hardware-based measurement. The vari-
ance can achieve 73% to 300% (Fahad et al., 2019). Various metrics useful for practical
software energy efficiency evaluation are discussed in Kalaitzoglou et al. (2014), Johann
et al. (2012), Stier et al. (2015).

Intel developed a precise power usage model for modern CPUs (Khan, 2018, 2018).
This model, known as RAPL (Running Average Power Limit), was developed to design
and optimise cooling subsystem based on the observed power consumed and dissipated

8Hybrid energy usage frameworks are an alternative solution to energy usage monitoring (Weaver et al.,
2012). Specific database-oriented energy usage measurement using hybrid framework has been explored in Jin
et al. (2013).



652 V. Prokhorenko, M.A. Babar

by a CPU (Zhang and Hoffman, 2015). Comparing the observed energy usage to RAPL
measurements indicates that the overall results seem to match closely (Desrochers et al.,
2016). Note that RAPL readouts are less accurate when a system is idle or when a dis-
crete GPU is actively used. The overhead of RAPL measurement itself was measured in
Calandrini et al. (2013). In addition, direct RAPL benchmarking tools integration have
been proposed (Beyer and Wendler, 2020).

Due to the high popularity of virtualization, significant efforts have been put in VM
energy usage estimation (Xu et al., 2015). Virtualization complicates the power usage
monitoring as the hypervisor may not expose the performance counters to the guest OS.
Thus, various estimation approaches have been proposed, including for nested virtualiza-
tion scenarios (Colmant et al., 2015). It has been shown that Docker containerization is
not more energy efficient compared to traditional VM hypervisors (Jiang et al., 2019).

More fine-grained techniques focus at the process-level energy usage estimation (Bour-
don et al., 2013). Some prior research on energy efficiency of databases indicates that
CPU power consumption may differ up to 60% depending on type of the operations
(Tsirogiannis et al., 2010). This research was, however, limited to PostgreSQL and System-
X databases only. More recent study, focused on NoSQL databases (HBase,9 Cassandra,
HadoopDB (Abouzeid et al., 2009) and Hive10), indicates that a significant portion of en-
ergy is wasted during waiting periods (Li et al., 2014). Zhou et al. (2020) measured the
impact of number of CPU cores in the context of PostgreSQL energy efficiency. Database
query-level energy efficiency and optimization is considered in Xu et al. (2012). Bench-
marks in Schall et al. (2010), Cheong et al. (2012) indicate that using SSDs instead of
mechanical platter HDDs improves database energy efficiency significantly. Furthermore,
it has been demonstrated that the choice of the operating system as well as programming
language may also affect database energy efficiency (Capra et al., 2012; Pereira et al.,
2017).

In addition to measuring efforts, various database energy efficiency optimization tech-
niques are proposed (Graefe, 2008). These include memory hierarchies, adaptive query
rescheduling, I/O optimizations and data format improvements. Relying on hardware ca-
pabilities shows an improvement of database energy efficiency by up to 40% (Pisharath et
al., 2004). Hardware-assisted energy-efficient database accelerator device has been pre-
sented in Haas et al. (2016). It was also shown that adjusting power usage limits on-the-fly
within distributed systems may improve overall energy efficiency for a given workload
(Phung et al., 2019). A similar approach proposes to disconnect and reconnect database
nodes based on current processing needs to improve energy efficiency (Härder et al.,
2011). Energy usage optimisation measures in large scale environments typically focus
on optimisations such as power-aware resource management, task scheduling and traffic
tuning (Jin et al., 2017).

In contrast to NoSQL solutions energy efficiency evaluation (Gomes et al., 2020),
our study also considers a traditional SQL database. We also evaluate more usage sce-
narios, including close-proximity and long-distance database workload offloading. This

9HBase: https://hbase.apache.org
10Hive: https://hive.apache.org/

https://hbase.apache.org
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study is an expansion of our prior work on data offloading energy efficiency evaluation
(Prokhorenko and Babar, 2023).

3. Experiment Setup

This section outlines the details of the conducted energy efficiency measurement experi-
ments. Firstly, our physical and virtual infrastructure is discussed in Section 3.1. Typical
YCSB database workloads used throughout the experiments are described in Section 3.2.
Energy usage measurement approach taken is presented in Section 3.3. Lastly, Section 3.4
outlines the conducted experiment details.

3.1. Hardware Infrastructure

Two physical nodes and one virtual node hosted on OpenStack cloud were used throughout
the experiments. Ubuntu 18.04.4 server edition was used on all hosts. Table 1 summarises
hosts details. Due to technical challenges associated with precise VM energy usage mea-
surement, the virtual node was only used in workload offloading scenarios. In other words,
the energy consumption was only considered from end-user perspective and measured on
physical client nodes only. As clouds provide “infinite” resources (including energy sup-
ply) this limitation seems acceptable.

3.2. Database Benchmark and Workloads

We conducted a number of experiments to determine energy efficiency of four data man-
agement solutions. We selected MongoDB, Cassandra, MySQL and Redis for this study
due to their wide adoption in industry and academic sectors. This selection allows to
compare a variety of different types of data management systems. The choice features
two NoSQL, one traditional SQL and one RAM-based key-value database. Table 2 sum-
marises database solutions benchmarked.

Table 1
Hardware infrastructure.

Host Name Type CPU RAM
Mid-range Phys. Intel Core i5-5200U 16 GB
High-end Phys. Intel Core i9-9900KF 32 GB
OpenStack Virt. Intel Xeon E5-2623v3 8 GB

Table 2
Database solutions.

Database Version Type
Cassandra 3.11.6 Wide column
MongoDB 3.6.3 Document-oriented
MySQL 5.7.29 Relational
Redis 4.0.9 Key-value
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Table 3
YCSB workload descriptions.

Workload Workload type Description
A Update heavy 50% reads, 50% writes
B Read mostly 95% reads, 5% writes
C Read only 100% reads
D Read latest Reading newly inserted records
E Short ranges Querying short ranges of records
F Read-modify-write Reading, modifying and writing back records

We used Yahoo! Cloud Servicing Benchmark (YCSB) to run typical database work-
load as detailed in Table 3. As per YCSB recommendations, the following workload order
was used: A, B, C, F, D are executed followed by purging and reloading data prior to
running workload E. This order is recommended as workload D inserts new records, in-
creasing the database size. The number of records and operations used throughout the
local (scenarios 1–2) and close-proximity (1.5 ms latency) offloading scenarios was set to
100000 (scenarios 3–4). Long-distance (50 ms latency) offloading ran with the number of
operations reduced to 10000 (scenarios 5–6).

3.3. Energy Usage Measurement

Intel RAPL technology was used to measure CPU energy usage throughout the experi-
ments. In accordance with best practices, overall CPU micro-Joules measurements pro-
vided by Linux kernel was used to determine the amount of energy consumed by each
workload. RAPL technology does not use a hardware meter but is rather a software power
model. This power model uses various hardware performance counters and I/O models
to approximate CPU energy usage. However, real-world energy usage measurements con-
ducted by Intel indicate that the model closely matches actual power usage (Rotem et al.,
2012). Note that power and energy have different meaning. Specifically, power is mea-
sured in Watts and indicates how much energy is used at any given moment. Energy is
measured in Watt-hours and refers to the ability to deliver power over time period.

The initial intended purpose of RAPL was to measure how much power does a CPU
need on average during a specified time period. This is an essential knowledge required
to develop cooling systems for size-constrained devices. Knowing energy usage can also
aid choosing batteries suitable for a given device. RAPL technology is available starting
from Sandy Bridge generation on desktops and servers.

3.4. Database Usage Scenarios

Based on our hardware and virtual infrastructure, we ran six scenarios as described in
Table 4. We run YCSB workload and databases locally on Mid-range CPU (scenario 1)
and high-end CPU (scenario 2). We then offload workload from mid-range CPU to High-
end CPU and OpenStack VMs, which are located in close proximity (scenarios 3 and 4).
Finally, we run long-distance offloading from Mid-range and high-end CPU to OpenStack
VMs (scenarios 5 and 6).
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Table 4
Experimental scenarios.

Scenarios Source Destination Distance Concept
Scenario 1 High-end CPU High-end CPU 0 Local
Scenario 2 Mid-range CPU Mid-range CPU 0 Local
Scenario 3 Mid-range CPU High-end CPU Close-proximity offloading
Scenario 4 High-end CPU OpenStack VM Close-proximity offloading
Scenario 5 Mid-range CPU High-end CPU Long offloading

The results are classified in three groups: local, close-proximity offloading and long-
distance offloading. Local refers to the scenario when both database server and client
(YCSB) are located on the same host. Some databases (such as MySQL) may use lo-
cal Unix Domain Sockets instead of network communication in such configurations by
default. Close-proximity offloading was performed within Adelaide University LAN with
the network latency of 1.5 ms between the nodes. Long-distance offloading was conducted
over wider area network with the latency of 50 ms. Experiments were executed using dif-
ferent number of threads (1–20). Direct comparison of energy efficiency between different
database solutions is not particularly meaningful due to the difference in architectures and
data structures. Nevertheless, some high-level observations can be made based on the ob-
tained results.

4. Workload Energy Efficiency Evaluation

This section focuses on database solution energy efficiency under typical local usage
(RQ1), and on how is the database energy efficiency affected by multiple threads (RQ2).
The first experiment set was conducted on a single host with no network communication
and encryption overhead (scenarios 1–2).

4.1. High-End CPU

Energy usage per 1000 operations for a high-end CPU is depicted on Fig. 1. As can be
seen from the presented graphs, Workloads B, C and D are quite similar in terms of en-
ergy efficiency. Namely, the relative database energy efficiency remains the same across
workloads. The largest difference in energy efficiency exists for one-threaded experiment
runs. This difference steadily drops as number of threads increases. At around 10 threads,
the energy consumption stabilizes for all databases and does not improve any further.

In contrast to workloads B, C and D, for workloads A and F, the relative performance
of MySQL and Cassandra is swapped for low number of threads. However, at 8 threads
this difference diminishes. Consistent to previously conducted performance benchmarking
(Mansouri et al., 2020), workload E proves to be most challenging for Redis with the other
databases not being affected as much. Moreover, the energy efficiency of Redis does not
improve much as number of threads increases, with no apparent changes after 2 threads.
While the improvement between 1 and 2 threads is significant, Redis is worse more than
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Fig. 1. Energy consumption of local processing on high-end CPU for Cassandra, MongoDB, MySQL and Redis
(scenario 2).

twice than other databases. This is in contrast to other workloads, where Redis is twice as
more energy-efficient.

Workload E is most demanding in terms of absolute values of energy usage as querying
ranges of records requires more data to be transmitted per each operation. Larger trans-
missions naturally take longer to complete, thus requiring more energy. Lastly, the overall
average thread-related energy usage improvement is a factor of 2 for all databases, except
Redis.

4.2. Mid-Range CPU

Figure 2 illustrates a surprising result for the mid-range CPU. Namely, while achieving
lower throughput, the slower CPU is more energy-efficient in terms of absolute values of
micro-Joules consumed per 1000 operations. This remains true for all types of workloads
with a roughly same relative database energy efficiency swap for Cassandra and MySQL
can be observed for Workloads A/F vs. B-D. Somewhat lower energy usage improvement
factor for increasing number of threads can be explained by the lower number of CPU cores
available. Overall, the workload energy usage efficiency is consistent across the different
CPUs in local usage scenarios.

4.3. Workload Type Effects

Table 5 summarizes cross-workload energy efficiency difference for workloads A, B, C, D,
and F compared to the workload E. For example, it can be seen that Cassandra workload
A uses 24% of energy used for workload E. As shown in Table 5 energy consumption
difference can reach a factor of 35 for Redis across all databases and workloads. Omitting
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Fig. 2. Energy consumption of local processing on a mid-range CPU for Cassandra, MongoDB, MySQL and
Redis.

Table 5
Energy usage efficiency of different workloads (A, B, C, D, and F) to Workload E.

Host name Database A B C D F Max variance
Mid-range CPU Cassandra 24% 21.4% 19.7% 23% 28% 5.07

MongoDB 42.3% 35.8% 35.4% 31.6% 54.1% 3.16
MySQL 37.8% 28.1% 26% 28.5% 47.7% 3.84
Redis 3.6% 3% 2.9% 3.4% 4% 34.26

High-end CPU Cassandra 24.1% 23.6% 23% 23.6% 29.5% 4.35
MongoDB 37.7% 27.1% 28.3% 28.2% 45.4% 3.69
MySQL 30.2% 28.8% 25.6% 29.3% 39.6% 3.91
Redis 3.8% 3.4% 2.8% 2.8% 4.4% 35.78

Mid-range CPU →
High-end CPU

Cassandra 33.3% 30.1% 27.7% 32.6% 38.3% 3.61
MongoDB 27.1% 29.1% 26.7% 25% 35.9% 4
MySQL 20.7% 25% 37.4% 26.1% 32.9% 4.82
Redis 4.4% 3.7% 3.4% 4.2% 6.4% 29.49

workload E, which is known to pose challenges for Redis, the difference ranges from a
factor of 3.16 for MongoDB to 5.07 for Cassandra (last column in Table 5).

The variance between workloads is not the same across different CPUs and does not
generally reduce when a more powerful CPU is used. For instance, workload-induced
energy consumption variance is 3.16 for MongoDB on a mid-range CPU, whereas on a
high-end CPU this variance increases to 3.69. Disregarding workload E, we see that with
the exception of MySQL, workload F is least energy efficient for all databases across all
configurations tested. Workload A is second hardest for local usage scenarios in terms of
energy efficiency. For offloading scenarios, however, pattern changes for MongoDB and
MySQL. Averaging the results across databases and usage scenarios, workloads can be
sorted in terms of energy consumption as follows: E, F, A, D, B, C.
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Fig. 3. CPU power consumption of workload A for all databases, as well as idle and maximum utilization of (a)
mid-range CPU, and (b) high-end CPU.

In summary, the answer to RQ1 is: Redis is more energy-efficient for most workloads,
except workload E, for which MongoDB is the most efficient by a slight margin. The
answer to RQ2 is: Increasing number of threads improves overall energy efficiency on
average by a factor of 2, with no visible differences after number of threads reaches 10.

5. CPU-Related Energy Efficiency Evaluation

This section focuses on the role of CPU computational power from energy efficiency per-
spective in typical database workloads (RQ3). In our case slower CPU achieved higher
energy efficiency. While the more powerful CPU can certainly complete the tasks faster
by achieving a significantly higher ops/sec throughput, the slower CPUs consumes less
energy per 1000 operations. Figures 3a and 3b demonstrate power consumption for mid-
range and high-end CPUs, respectively.

We measure the idle CPU energy usage, with all databases and non-system processes
stopped for one hour to establish idle usage baseline. We also capture the energy con-
sumption of both CPUs under 100% utilization using the “stress” tool11 to determine
maximum possible energy usage. For brevity, we plotted power usage for workload A for
all databases. The following observations can be made based on the results.

First, we see that most of the databases do not fully utilize CPU maximum power. On
a high-end CPU only MongoDB was able to achieve close to 100% power. Redis was also
consuming a significant portion of maximum power. In contrast, MySQL and Cassandra
could only consume around 15–25% and 30–60% on high-end and mid-range CPUs, re-
spectively. These sub-optimal results indicate that there is still space in optimizing MySQL
and Cassandra energy efficiencies. It is also somewhat unexpected to see the minor drops
in energy usage for Cassandra and MySQL at 8 and 13 threads, respectively. A likely ex-
planation is that this drop occurs due to the operation latency increasing as number of
threads increases. In other words, after a certain load, databases do less useful work and
spend more time waiting for the results.

Second, the key insight emerges from the comparison of the absolute values of idle
to fully loaded energy usage of the CPUs tested. Specifically, mid-range CPU consumes

11Stress tool: https://github.com/cooljeanius/stress-1.0.4

https://github.com/cooljeanius/stress-1.0.4
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14.5 Watts, while high-end CPU consumes 119 Watts at full load. Therefore, under ideal
conditions, the high-end CPU needs to perform 8.2 times more operations per second in or-
der to achieve the same energy efficiency (J/ops) as the mid-range CPU. Under real-world
conditions, due to the imperfection of database implementations this factor is reduced to
around a factor of 4 for MySQL/Cassandra and a factor of 7 for Redis. While MongoDB
could fully utilize the energy available for high-end CPU, it performed worse on mid-range
CPU causing the equivalent performance factor to be closer to 10.

In summary, the answer to RQ3 is complex and depends on three key factors. Namely,
the maximum power that a given CPU can consume, how much of that energy can a given
database utilize and the raw computational CPU power (ops/sec). Precise answer is com-
plicated by the fact that even the same database may utilize a different proportion of CPU
power as algorithms may scale differently on different CPUs.

The mid-range CPU proved to be more energy-efficient than the high-end one under all
workloads for all databases. However, the high-end CPU achieved a significantly higher
throughput for all tasks. Therefore, actual CPU and database selection decision depends
on the expected usage scenarios and system goals. Choosing a more energy-efficient CPU
could be beneficial if a lower throughput is acceptable.

6. Network Offloading Energy Efficiency

This section discusses answers on how beneficial is database workload offloading in terms
of energy efficiency (RQ4), and how does the network latency affect offloading energy
efficiency (RQ5). Two sets of experiments were conducted to measure network effects.
Firstly, a close-proximity offloading was performed within University of Adelaide LAN
(Section 6.1). Then, a longer-distance offloading was conducted over WAN (Section 6.2).
The energy measurements were only conducted on client side as servers are considered to
have “infinite” power available unlike the resource-constrained client nodes. Such offload-
ing is a common strategy in optimizing energy usage and overall system performance (Lu
et al., 2020). Measuring energy usage on both client and server sides would most likely
demonstrate a higher total energy consumption (compared to local processing) due to the
data transmission overheads. Some research suggests that while offloading computations
to a remote cloud could be beneficial for some workloads, extra factors such as data pri-
vacy and security must be considered (Kumar and Lu, 2010).

6.1. Close-Proximity Offloading

In this set of experiments, database servers resided on the high-end CPU, while YCSB was
running on the mid-range CPU (Scenario 3). The same set of workloads was executed by
YCSB and the total client-side energy consumption was measured. As shown in Fig. 4,
the relative database energy efficiency is similar to local workloads. Redis struggles in
workload E, while using less energy for other workloads.

Comparing the local and close-proximity offloading reveals that in some cases of-
floading can be beneficial in terms of energy efficiency. Figure 5 illustrates the difference
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Fig. 4. Energy consumption of all databases, where database servers run on a high-end CPU and YCSB client
runs on a mid-range CPU (close proximity).

Fig. 5. Energy consumption of workload A for databases running on a mid-range CPU (local) vs. energy
consumption of databases offloading from mid-range CPU to high-end CPU with distance of several meters
(remote).
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Fig. 6. Energy consumption of workload A for databases running on a high-end CPU (local) vs. energy con-
sumption of databases offloading from high-end CPU to OpenStack VM (remote).

between energy usage in local and close-proximity offloading scenarios. We compare lo-
cal mid-range CPU workload execution and offloading from mid-range CPU to high-end
CPU.

Offloading workloads to high-end CPU generally improves energy efficiency. How-
ever, for the effect to become visible and substantial for MongoDB, the number of threads
must be increased. Offloading did not gain any significant improvement for Redis in terms
of energy efficiency. Even at 20 threads the energy consumption difference remains neg-
ligible. For Cassandra, MongoDB and MySQL the energy efficiency improvement factor
reaches 1.5, 1.9 and 2.7, respectively. Note that such significant energy usage improve-
ment can only be achieved with multi-threaded loads as single-threaded workloads do not
benefit from offloading as much.

Figure 6 shows the results of offloading from high-end CPU to a somewhat slower
Openstack VM (Scenario 4). Packet round-trip time was 1.5ms for this set of experiments.
This scenario reveals a drastic change compared to the mid-range to high-end offloading.
Only MongoDB managed to achieve a slight improvement, reaching a factor of 1.3 at 20
threads. MySQL suffered most, consuming around 4 times more energy. Cassandra was
only impacted slightly by the offloading with the energy consumption growing by around
10%. Redis consumed more than 50% more energy. The situation is worse for MongoDB
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Fig. 7. Energy consumption of databases, where YCSB runs on mid-range CPU and database servers run on
high-end CPU (long distance).

and Cassandra when a low number of threads is used. For up to 6–7 threads, even close-
proximity offloading to a slower CPU worsens energy efficiency.

These results are explained by the extra time that client idles while waiting for server
results. The associated network traffic and bandwidth were measured and observed to be
significantly lower than the physical link capacity. Thus, it is highly unlikely that network
link limitations caused a bottleneck.

6.2. Long-Distance Offloading

In this set of experiments, YCSB workload runs on the mid-range CPU and the high-end
CPU hosts databases (Scenario 5). Compared to close-proximity offloading, the packet
latency is significantly higher in this scenario (50 ms vs. 1.5 ms).

As shown in Fig. 7, measuring energy efficiency for long-distance workload offloading
revealed that with an exception of workload E, the difference between different databases
virtually disappears. Workload E is a known weak point for Redis. Other databases demon-
strate close results with deviations rarely exceeding 10%. As average operation latency in
local scenarios is typically around tens of microseconds, clearly 50 ms network latency
dominates database latency.

Figure 8 illustrates the absolute values of energy usage for three scenarios: local pro-
cessing on a mid-range CPU as well as close-proximity (LAN) and long distance (WAN)
offloading from mid-range CPU to high-end CPU. We see that long-distance offloading
worsens energy efficiency even if the remote CPU is significantly more powerful. Energy
usage increases by an order of magnitude, making such offloading pointless. Results for
MongoDB, MySQL and Redis are omitted for brevity due to similar result patterns.
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Fig. 8. A comparison of energy consumption of Cassandra (Workload A) running on a mid-range CPU between
local and offloaded processing (close-proximity and long distance).

Based on the obtained energy usage pattern measurements conducted, the answers to
RQ4 and RQ5 can be formulated as follows. RQ4: workload offloading can be beneficial
for some databases (all except Redis) only if the remote CPU is significantly more pow-
erful in terms of computational capacity. RQ5: only low-latency network environments
can provide benefits of workload offloading as high network packet latency starts domi-
nating database-induced latencies. Based on these answers, a generic goal-based energy
efficiency measurement and decisions approach is presented in the next section.

7. Goal-Based Database Energy Efficiency Evaluation Framework

A lightweight energy efficiency estimating framework has been developed as a part of this
study. This framework enables automated database workload offloading energy efficiency
measurement for given local and remote CPUs. YCSB-based workloads are used to obtain
the measurements.

Network data transmission- and encryption-related energy usage overheads may be
measured separately, if necessary. While specific conditions may lead to significant over-
heads, under the testing environment these overheads were negligible (around 1%). The
proposed framework aids comparing a local host against a remote node in terms of energy
efficiency.

Depending on the intended database usage and goals, energy-aware decisions can be
made based on the obtained results. Two potential goals are considered: highest throughput
and lowest energy usage. Different hardware and network environments may lead to these
two goals becoming mutually exclusive (e.g. remote node may achieve higher throughput
only at the expense of higher energy usage).

Table 6 shows an example output for the “high-end CPU → Openstack VM” evalua-
tion. It is shown that running workload A for Cassandra is always more energy efficient
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Table 6
The recommended energy-efficient (micro-Joules/1KOps) scenarios – coloured in green – for all databases

running on high-end CPU (local) and offloading from high-end CPU to OpenStack VM (remote) for workloads
A and B.

10 Threads 15 Threads 20 Threads
Workload A Local Remote Local Remote Local Remote
Cassandra 56.68 62.45 49.96 50.23 47.74 48.12
MongoDB 24.90 33.56 24.23 26.18 24.23 25.51
MySQL 83.91 87.95 47.91 54.16 37.78 39.18
Redis 0.04 0.03 0.03 0.04 0.06 0.07
Workload B Local Remote Local Remote Local Remote
Cassandra 55.41 62.62 50.96 52.56 48.43 48.95
MongoDB 23.98 35.54 25.45 27.43 24.16 23.75
MySQL 42.03 43.14 29.68 29.98 33.11 32.93
Redis 0.06 0.06 0.06 0.06 0.07 0.06

and faster on the local node. In contrast, running workload B on MongoDB and MySQL
the remote (Openstack) node becomes beneficial in terms of energy usage for 20 threads.
Green cells highlight most energy efficient scenario for each database.

8. Applicability and Lessons Learnt

The most significant limitation of this study is that only CPU energy usage was considered.
Taking into account RAM and disk I/O may affect our findings. Another constraint is the
limited variety of hardware available, as all tested systems were Intel-based. Some prior
measurements indicate that ARM may demonstrate higher energy efficiency (Abdurach-
manov et al., 2014). Traditional x86-targeted energy efficiency optimizations were shown
not to be suitable for mobile ARM-based database usage scenarios (Yang et al., 2014).
A significant difference in energy efficiency has been observed for Intel CPUs of different
generations (Lopez-Novoa, 2019). Lastly, only a subset of databases was considered.

Note that due to the limits of RAPL counters, longer workloads may cause energy
usage readings to overflow returning negative results. Extra care must be taken in such
cases to counter RAPL overflows. Powerful CPUs may overflow the RAPL counter in less
than 30 minutes under load.

Redis exhibited stability issues with long-distance offloading. Multiple crashes oc-
curred for Redis-related experiments causing interruptions. Extra care was taken to detect
such crashes even during the data loading phase, as otherwise the experiments continued
with an incomplete dataset. The high number of crashes forced to run Redis experiments
with a reduced number of records. While Redis crashes could be attributed to low link
quality, other databases worked correctly.

Additional measures were taken to minimize measurement noise. Clean operating sys-
tems were installed for all of the experiments and all non-essential services have been
disabled. While this later proved to have an insignificant effect, all of the databases, ex-
cept the currently tested one, were stopped to exclude possible background maintenance
activities.
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Compared to local runs, remote offloading faced several technical challenges. Due
to firewall rules, SSH tunnelling was used in order to achieve inter-network offloading.
SSH protocol involves encryption, which allows to secure the communication between
database client and server nodes. Encryption, however, introduces overhead which may
impact the energy efficiency. Thus, measurements were conducted to determine the net-
work transmission and encryption overheads separately. Network transmission and en-
cryption related energy consumption overheads were observed to be negligible compared
to the database energy consumption and thus not taken into consideration. Actual energy
consumption overhead was measured to be on average around 1% of the overall energy
consumed during workload execution.

Interestingly, not all databases were able to achieve 100% consumption of the avail-
able CPU energy. In other words, stress-testing the CPU consumed significantly more
energy than most of the databases did under load of 20 threads. This indicates that CPU
architecture-specific optimizations may potentially improve database performance.

Idle energy usage measurements were also taken to determine the associated energy
waste. The results indicate high-end and mid-range CPUs consume 9 and 1.6 Watts, re-
spectively. Thus, to be more energy-efficient, the high-end CPU needs to achieve signifi-
cantly higher throughput.

9. Conclusion and Future Work

It is challenging to provide generalized results in the context of energy efficiency due to the
large amount of different factors involved. However, a number of interesting quantitative
results have been obtained throughout this research study. It was shown that newer CPUs,
while being faster, may not necessarily be more energy efficient in all workloads. We also
see that most of the tested databases were unable to utilize the amount of energy consumed
under stress testing. As energy efficiency can be improved by a factor of 3 to 4, the area
of software optimizations is worth investigating.

Energy efficiency improvements were only achieved under two conditions: (i) The re-
mote CPU is significantly more computationally powerful than the local CPU, and (ii) the
network latency is low. When either condition was not fulfilled, the energy efficiency de-
creased dramatically. Deploying workload offloading in practice requires preliminary es-
timations of hardware capacity, workload type and network latency. Unsuitable resources
and conditions mean that performing the computations locally would be more energy ef-
ficient. This is explained by the high overhead of two-way data transmission and the asso-
ciated idle waits. Note that the performed measurements revealed that data transmission
energy usage is negligible (1.2–1.5%) compared to the idling energy waste. Running an
energy usage estimation benchmark in a given environment prior to making a choice is
thus highly recommended. Extending the applicability of the offloading approach to clus-
tered database environments and dynamically moving client nodes would require dynamic
offloading feasibility assessment.

Future research lines can focus on a number of potentially useful extensions of this
work. Firstly, testing more CPUs (AMD and ARM). Secondly, tweaking memory man-
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agement related settings such as swap file size, disk I/O caching and amount of memory
used by a database might reveal further differences between databases tested.

Thirdly, individual hardware components energy usage can be measured separately.
More fine-grained results could be obtained by considering different types of disk storage,
such as SSD and spinning hard disks of different speeds.

Fourthly, database-tailored workloads can be executed to estimate the effect of differ-
ent data storage architectures. For example, document-based storage might demonstrate
improved energy efficiency for shorter documents. Similarly, a relational database may
perform differently depending on the record fields number.

Lastly, OS-specific effects could also impact energy efficiency of databases. Such dif-
ference might not directly relate to the database quality but rather indicate different OS-
specific disk I/O caching approaches. This knowledge would be useful in making informed
decisions on optimal database selection in terms of energy efficiency.
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