Informatica logo


Login Register

  1. Home
  2. Issues
  3. Volume 36, Issue 1 (2025)
  4. Review and Computational Study on Practi ...

Informatica

Information Submit your article For Referees Help ATTENTION!
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Review and Computational Study on Practicality of Derivative-Free DIRECT-Type Methods
Volume 36, Issue 1 (2025), pp. 141–174
Linas Stripinis ORCID icon link to view author Linas Stripinis details   Remigijus Paulavičius ORCID icon link to view author Remigijus Paulavičius details  

Authors

 
Placeholder
https://doi.org/10.15388/24-INFOR548
Pub. online: 26 March 2024      Type: Research Article      Open accessOpen Access

Received
1 October 2023
Accepted
1 March 2024
Published
26 March 2024

Abstract

Derivative-free DIRECT-type global optimization algorithms are increasingly favoured for their simplicity and effectiveness in addressing real-world optimization challenges. This review examines their practical applications through a systematic analysis of scientific journals and computational studies. In particular, significant challenges in reproducibility have been identified with practical problems. To address this, we conducted an experimental study using practical problems from reputable CEC libraries, comparing DIRECT-type techniques against their state-of-the-art counterparts. Therefore, this study sheds light on current gaps, opportunities, and future prospects for advanced research in this domain, laying the foundation for replicating and expanding the research findings presented herein.

References

 
Abood, K., Das, T., Lester, D.R., Usher, S.P., Stickland, A.D., Rees, C., Eshtiaghi, N., Batstone, D.J. (2022). Characterising sedimentation velocity of primary waste water solids and effluents. Water Research, 219, 118555. https://doi.org/10.1016/j.watres.2022.118555.
 
Al-Dujaili, A., Suresh, S. (2016). A Naive multi-scale search algorithm for global optimization problems. Information Sciences, 372, 294–312. https://doi.org/10.1016/j.ins.2016.07.054.
 
Alexandrov, E.A., Litvinenko, A.L., Yastrebova, E.S., Strokotov, D.I., Nekrasov, V.M., Gilev, K.V., Chernyshev, A.V., Karpenko, A.A., Maltsev, V.P. (2023). 4π light scattering flow cytometry: enhancing the identification and characterization of individual cells. Analytical Methods, 15(39), 5218–5224. https://doi.org/10.1039/d3ay01171b.
 
Archetti, F., Schoen, F. (1984). A survey on the global optimization problem: general theory and computational approaches. Annals of Operations Research, 1, 87–110.
 
Baker, C.A., Watson, L.T., Grossman, B., Mason, W.H., Haftka, R.T. (2001). Parallel Global Aircraft Configuration Design Space Exploration. Nova Science Publishers, Inc., USA, pp. 79–96. 1590331273.
 
Baluja, S. (1994). Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA.
 
Barmuta, P., Mercuri, M., Soh, P.J., Karsmakers, P., Vandenbosch, G.A.E., Leroux, P., Lewandowski, A., Schreurs, D. (2016). Radar range improvement using gradient-free optimization for health care applications. In: 2016 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), pp. 1–4. https://doi.org/10.1109/MIKON.2016.7491968.
 
Bartholomew-Biggs, M.C., Parkhurst, S.C., Wilson, S.P. (2002). Using DIRECT to solve an aircraft routing problem. Computational Optimization and Applications, 21(3), 311–323. https://doi.org/10.1023/A:1013729320435.
 
Beheshti, Z., Shamsuddin, S.M.H. (2013). A review of population-based meta-heuristic algorithms. International Journal of Advances in Soft Computing and its Applications, 5(1), 1–35.
 
Bouadi, M., Jia, B., Jiang, R., Li, X., Gao, Z. (2022). Optimizing sensitivity parameters of automated driving vehicles in an open heterogeneous traffic flow system. Transportmetrica A: Transport Science, 18(3), 762–806. https://doi.org/10.1080/23249935.2021.1896592.
 
Campana, E.F., Diez, M., Iemma, U., Liuzzi, G., Lucidi, S., Rinaldi, F., Serani, A. (2016). Derivative-free global ship design optimization using global/local hybridization of the DIRECT algorithm. Optimization and Engineering, 17, 127–156. https://doi.org/10.1007/s11081-015-9303-0.
 
Cao, P., Yoo, D., Shuai, Q., Tang, J. (2017). Structural damage identification with multi-objective DIRECT algorithm using natural frequencies and single mode shape. In: Proceedings SPIE 10170, Health Monitoring of Structural and Biological Systems 2017, pp. 542–550. https://doi.org/10.1117/12.2260349.
 
Carter, R.G., Gablonsky, J.M., Patrick, A., Kelley, C.T., Eslinger, O.J. (2001). Algorithms for noisy problems in gas transmission pipeline optimization. Optimization and Engineering, 2(2), 139–157. https://doi.org/10.1023/A:1013123110266.
 
Chen, X.M., Xiong, C., He, X., Zhu, Z., Zhang, L. (2016). Time-of-day vehicle mileage fees for congestion mitigation and revenue generation: a simulation-based optimization method and its real-world application. Transportation Research Part C: Emerging Technologies, 63, 71–95. https://doi.org/10.1016/j.trc.2015.12.001.
 
Dapšys, I., Čiegis, R., Starikovičius, V. (2023). Applying artificial neural networks to solve the inverse problem of evaluating concentrations in multianalyte mixtures from biosensor signals. Nonlinear Analysis: Modelling and Control, 29(1), 1–18. https://doi.org/10.15388/namc.2024.29.33604.
 
Das, S., Suganthan, P.N. (2010). Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems. Technical report, Jadavpur University, Nanyang Technological University, Kolkata.
 
Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2), 311–338. https://doi.org/10.1016/S0045-7825(99)00389-8.
 
Di Serafino, D., Liuzzi, G., Piccialli, V., Riccio, F., Toraldo, G. (2011). A modified DIviding RECTangles algorithm for a problem in astrophysics. Journal of Optimization Theory and Applications, 151(1), 175–190. https://doi.org/10.1007/s10957-011-9856-9.
 
Eberhart, R., Kennedy, J. (1995). A new optimizer using particle swarm theory. In: MHS’95, Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43. https://doi.org/10.1109/MHS.1995.494215.
 
Fanelli, D. (2018). Is science really facing a reproducibility crisis, and do we need it to? Proceedings of the National Academy of Sciences, 115(11), 2628–2631. https://doi.org/10.1073/pnas.1708272114.
 
Finkel, D.E., Kelley, C.T. (2006). Additive scaling and the DIRECT algorithm. Journal of Global Optimization, 36(4), 597–608. https://doi.org/10.1007/s10898-006-9029-9.
 
Floudas, C.A., Pardalos, P.M., Adjiman, C., Esposito, W.R., Gümüs, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A. (2013). Handbook of Test Problems in Local and Global Optimization, Vol. 33. Springer Science & Business Media.
 
Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32(200), 675–701. https://doi.org/10.1080/01621459.1937.10503522.
 
Gao, W., Mi, C. (2007). Hybrid vehicle design using global optimisation algorithms. International Journal of Electric and Hybrid Vehicles, 1(1), 57–70.
 
Glover, F. (1989). Tabu search—Part I. ORSA Journal on Computing, 1(3), 190–206. https://doi.org/10.1287/ijoc.1.3.190.
 
Griffin, J.D., Kolda, T.G. (2010). Asynchronous parallel hybrid optimization combining DIRECT and GSS. Optimization Methods & Software, 25(5), 797–817. https://doi.org/10.1080/10556780903039893.
 
Grigaitis, D., Bartkutė, V., Sakalauskas, L. (2007). An optimization of system for automatic recognition of ischemic stroke areas in computed tomography images. Informatica, 18(4), 603–614. https://doi.org/10.15388/Informatica.2007.196.
 
Hansen, N., Ostermeier, A. (1996). Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 312–317. https://doi.org/10.1109/ICEC.1996.542381.
 
Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., Brockhoff, D. (2021). COCO: a platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software, 36(1), 114–144. https://doi.org/10.1080/10556788.2020.1808977.
 
Hauser, K. (2017). Learning the problem-optimum map: analysis and application to global optimization in robotics. IEEE Transactions on Robotics, 33(1), 141–152. https://doi.org/10.1109/TRO.2016.2623345.
 
He, J., Sosonkina, M., Shaffer, C.A., Tyson, J.J., Watson, L.T., Zwolak, J.W. (2004). Hierarchical parallel scheme for global parameter estimation in systems biology. In: 18th International Parallel and Distributed Processing Symposium, 2004, Proceedings, p. 42. https://doi.org/10.1109/IPDPS.2004.1302958.
 
He, J., Verstak, A., Watson, L.T., Sosonkina, M. (2008). Design and implementation of a massively parallel version of DIRECT. Computational Optimization and Applications. 40, 217–245. https://doi.org/10.1007/s10589-007-9092-2.
 
He, J., Watson, L.T., Sosonkina, M. (2009a). Algorithm 897: VTDIRECT95: serial and parallel codes for the global optimization algorithm direct. ACM Transactions on Mathematical Software, 36(3). https://doi.org/10.1145/1527286.1527291.
 
He, J., Verstak, A., Watson, L.T., Sosonkina, M. (2009b). Performance modeling and analysis of a massively parallel DIRECT—Part 1. The International Journal of High Performance Computing Applications, 23(1), 14–28. https://doi.org/10.1177/1094342008098462.
 
He, J., Verstak, A., Sosonkina, M., Watson, L.T. (2009c). Performance modeling and analysis of a massively parallel DIRECT—Part 2. The International Journal of High Performance Computing Applications, 23(1), 29–41. https://doi.org/10.1177/1094342008098463.
 
He, R., Narayana, P.A. (2002). Global optimization of mutual information: application to three-dimensional retrospective registration of magnetic resonance images. Computerized Medical Imaging and Graphics, 26(4), 277–292. https://doi.org/10.1016/S0895-6111(02)00019-8.
 
Herrenbauer, M., Tieleman, D.P., Posten, C. (2001). Molecular modelling of dlffusional motion and transfer of Pyrene in lipid membranes. IFAC Proceedings Volumes, 34(5), 317–322. https://doi.org/10.1016/S1474-6670(17)34239-8.
 
Holmstrom, K., Goran, A.O., Edvall, M.M. (2010). User’s guide for TOMLAB 7. https://tomopt.com/.
 
Huyer, W., Neumaier, A. (1999). Global optimization by multilevel coordinate search. Journal of Global Optimization, 14(4), 331–355. https://doi.org/10.1023/A:1008382309369.
 
Jasper, M., Brill, E., Ranjithan, R., Mahinthakumar, G. (2016). Development and application of the DIRECT algorithm for leak detection in water distribution systems. Journal of Algorithms and Optimization. 4(1), 14–31. https://doi.org/10.5963/JAO0401002.
 
Jie, H., Shi, H., Ding, J., Wu, Y., Yin, Q. (2015). A metamodel-based global algorithm for mixed-integer nonlinear optimization and the application in fuel cell vehicle design. Computer Modeling in Engineering & Sciences, 108(3), 193–214. https://doi.org/10.3970/cmes.2015.108.193.
 
Jin, F., Yang, Y., Hu, B., Zhou, J., Gao, B., Wan, Y. (2023). Research on section dimension optimization of high-rise steel–concrete composite buildings based on improved dividing rectangle algorithm and combined response surface model. Structures 58, 105437. https://doi.org/10.1016/j.istruc.2023.105437.
 
Jones, D.R. (2001). The Direct global optimization algorithm. In: Floudas, C.A., Pardalos, P.M. (Eds.), The Encyclopedia of Optimization. Kluwer Academic Publishers, Dordrect, pp. 431–440.
 
Jones, D.R. (2023). On the Natural Extension of the DIRECT Global Optimization Algorithm to Handle Multiple Objectives, Nonlinear Constraints, and Missing Data. GitHub. Online; accessed: 2023-08-01.
 
Jones, D.R., Martins, J.R.R.A. (2021). The DIRECT algorithm: 25 years later. Journal of Global Optimization, 79, 521–566. https://doi.org/10.1007/s10898-020-00952-6.
 
Jones, D.R., Perttunen, C.D., Stuckman, B.E. (1993). Lipschitzian optimization without the Lipschitz constant. Journal of Optimization Theory and Application, 79(1), 157–181. https://doi.org/10.1007/BF00941892.
 
Jones, D.R., Schonlau, M., Welch, W.J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13(4), 455–492. https://doi.org/10.1023/A:1008306431147.
 
Kanayama, K., Seko, A., Toyoura, K. (2023). Structure search method for atomic clusters based on the dividing rectangles algorithm. Physical Review E, 108, 035303. https://doi.org/10.1103/PhysRevE.108.035303.
 
Kancharala, A.K., Philen, M.K. (2016). Investigation on the reduction of center of mass oscillations of flexible flapping fins. Journal of Bionic Engineering, 13(4), 544–557. https://doi.org/10.1016/S1672-6529(16)60327-X.
 
Kellermayer, D.I.K.H. (1977). Numerische Optimierung Von Computer-Modellen Mittels Der Evolutionsstrategie Hans-Paul Schwefel Birkhäuser, Basel and Stuttgart, 1977 370 pages Hardback SF/48 ISBN 3-7643-0876-1. Journal of Cybernetics, 7(3–4), 319–320. https://doi.org/10.1080/01969727708910058.
 
Kerschke, P., Trautmann, H. (2019). Automated algorithm selection on continuous black-box problems by combining exploratory landscape analysis and machine learning. Evolutionary Computation, 27(1), 99–127.
 
Kim, J.S., Kim, Y.C., Shin, K.Y. (2022a). An algorithm for portfolio optimization problem. Informatica, 16(1), 93–106. https://doi.org/10.15388/Informatica.2005.086.
 
Kim, S., Jwa, M., Lee, S., Park, S., Kang, N. (2022b). Deep learning-based inverse design for engineering systems: multidisciplinary design optimization of automotive brakes. Structural and Multidisciplinary Optimization, 65, 323. https://doi.org/10.1007/s00158-022-03386-8.
 
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. https://doi.org/10.1126/science.220.4598.671.
 
Kumar, A., Das, S., Zelinka, I. (2020a). A modified covariance matrix adaptation evolution strategy for real-world constrained optimization problems. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, GECCO ’20. Association for Computing Machinery, New York, NY, USA, pp. 11–12. 9781450371278. https://doi.org/10.1145/3377929.3398185.
 
Kumar, A., Wu, G., Ali, M.Z., Mallipeddi, R., Suganthan, P.N., Das, S. (2020b). A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm and Evolutionary Computation, 56, 100693. https://doi.org/10.1016/j.swevo.2020.100693.
 
Kvasov, D.E., Menniti, D., Pinnarelli, A., Sergeyev, Y.D., Sorrentino, N. (2008). Tuning fuzzy power-system stabilizers in multi-machine systems by global optimization algorithms based on efficient domain partitions. Electric Power Systems Research, 78(7), 1217–1229. https://doi.org/10.1016/j.epsr.2007.10.009.
 
Leon, A. (1966). A classified bibliography on optimization. Recent Advances in Optimization Techniques, 599, 649.
 
Li, C., Chen, Y., Yang, X., Wang, Z., Lu, Z., Chi, X. (2022). Intelligent black–Litterman portfolio optimization using a decomposition-based multi-objective DIRECT algorithm. Applied Sciences, 12(14). https://doi.org/10.3390/app12147089.
 
Li, L., Chen, X.M., Zhang, L. (2016). A global optimization algorithm for trajectory data based car-following model calibration. Transportation Research Part C: Emerging Technologies, 68, 311–332. https://doi.org/10.1016/j.trc.2016.04.011.
 
Liao, Z., Zhang, X., Zhang, Q., Zheng, W., Li, W. (2021). Rough approximation-based approach for designing a personalized tour route under a fuzzy environment. Information Sciences, 575, 338–354. https://doi.org/10.1016/j.ins.2021.02.007.
 
Lin, X., Yu, X., Li, W. (2022). A heuristic whale optimization algorithm with niching strategy for global multi-dimensional engineering optimization. Computers & Industrial Engineering, 171, 108361. https://doi.org/10.1016/j.cie.2022.108361.
 
Liu, H., Xu, S., Wang, X., Wu, J., Song, Y. (2015). A global optimization algorithm for simulation-based problems via the extended DIRECT scheme. Engineering Optimization, 47(11), 1441–1458. https://doi.org/10.1080/0305215X.2014.971777.
 
Liu, H., Xu, S., Chen, X., Wang, X., Ma, Q. (2017). Constrained global optimization via a DIRECT-type constraint-handling technique and an adaptive metamodeling strategy. Structural and Multidisciplinary Optimization, 55(1), 155–177. https://doi.org/10.1007/s00158-016-1482-6.
 
Liu, Q., Zeng, J., Yang, G. (2015). MrDIRECT: a multilevel robust DIRECT algorithm for global optimization problems. Journal of Global Optimization, 62(2), 205–227. https://doi.org/10.1007/s10898-014-0241-8.
 
Liu, Z., Li, B., Wang, J., Qiao, Y. (2022). A method of value model convergence and profit optimization for crossover services. Journal of King Saud University – Computer and Information Sciences, 34(10, Part B), 10459–10473. https://doi.org/10.1016/j.jksuci.2022.11.002.
 
Liuzzi, G., Lucidi, S., Piccialli, V. (2010). A direct-based approach exploiting local minimizations for the solution for large-scale global optimization problems. Computational Optimization and Applications, 45(2), 353–375. https://doi.org/10.1007/s10589-008-9217-2.
 
Liuzzi, G., Lucidi, S., Piccialli, V. (2016). Exploiting derivative-free local searches in direct-type algorithms for global optimization. Computational Optimization and Applications, 65, 449–475. https://doi.org/DOI 10.1007/s10589-015-9741-9.
 
Ljungberg, K., Holmgren, S., Carlborg, O. (2004). Simultaneous search for multiple QTL using the global optimization algorithm DIRECT. Bioinformatics, 20(12), 1887–1895. https://doi.org/10.1093/bioinformatics/bth175.
 
López-Ibáñez, M., Branke, J., Paquete, L. (2021). Reproducibility in evolutionary computation. ACM Transactions on Evolutionary Learning and Optimization, 1(4), 1–21. https://doi.org/10.1145/3466624.
 
Menon, P.P., Bates, D.G., Postlethwaite, I., Marcos, A., Fernandez, V., Bennani, S. (2007). Worst-case analysis of flight control laws for re-entry vehicles. IFAC Proceedings Volumes, 40(7), 317–322. https://doi.org/10.3182/20070625-5-FR-2916.00055.
 
Mladenović, N., Dražić, M., Kovačevic-Vujčić, V., Čangalović, M. (2008). General variable neighborhood search for the continuous optimization. European Journal of Operational Research, 191, 753–770. https://doi.org/10.1016/j.ejor.2006.12.064.
 
Mockus, J. (1975). On Bayesian methods for seeking the extremum. In: Marchuk, G.I. (Ed.), Optimization Techniques IFIP Technical Conference: Novosibirsk, July 1–7, 1974. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 400–404. 978-3-662-38527-2. https://doi.org/10.1007/978-3-662-38527-2_55.
 
Mockus, J. (1994). Application of Bayesian approach to numerical methods of global and stochastic optimization. Journal of Global Optimization, 4, 347–365. https://doi.org/10.1007/BF01099263.
 
Mockus, J., Paulavičius, R., Rusakevičius, D., Šešok, D., Žilinskas, J. (2017). Application of reduced-set pareto-Lipschitzian optimization to truss optimization. Journal of Global Optimization, 67(1-2), 425–450. https://doi.org/10.1007/s10898-015-0364-6.
 
Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of Internal Medicine, 151(4), 264–269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135.
 
Moret, S., Bierlaire, M., Maréchal, F. (2016). Robust optimization for strategic energy planning. Informatica, 27(3), 625–648. https://doi.org/10.15388/Informatica.2016.103.
 
Mugunthan, P., Shoemaker, C.A., Regis, R.G. (2005). Comparison of function approximation, heuristic, and derivative-based methods for automatic calibration of computationally expensive groundwater bioremediation models. Water Resources Research, 41(11). https://doi.org/10.1029/2005WR004134.
 
Na, J., Lim, Y., Han, C. (2017). A modified DIRECT algorithm for hidden constraints in an LNG process optimization. Energy, 126, 488–500. https://doi.org/10.1016/j.energy.2017.03.047.
 
Navakauskas, D., Kazlauskas, M. (2023). Fog computing in healthcare: systematic review. Informatica, 34(3), 577–602. https://doi.org/10.15388/23-INFOR525.
 
Nelder, J.A., Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4), 308–313. https://doi.org/10.1093/comjnl/7.4.308.
 
Ong, Y.S., Nair, P.B., Keane, A.J., Wong, K.W. (2005). Surrogate-assisted evolutionary optimization frameworks for high-fidelity engineering design problems. In: Jin, Y. (Ed.), Knowledge Incorporation in Evolutionary Computation. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 307–331. 978-3-540-44511-1. https://doi.org/10.1007/978-3-540-44511-1_15.
 
Panday, A., Bansal, H.O. (2014). Fuel efficiency optimization of input-split hybrid electric vehicle using DIRECT algorithm. In: 2014 9th International Conference on Industrial and Information Systems (ICIIS), pp. 1–6. https://doi.org/10.1109/ICIINFS.2014.7036640.
 
Paulavičius, R., Žilinskas, J. (2009). Global optimization using the branch-and-bound algorithm with a combination of Lipschitz bounds over simplices. Technological and Economic Development of Economy, 15(2), 310–325. https://doi.org/10.3846/1392-8619.2009.15.310-325.
 
Paulavičius, R., Chiter, L., Žilinskas, J. (2018). Global optimization based on bisection of rectangles, function values at diagonals, and a set of Lipschitz constants. Journal of Global Optimization, 71(1), 5–20. https://doi.org/10.1007/s10898-016-0485-6.
 
Paulavičius, R., Žilinskas, J., Herrera, J.F.R., Casado, L.G. (2013). A parallel DISIMPL for pile placement optimization in Grillage-type foundations. In: 2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing. IEEE, pp. 525–530. 978-0-7695-5094-7. https://doi.org/10.1109/3PGCIC.2013.90.
 
Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J. (2014). Globally-biased DISIMPL algorithm for expensive global optimization. Journal of Global Optimization, 59(2-3), 545–567. https://doi.org/10.1007/s10898-014-0180-4.
 
Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J. (2020). Globally-biased BIRECT algorithm with local accelerators for expensive global optimization. Expert Systems with Applications, 144, 11305. https://doi.org/10.1016/j.eswa.2019.113052.
 
Paulavičius, R., Stripinis, L., Sutavičiūtė, S., Kočegarov, D., Filatovas, E. (2023). A novel greedy genetic algorithm-based personalized travel recommendation system. Expert Systems with Applications, 230, 120580. https://doi.org/10.1016/j.eswa.2023.120580.
 
Powell, M.J.D. (1994). A direct earch optimization method that models the objective and constraint functions by linear interpolation. In: Gomez, S., Hennart, J.-P. (Eds.), Advances in Optimization and Numerical Analysis. Springer Netherlands, Dordrecht, pp. 51–67. 978-94-015-8330-5. https://doi.org/10.1007/978-94-015-8330-5_4.
 
Ramanathan, K., Sharma, C.S., Kim, C.H. (2012). Global kinetics for ammonia formation and oxidation reactions in a commercial three-way catalyst. Industrial and Engineering Chemistry Research, 51, 1198–1208. https://doi.org/10.1021/ie2017866.
 
Ramsahye, P., Susilawati, S., Tan, C.P., Kamal, M.A.S. (2023). Data-driven adaptive automated driving model in mixed traffic. IEEE Access, 11, 109049–109065. https://doi.org/10.1109/ACCESS.2023.3321804.
 
Rios, L.M., Sahinidis, N.V. (2007). Derivative-free optimization: a review of algorithms and comparison of software implementations. Journal of Global Optimization, 56(3), 1247–1293. https://doi.org/10.1007/s10898-012-9951-y.
 
Rousseau, A., Pagerit, S., Gao, D.W. (2008). Plug-in hybrid electric vehicle control strategy parameter optimization. Journal of Asian Electric Vehicles, 6(2), 1125–1133. https://doi.org/10.4130/jaev.6.1125.
 
Ruf, F., Neiss, A., Barthels, A., Kohler, T.P., Michel, H.-U., Froeschl, J., Herzog, H.-G. (2012). Design optimization of a 14 V automotive power net using a parallelized DIRECT algorithm in a physical simulation. In: 2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), pp. 73–80. https://doi.org/10.1109/OPTIM.2012.6231911.
 
Sadollah, A., Sayyaadi, H., Yadav, A. (2018). A dynamic metaheuristic optimization model inspired by biological nervous systems: neural network algorithm. Applied Soft Computing, 71, 747–782. https://doi.org/10.1016/j.asoc.2018.07.039.
 
Scitovski, R., Scitovski, S. (2013). A fast partitioning algorithm and its application to earthquake investigation. Computers & Geosciences, 59, 124–131. https://doi.org/10.1016/j.cageo.2013.06.010.
 
Serani, A., Fasano, G., Liuzzi, G., Lucidi, S., Iemma, U., Campana, E.F., Stern, F., Diez, M. (2016). Ship hydrodynamic optimization by local hybridization of deterministic derivative-free global algorithms. Applied Ocean Research, 59, 115–128. https://doi.org/10.1016/j.apor.2016.04.006.
 
Sergeyev, Y.D., Kvasov, D.E. (2006). Global search based on diagonal partitions and a set of Lipschitz constants. SIAM Journal on Optimization, 16(3), 910–937. https://doi.org/10.1137/040621132.
 
Shanno, D.F. (1970). Conditioning of quasi-Newton methods for function minimization. Mathematics of Computation, 24(111), 647–656.
 
Shen, J., Dusmez, S., Khaligh, A. (2014). Optimization of sizing and battery cycle life in battery/ultracapacitor hybrid energy storage systems for electric vehicle applications. IEEE Transactions on Industrial Informatics, 10(4), 2112–2121. https://doi.org/10.1109/TII.2014.2334233.
 
Smith, M.B., VanderVelden, K., Blom, T., Stout, H.D., Mapes, J.H., Folsom, T.M., Martin, C., Bardo, A.M., Marcotte, E.M. (2023). Estimating error rates for single molecule protein sequencing experiments. bioRxiv. https://doi.org/10.1101/2023.07.18.549591.
 
Stork, J., Eiben, A.E., Bartz-Beielstein, T. (2022). A new taxonomy of global optimization algorithms. Natural Computing, 21, 219–242. https://doi.org/10.1007/s11047-020-09820-4.
 
Storn, R., Price, K. (1997). Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341–359. https://doi.org/10.1023/A:1008202821328.
 
Stripinis, L., Paulavičius, R. (2021). A new DIRECT-GLh algorithm for global optimization with hidden constraints. Optimization Letters, 15(6), 1865–1884. https://doi.org/10.1007/s11590-021-01726-z.
 
Stripinis, L., Paulavičius, R. (2022a). An empirical study of various candidate selection and partitioning techniques in the DIRECT framework. Journal of Global Optimization. 88, 723–753. https://doi.org/10.1007/s10898-022-01185-5.
 
Stripinis, L., Paulavičius, R. (2022b). DIRECTGO: a new DIRECT-type MATLAB toolbox for derivative-free global optimization. ACM Transactions on Mathematical Software, 48(4), 1–46. https://doi.org/10.1145/3559755.
 
Stripinis, L., Paulavičius, R. (2022c). Experimental study of excessive local refinement reduction techniques for global optimization DIRECT-type algorithms. Mathematics, 10(20), 3760. https://doi.org/10.3390/math10203760.
 
Stripinis, L., Paulavičius, R. (2023a). Derivative-Free DIRECT-Type Global Optimization: Applications and Software, 1st ed. Springer Cham, New York, NY. 978-3-031-46539-0. https://doi.org/10.1007/978-3-031-46537-6.
 
Stripinis, L., Paulavičius, R. (2023b). Novel algorithm for linearly constrained derivative free global optimization of Lipschitz functions. Mathematics, 11(13), 2920. https://doi.org/10.3390/math11132920.
 
Stripinis, L., Paulavičius, R. (2024). Lipschitz-inspired HALRECT algorithm for derivative-free global optimization. Journal of Global Optimization, 88, 139–169. https://doi.org/10.1007/s10898-023-01296-7.
 
Stripinis, L., Paulavičius, R., Žilinskas, J. (2018). Improved scheme for selection of potentially optimal hyper-rectangles in DIRECT. Optimization Letters, 12(7), 1699–1712. https://doi.org/10.1007/s11590-017-1228-4.
 
Stripinis, L., Žilinskas, J., Casado, L.G., Paulavičius, R. (2021). On MATLAB experience in accelerating DIRECT-GLce algorithm for constrained global optimization through dynamic data structures and parallelization. Applied Mathematics and Computation, 390, 125596. https://doi.org/10.1016/j.amc.2020.125596.
 
Stripinis, L., Kůdela, J., Paulavičius, R. (2023). DIRECTGOLib – DIRECT Global Optimization test problems Library. GitHub. Pre-release v2.0. https://github.com/blockchain-group/DIRECTGOLib.
 
Stripinis, L., Kůdela, J., Paulavičius, R. (2024). Benchmarking derivative-free global optimization algorithms under limited dimensions and large evaluation budgets. IEEE Transactions on Evolutionary Computation. https://doi.org/10.1109/TEVC.2024.3379756.
 
Svensson, B., Nia, N.K., Danielsson, F., Lennartson, B. (2011). Sheet-metal press line parameter tuning using a combined DIRECT and Nelder-Mead algorithm. In: ETFA2011, pp. 1–8. https://doi.org/10.1109/ETFA.2011.6059031.
 
Torkayesh, A.E., Tirkolaee, E.B., Bahrini, A., Pamucar, D., Khakbaz, A. (2023). A systematic literature review of MABAC method and applications: an outlook for sustainability and circularity. Informatica, 34(2), 415–448. https://doi.org/10.15388/23-INFOR511.
 
Törn, A., Žilinskas, A. (1989). Global Optimization, Vol. 350. Springer-Verlag.
 
Trigueiro de Sousa Junior, W., Barra Montevechi, J.A., de Carvalho Miranda, R., Teberga Campos, A. (2019). Discrete simulation-based optimization methods for industrial engineering problems: a systematic literature review. Computers & Industrial Engineering, 128, 526–540. https://doi.org/10.1016/j.cie.2018.12.073.
 
Verstak, A., He, J., Watson, L.T., Rappaport, T.S., Anderson, C.R., Ramakrishnan, N., Shaffer, C.A., Bae, K., Jiang, J., Tranter, W.H. (2002). S4W: globally optimized design of wireless communication systems. In: Proceedings 16th International Parallel and Distributed Processing Symposium, p. 8. https://doi.org/10.1109/IPDPS.2002.1016575.
 
Wachowiak, M.P. (2005). High performance derivative-free optimization applied to biomedical image registration. In: 19th International Symposium on High Performance Computing Systems and Applications (HPCS’05), pp. 50–56. https://doi.org/10.1109/HPCS.2005.31.
 
Wachowiak, M.P., Peters, T.M. (2006). High-performance medical image registration using new optimization techniques. IEEE Transactions on Information Technology in Biomedicine, 10(2), 344–353. https://doi.org/10.1109/TITB.2006.864476.
 
Wang, N., Tsai, C.-M., Cha, K.-C. (2011). A study of parallel efficiency of modified direct algorithm applied to thermohydrodynamic lubrication. Journal of Mechanics, 25(2), 143–150. https://doi.org/10.1017/S1727719100002598.
 
Wang, R., Zhang, X., Zhu, B., Zhang, H., Chen, B., Wang, H. (2020). Topology optimization of a cable-driven soft robotic gripper. Structural and Multidisciplinary Optimization, 62, 2749–2763. https://doi.org/10.1007/s00158-020-02619-y.
 
Wang, S., Zhang, K., Shi, D., Li, M., Yin, C. (2023). Research on economical shifting strategy for multi-gear and multi-mode parallel plug-in HEV based on DIRECT algorithm. Energy, 286, 129574. https://doi.org/10.1016/j.energy.2023.129574.
 
Watson, L.T., Baker, C.A. (2001). A fully-distributed parallel global search algorithm. Engineering Computations, 18(1/2), 155–169. https://doi.org/10.1108/02644400110365851.
 
Xiao, Y., Rivaz, H., Chabanas, M., Fortin, M., Machado, I., Ou, Y., Heinrich, M.P., Schnabel, J.A., Zhong, X., Maier, A., Wein, W., Shams, R., Kadoury, S., Drobny, D., Modat, M., Reinertsen, I. (2020). Evaluation of MRI to ultrasound registration methods for Brain shift correction: the CuRIOUS2018 challenge. IEEE Transactions on Medical Imaging, 39(3), 777–786. https://doi.org/10.1109/TMI.2019.2935060.
 
Zhu, H., Bogy, D.B. (2002). DIRECT algorithm and its application to slider air-bearing surface optimization. IEEE Transactions on Magnetics, 38(5), 2168–2170. https://doi.org/10.1109/TMAG.2002.802794.

Biographies

Stripinis Linas
https://orcid.org/0000-0001-9680-5847
linas.stripinis@mif.vu.lt

L. Stripinis received a PhD degree in informatics from Vilnius University, Lithuania, in 2021. He is currently a researcher at Vilnius University. His research interests include global optimization, optimization software, parallel computing, and machine learning.

Paulavičius Remigijus
https://orcid.org/0000-0003-2057-2922
remigijus.paulavicius@mif.vu.lt

R. Paulavičius received a PhD degree in computer science from Vytautas Magnus University, Kaunas, Lithuania, in 2010. He was a postdoctoral researcher at Vilnius University, Vilnius, Lithuania, and a research associate at Imperial College London, London, UK. He is currently a professor and chief researcher at Vilnius University. His research interests include global optimization, optimization software, parallel and quantum computing, and distributed ledger technologies.


Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2025 Vilnius University
by logo by logo
Open access article under the CC BY license.

Keywords
derivative-free optimization DIRECT-type algorithms evolutionary algorithms real-world applications systematic literature review benchmarking

Metrics
since January 2020
410

Article info
views

392

Full article
views

263

PDF
downloads

46

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

INFORMATICA

  • Online ISSN: 1822-8844
  • Print ISSN: 0868-4952
  • Copyright © 2023 Vilnius University

About

  • About journal

For contributors

  • OA Policy
  • Submit your article
  • Instructions for Referees
    •  

    •  

Contact us

  • Institute of Data Science and Digital Technologies
  • Vilnius University

    Akademijos St. 4

    08412 Vilnius, Lithuania

    Phone: (+370 5) 2109 338

    E-mail: informatica@mii.vu.lt

    https://informatica.vu.lt/journal/INFORMATICA
Powered by PubliMill  •  Privacy policy