Sustainable practices are essential for long-term societal development, minimizing environmental impacts while promoting the efficient use of resources. Multi-criteria decision-making (MCDM) approaches can play a vital role in assessing and prioritizing sustainability solutions by considering diverse economic, social, and environmental factors. This study proposes a multi-criteria group decision-making approach based on the Objective Pairwise Adjusted Ratio Analysis (OPARA) method in a fuzzy environment and presents its application for the assessment of sustainable agriculture solutions. In the proposed approach, the evaluation criteria weights are determined by combining subjective weights from experts and objective weights obtained from the MEREC (Method Based on the Removal Effects of Criteria) method. The Relative Preference Relation (RPR) approach is employed for ranking fuzzy numbers and final evaluation. Sensitivity analysis and comparison with other methods are conducted to assess the robustness and validity of the proposed approach. The results demonstrate the effectiveness of the proposed approach in evaluating solutions. Based on the final evaluation from the case study, the most important criteria are “Availability and quality of water”, “Focus on immediate economic returns”, and “Financial incentives and access to credit”, while the most suitable solutions for advancing sustainable agriculture are “Financial and credit support”, “Education and enhancement of farmers’ knowledge”, and “Enhancement of research and development”.
Derivative-free DIRECT-type global optimization algorithms are increasingly favoured for their simplicity and effectiveness in addressing real-world optimization challenges. This review examines their practical applications through a systematic analysis of scientific journals and computational studies. In particular, significant challenges in reproducibility have been identified with practical problems. To address this, we conducted an experimental study using practical problems from reputable CEC libraries, comparing DIRECT-type techniques against their state-of-the-art counterparts. Therefore, this study sheds light on current gaps, opportunities, and future prospects for advanced research in this domain, laying the foundation for replicating and expanding the research findings presented herein.
Journal:Informatica
Volume 34, Issue 3 (2023), pp. 465–489
Abstract
The Best-Worst Method (BWM) is a recently introduced, innovative multi-criteria decision-making (MCDM) technique used to determine criterion weights for selection processes. However, another method is needed to complete the selection of the most preferred alternative. In this research, we propose a group decision-making methodology based on the multiplicative BWM to make this selection. Furthermore, we give new models that allow for groups with different best and worst criteria to exist. This capability is crucial in reconciling the differences among experts from various geographical locations with diverse evaluation perspectives influenced by social and cultural disparities. Our work contributes significantly in three ways: (1) we propose a BWM-based methodology for evaluating alternatives, (2) we present new linear models that facilitate decision-making for groups with different best and worst criteria, and (3) we develop a dissimilarity ratio to quantify the differences in expert opinions. The methodology is illustrated via numerical experiments for a global car company deciding which car model alternative to introduce in its markets.
Pub. online:29 Jan 2021Type:Research ArticleOpen Access
Journal:Informatica
Volume 32, Issue 1 (2021), pp. 85–118
Abstract
The data-driven approach is popular to automate learning of fuzzy rules and tuning membership function parameters in fuzzy inference systems (FIS) development. However, researchers highlight different challenges and issues of this FIS development because of its complexity. This paper evaluates the current state of the art of FIS development complexity issues in Computer Science, Software Engineering and Information Systems, specifically: 1) What complexity issues exist in the context of developing FIS? 2) Is it possible to systematize existing solutions of identified complexity issues? We have conducted a hybrid systematic literature review combined with a systematic mapping study that includes keyword map to address these questions. This review has identified the main FIS development complexity issues that practitioners should consider when developing FIS. The paper also proposes a framework of complexity issues and their possible solutions in FIS development.
Pub. online:15 Oct 2020Type:Research ArticleOpen Access
Journal:Informatica
Volume 32, Issue 1 (2021), pp. 119–143
Abstract
The objective of the paper is to introduce a novel approach using the multi-attribute border approximation area comparison (MABAC) approach under intuitionistic fuzzy sets (IFSs) to solve the smartphone selection problem with incomplete weights or completely unknown weights. A novel discrimination measure of IFSs is proposed to calculate criteria weights. In view of the fact that the ambiguity is an unavoidable feature of multiple-criteria decision-making (MCDM) problems, the proposed approach is an innovative process in the decision-making under uncertain settings. To express the utility and strength of the developed approach for solving problems in the area of MCDM, a smartphone selection problem is demonstrated. To validate the IF-MABAC approach, a comparative discussion is made between the outcomes of the developed and those of the existing methods. The outcomes of analysis demonstrate that the introduced method is well-ordered and effective with the existing ones.