Login
Register
Home
Issues
Volume 32, Issue 4 (2021)
Counterfactual Explanation of Machine Le ...
Informatica
Information
Submit your article
For Referees
Help
ATTENTION!
Article info
Full article
Related articles
Cited by
More
Article info
Full article
Related articles
Cited by
Cited by
11
Counterfactual Explanation of Machine Learning Survival Models
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma, Varich Boonsanong, Minh Hoang, Keegan Hines, John Dickerson, Chirag Shah
https://doi.org/10.1145/3677119
Journal
ACM Computing Surveys
Volume 56, Issue 12 (2024), p. 1
Counterfactual explanations and how to find them: literature review and benchmarking
Riccardo Guidotti
https://doi.org/10.1007/s10618-022-00831-6
Journal
Data Mining and Knowledge Discovery
Volume 38, Issue 5 (2024), p. 2770
JointLIME: An interpretation method for machine learning survival models with endogenous time‐varying covariates in credit scoring
Yujia Chen, Raffaella Calabrese, Belen Martin‐Barragan
https://doi.org/10.1111/risa.17679
Journal
Risk Analysis
(2024)
MS-CPFI: A model-agnostic Counterfactual Perturbation Feature Importance algorithm for interpreting black-box Multi-State models
Aziliz Cottin, Marine Zulian, Nicolas Pécuchet, Agathe Guilloux, Sandrine Katsahian
https://doi.org/10.1016/j.artmed.2023.102741
Journal
Artificial Intelligence in Medicine
Volume 147 (2024), p. 102741
Model‐agnostic explanations for survival prediction models
Krithika Suresh, Carsten Görg, Debashis Ghosh
https://doi.org/10.1002/sim.10057
Journal
Statistics in Medicine
Volume 43, Issue 11 (2024), p. 2161
Note on the bi-risk discrete time risk model with income rate two
Andrius Grigutis, Artur Nakliuda
https://doi.org/10.15559/22-VMSTA209
Journal
Modern Stochastics: Theory and Applications
(2022), p. 401
Recommendation Algorithm Based on Survival Action Rules
Marek Hermansa, Marek Sikora, Beata Sikora, Łukasz Wróbel
https://doi.org/10.3390/app14072939
Journal
Applied Sciences
Volume 14, Issue 7 (2024), p. 2939
SDA-Vis: A Visualization System for Student Dropout Analysis Based on Counterfactual Exploration
Germain Garcia-Zanabria, Daniel A. Gutierrez-Pachas, Guillermo Camara-Chavez, Jorge Poco, Erick Gomez-Nieto
https://doi.org/10.3390/app12125785
Journal
Applied Sciences
Volume 12, Issue 12 (2022), p. 5785
SurvSHAP(t): Time-dependent explanations of machine learning survival models
Mateusz Krzyziński, Mikołaj Spytek, Hubert Baniecki, Przemysław Biecek
https://doi.org/10.1016/j.knosys.2022.110234
Journal
Knowledge-Based Systems
Volume 262 (2023), p. 110234
Understanding Survival Models Through Counterfactual Explanations
Abdallah Alabdallah, Jakub Jakubowski, Sepideh Pashami, Szymon Bobek, Mattias Ohlsson, Thorsteinn Rögnvaldsson, Grzegorz J. Nalepa
https://doi.org/10.1007/978-3-031-63772-8_28
Book
Lecture Notes in Computer Science (Computational Science – ICCS 2024)
Volume 14835 (2024), p. 310
survex: an R package for explaining machine learning survival models
Mikołaj Spytek, Mateusz Krzyziński, Sophie Hanna Langbein, Hubert Baniecki, Marvin N Wright, Przemysław Biecek, Jonathan Wren
https://doi.org/10.1093/bioinformatics/btad723
Journal
Bioinformatics
Volume 39, Issue 12 (2023)
Export citation
Copy and paste formatted citation
Formatted citation
Placeholder
Citation style
AMS -- Americal Mathematical Society
APA -- American Psychological Association 6th ed.
Chicago -- The Chicago Manual of Style 17th ed.
Download citation in file
Export format
BibTeX
RIS
Authors
Placeholder
Share
RSS
To top