Cited by 11
Counterfactual Explanation of Machine Learning Survival Models

Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma, Varich Boonsanong, Minh Hoang, Keegan Hines, John Dickerson, Chirag Shah
Journal  ACM Computing Surveys Volume 56, Issue 12 (2024), p. 1
Counterfactual explanations and how to find them: literature review and benchmarking
Riccardo Guidotti
Journal  Data Mining and Knowledge Discovery Volume 38, Issue 5 (2024), p. 2770
JointLIME: An interpretation method for machine learning survival models with endogenous time‐varying covariates in credit scoring
Yujia Chen, Raffaella Calabrese, Belen Martin‐Barragan
Journal  Risk Analysis (2024)
MS-CPFI: A model-agnostic Counterfactual Perturbation Feature Importance algorithm for interpreting black-box Multi-State models
Aziliz Cottin, Marine Zulian, Nicolas Pécuchet, Agathe Guilloux, Sandrine Katsahian
Journal  Artificial Intelligence in Medicine Volume 147 (2024), p. 102741
Model‐agnostic explanations for survival prediction models
Krithika Suresh, Carsten Görg, Debashis Ghosh
Journal  Statistics in Medicine Volume 43, Issue 11 (2024), p. 2161
Note on the bi-risk discrete time risk model with income rate two
Andrius Grigutis, Artur Nakliuda
Journal  Modern Stochastics: Theory and Applications (2022), p. 401
Recommendation Algorithm Based on Survival Action Rules
Marek Hermansa, Marek Sikora, Beata Sikora, Łukasz Wróbel
Journal  Applied Sciences Volume 14, Issue 7 (2024), p. 2939
SDA-Vis: A Visualization System for Student Dropout Analysis Based on Counterfactual Exploration
Germain Garcia-Zanabria, Daniel A. Gutierrez-Pachas, Guillermo Camara-Chavez, Jorge Poco, Erick Gomez-Nieto
Journal  Applied Sciences Volume 12, Issue 12 (2022), p. 5785
SurvSHAP(t): Time-dependent explanations of machine learning survival models
Mateusz Krzyziński, Mikołaj Spytek, Hubert Baniecki, Przemysław Biecek
Journal  Knowledge-Based Systems Volume 262 (2023), p. 110234
Understanding Survival Models Through Counterfactual Explanations
Abdallah Alabdallah, Jakub Jakubowski, Sepideh Pashami, Szymon Bobek, Mattias Ohlsson, Thorsteinn Rögnvaldsson, Grzegorz J. Nalepa
Book  Lecture Notes in Computer Science (Computational Science – ICCS 2024) Volume 14835 (2024), p. 310
survex: an R package for explaining machine learning survival models
Mikołaj Spytek, Mateusz Krzyziński, Sophie Hanna Langbein, Hubert Baniecki, Marvin N Wright, Przemysław Biecek, Jonathan Wren
Journal  Bioinformatics Volume 39, Issue 12 (2023)