Informatica logo


Login Register

  1. Home
  2. Issues
  3. Volume 32, Issue 2 (2021)
  4. The Concept of AI-Based Algorithm: Analy ...

Informatica

Information Submit your article For Referees Help ATTENTION!
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

The Concept of AI-Based Algorithm: Analysis of CEUS Images and HSPs for Identification of Early Parenchymal Changes in Severe Acute Pancreatitis
Volume 32, Issue 2 (2021), pp. 305–319
Aiste Kielaite-Gulla   Arturas Samuilis   Renaldas Raisutis   Gintautas Dzemyda   Kestutis Strupas  

Authors

 
Placeholder
https://doi.org/10.15388/21-INFOR453
Pub. online: 26 May 2021      Type: Research Article      Open accessOpen Access

Received
1 January 2021
Accepted
1 May 2021
Published
26 May 2021

Abstract

(1) Background: Identifying early pancreas parenchymal changes remains a challenging radiologic diagnostic task. In this study, we hypothesized that applying artificial intelligence (AI) to contrast-enhanced ultrasound (CEUS) along with measurement of Heat Shock Protein (HSP)-70 levels could improve detection of early pancreatic necrosis in acute pancreatitis. (2) Methods: Acute pancreatitis $(n=146)$ and age- and sex matched healthy controls $(n=50)$ were enrolled in the study. The severity of acute pancreatitis was determined according to the revised Atlanta classification. The selected severe acute pancreatitis (AP) patient and an age/sex-matched healthy control were analysed for the algorithm initiation. Peripheral blood samples from the pancreatitis patient were collected on admission and HSP-70 levels were measured using ELISA. A CEUS device acquired multiple mechanical index contrast-specific mode images. Manual contour selection of the two-dimensional (2D) spatial region of interest (ROI) followed by calculations of the set of quantitative parameters. Image processing calculations and extraction of quantitative parameters from the CEUS diagnostic images were performed using algorithms implemented in the MATLAB software. (3) Results: Serum HSP-70 levels were 100.246 ng/ml (mean 76.4 ng/ml) at the time of the acute pancreatitis diagnosis. The CEUS Peek value was higher (155.5) and the mean transit time was longer (40.1 s) for healthy pancreas than in parenchyma affected by necrosis (46.5 and 34.6 s, respectively). (4) Conclusions: The extracted quantitative parameters and HSP-70 biochemical changes are suitable to be used further for AI-based classification of pancreas pathology cases and automatic estimation of pancreatic necrosis in AP.

References

 
Afghani, E., Pandol, S.J., Shimosegawa, T., Sutton, R., Wu, B.U., Vege, S.S., Gorelick, F., Hirota, M., Windsor, J., Lo, S.K., Freeman, M.L., Lerch, M.M., Tsuji, Y., Melmed, G.Y., Wassef, W., Mayerle, J. (2015). Acute pancreatitis—progress and challenges a report on an international symposium. Pancreas, 44(8), 1195–1210. https://doi.org/10.1097/MPA.0000000000000500.
 
Ardelean, M., Şirli, R., Sporea, I., Bota, S., Martie, A., Popescu, A., Dănilă, M., Timar, B., Buzas, R., Lighezan, D. (2014). Contrast enhanced ultrasound in the pathology of the pancreas – a monocentric experience. Medical Ultrasonography, 16(4), 325–331. https://doi.org/10.11152/mu.201.3.2066.164.mars12.
 
Bradley, E.L. (1993). A clinically based classification system for acute pancreatitis: summary of the International Symposium on Acute Pancreatitis, Atlanta, Ga, September 11 through 13, 1992. Archives of Surgery, 11 Through 13(5), 586–590. https://doi.org/10.1001/archsurg.1993.01420170122019. 1992, 128.
 
Dietrich, C.F., Averkiou, M.A., Correas, J.M., Lassau, N., Leen, E., Piscaglia, F. (2012). An EFSUMB introduction into Dynamic Contrast-Enhanced Ultrasound (DCE-US) for quantification of tumour perfusion. Ultraschall der Medizin, 33(4), 344–351. https://doi.org/10.1055/s-0032-1313026.
 
Dellinger, E.P., Forsmark, C.E., Layer, P., Lévy, P., Maraví-Poma, E., Petrov, M.S., Shimosegawa, T., Siriwardena, A.K., Uomo, G., Whitcomb, D.C., Windsor, J.A., Abu Hilal, M., Abu-Zidan, F.M., Acosta, J.M., Ainsworth, A.P., Aizcorbe Garralda, M., Alagozlu, H., Al’aref, S.J., Albeniz Arbizu, E., Alhajeri, A., Almeida, I.C., Almeida, J.L., Amano, H., Ammori, B.J., Andersson, B., Andersson, R., Andrén-Sandberg, A., Ardengh, J.C., Arroyo-Sanchez, A.S., Arvanitakis, M., Ashley, S.W., Aygencel, G., Ayoub, W.A., Baillie, J., Bala, M., Ball, C.G., Baron, T.H., Barreto, S.G., Basaranoglu, M., Beger, H.G., Bernal Monterde, V., Bharwani, N., Bhasin, D.K., Bong, J.J., Botoi, G., Bruennler, T., Cairoli, E., Carter, C.R., Cernea, D., Chari, S.T., Charnley, R.M., Chooklin, S., Cochior, D., Col, C., Conwell, D.L., Correia, M.I., Dambrauskas, Z., Darvas, K., De Campos, T., De Casasola, G.G., De Waele, J.J., Del Chiaro, M., Delle Fave, G., De-Madaria, E., Di Sebastiano, P., Diuzheva, T.G., Duarte-Rojo, A., Fagenholz, P.J., Farkas, G., Farre Viladrich, A., Fernandez-Del Castillo, C., Friess, H., Frossard, J.L., Gandhi, V., Gardner, T.B., Gloor, B., Gluk, M., Goltsov, V.R., Guevara-Campos, J., Gumbs, A.A., Hackert, T., Hauser, G., Horvath, K.D., Howard, T.J., Igarashi, H., Ioannidis, O., Jaber, S., James, F.E., Jha, R.K., Juneja, D., Kamisawa, T., Kandasami, P., Kantarcioglu, M., Kapoor, V.K., Karakan, T., Kaya, E., Khaliq, A., Kiriyama, S., Kochhar, R., Konstantinou, G.N., Kylänpää, M.L., Lankisch, P.G., Laplaza Santos, C., Lata, J., Leppäniemi, A., Levy, P., Lopez, A., López Camps, V., Lujano-Nicolas, L.A., Lund, H., Lytras, D., Macaya Redin, L., Machado, M.C., Macias Rodriguez, M.A., Mann, O., Maravi-Poma, E., Marincas, M., Marwah, S., Mas, E., Matheus, A.S., Meier, R., Mennecier, D., Mentula, P., Mifkovic, A., Mofidi, R., Mole, D.J., Morris-Stiff, G., Mossner, J., Muftuoglu, M.A., Munsell, M.A., Nathens, A.B., Neri, V., Nöjgaard, C., Nordback, I., Ocampo, C., Oláh, A., Olejnik, J., O’Reilly, D.A., Oria, A., Panek, J., Papachristou, G.I., Parekh, D., Parks, R.W., Passaglia, C., Pearce, C.B., Pellegrini, D., Perez-Mateo, M., Pettila, V., Pezzilli, R., Pitchumoni, C.S., Pongprasobchai, S., Poves Prim, I., Puolakkainen, P., Pupelis, G., Radenkovic, D.V., Rahman, S.H., Regidor Sanz, E., Repiso, A., Rodrigo, L., Rosseland, A., Rydzewska, G., Sánchez-Izquierdo Riera, J.A., Savides, T.J., Scaglione, M., Serrablo, A., Servin-Torres, E., Sethu, I., Sezgin, O., Shankar-Hari, M., Singer, M.V., Sinha, S.K., Sjoberg Bexelius, T., Skipworth, J.R., Soriano, F.G., Sotoudehmanesh, R., Spanier, B.W., Stabuc, B., Steinberg, W., Stroescu, C., Szentkereszty, Z., Takacs, T., Takada, T., Takeda, K., Takeyama, Y., Tang, W., Tanjoh, K., Tarnasky, P.R., Teich, N., Tellado, J.M., Tenner, S., Thomson, A., Tireli, M., Tong, Z., Triantopoulou, C., Uy, M.C., van Geenen, E.J., Velasco Guardado, A., Vettoretto, N., Vollmer, C.M., Wada, K., Warshaw, A.L., Weinbroum, A.A., Wilson, J.S., Wittau, M., Wu, B.U., Wysocki, A.P., Yan Quiroz, E., Yasuda, T., Yu, C., Zerem, E., Zhou, X., Zubia Olazcoaga, F., Zyromski N.J., (2012). Determinant-based classification of acute pancreatitis severity: an international multidisciplinary consultation. Annals of Surgery, 256(6), 875–880. https://doi.org/10.1097/SLA.0b013e318256f778.
 
Echegaray, S., Bakr, S., Rubin, D.L., Napel, S. (2018). Quantitative Image Feature Engine (QIFE): an open-source, modular engine for 3D quantitative feature extraction from volumetric medical images. Journal of Digital Imaging, 31(4), 403–414. https://doi.org/10.1007/s10278-017-0019-x.
 
Ethridge, R.T., Ehlers, R.A., Hellmich, M.R., Rajaraman, S., Evers, B.M. (2000). Acute pancreatitis results in induction of heat shock proteins 70 and 27 and heat shock factor-1. Pancreas, 21(3), 248–256. https://doi.org/10.1097/00006676-200010000-00005.
 
Fei, Y., Li, W.-Q. (2017). Effectiveness of contrast-enhanced ultrasound for the diagnosis of acute pancreatitis: a systematic review and meta-analysis. Digestive and Liver Disease, 49, 623–629. https://doi.org/10.1016/j.dld.2017.03.017.
 
Feng, J.Y., Li, Y.Y. (2010). Alteration and role of heat shock proteins in acute pancreatitis. Journal of Digestive Diseases, 11(5), 277–283. https://doi.org/10.1111/j.1751-2980.2010.00450.x.
 
Foitzik, T., Bassi, D.G., Castillo, Del, C.F., Warshaw, A.L., Rattner, D.W. (1994). Intravenous contrast medium impairs oxygenation of the pancreas in acute necrotizing pancreatitis in the rat. Archives of Surgery, 129(7), 706–711. https://doi.org/10.1001/archsurg.1994.01420310038006.
 
Frossard, J.L., Steer, M.L., Pastor, C.M. (2008). Acute Pancreatitis. The Lancet, 371(9607), 143–152. https://doi.org/10.1016/S0140-6736(08)60107-5.
 
Gheonea, D.I., Streba, C.T., Ciurea, T., Saftoiu, A. (2013). Quantitative low mechanical index contrast-enhanced endoscopic ultrasound for the differential diagnosis of chronic pseudotumoral pancreatitis and pancreatic cancer. BMC Gastroenterology, 13(2). https://doi.org/10.1186/1471-230X-13-2.
 
Golea, A., Badea, R., Socaciu, M., Diaconu, B., Iacob, D. (2010). Quantitative analysis of tissue perfusion using contrast-enhanced transabdominal ultrasound (CEUS) in the evaluation of the severity of acute pancreatitis. Medical Ultrasonography, 12(3), 198–204.
 
Haralick, R.M., Dinstein, I., Shanmugam, K. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC–3(6), 610–621. https://doi.org/10.1109/TSMC.1973.4309314.
 
Kotsiantis, S.B., Zaharakis, I.D., Pintelas, P.E., (2006). Machine learning: a review of classification and combining techniques. Artificial Intelligence Review, 26(3), 159–190. https://doi.org/10.1007/s10462-007-9052-3.
 
Liu, G.J., Moriyasu, F., Hirokawa, T., Rexiati, M., Yamada, M., Imai, Y. (2010). Expression of heat shock protein 70 in rabbit liver after contrast-enhanced ultrasound and radiofrequency ablation. Ultrasound in Medicine and Biology, 36(1), 78–85. https://doi.org/10.1016/j.ultrasmedbio.2009.08.001.
 
Machine Learning (2021). https://www.ibm.com/cloud/learn/machine-learning.
 
Mashayekhi, R., Parekh, V.S., Faghih, M., Singh, V.K., Jacobs, M.A., Zaheer, Radiomic, A. (2020). Features of the pancreas on CT imaging accurately differentiate functional abdominal pain, recurrent acute pancreatitis, and chronic pancreatitis. European Journal of Radiology, 123. https://doi.org/10.1016/j.ejrad.2019.108778.
 
Omoto, S., Takenaka, M., Kitano, M., Miyata, T., Kamata, K., Minaga, K., Arizumi, T., Yamao, K., Imai, H., Sakamoto, H., Harwani, Y., Sakurai, T., Watanabe, T., Nishida, N., Takeyama, Y., Chiba, Y., Kudo, M. (2017). Characterization of pancreatic tumors with quantitative perfusion analysis in contrast-enhanced harmonic endoscopic ultrasonography. Oncology, 93(1), 55–60. https://doi.org/10.1159/000481231.
 
Poce, I., Arsenjeva, J., Kielaite-Gulla, A., Strupas, K., Pancreas, D.G. (2024). Segmentation in CT images: state of the art in clinical practice. Baltic Journal of Modern Computing, 12(1), 1–3.
 
Səftoiu, A., Vilmann, P., Dietrich, C.F., Iglesias-Garcia, J., Hocke, M., Seicean, A., Ignee, A., Hassan, H., Streba, C.T., Ioncicə, A.M., Gheonea, D.I., Ciurea, T. (2015). Quantitative contrast-enhanced harmonic EUS in differential diagnosis of focal pancreatic masses (with videos). Gastrointestinal Endoscopy, 82(1), 59–69. https://doi.org/10.1016/j.gie.2014.11.040.
 
Schmidt, J., Hotz, H.G., Foitzik, T., Ryschich, E., Buhr, H.J., Warshaw, A.L., Herfarth, C., Klar, E., (1995). Intravenous contrast medium aggravates the impairment of pancreatic microcirculation in necrotizing pancreatitis in the rat. Archives of Surgery, 221(3), 257–264. https://doi.org/10.1097/00000658-199503000-00007.
 
Shi, Z., He, L., Suzuki, K., Nakamura, T., Itoh, H. (2009). Survey on neural networks used for medical image processing. International Journal of Computational Science, 3(1), 86–100.
 
Steinberg, W., Tenner, S. (1994). Acute pancreatitis. The New England Journal of Medicine, 330(17), 1198–1210. https://doi.org/10.1056/NEJM199404283301706.
 
Tiwari, K.A., Raišutis, R., Liutkus, J., Valiukevičienė, S. (2020). Diagnostics of melanocytic skin tumours by a combination of ultrasonic, dermatoscopic and spectrophotometric image parameters. Diagnostics, 10(9), 632. https://doi.org/10.3390/diagnostics10090632.
 
Yadav, D., Whitcomb, D.C. (2010). The role of alcohol and smoking in pancreatitis. Nature Reviews Gastroenterology & Hepatology, 7, 131–145. https://doi.org/10.1038/nrgastro.2010.6.

Biographies

Kielaite-Gulla Aiste
aiste.kielaite-gulla@mf.vu.lt

A. Kielaite-Gulla, MD – vascular and abdominal surgery resident and a PhD student at Vilnius University. She received her MBA from Johns Hopkins University and her research training at National Institutes of Health, Bethesda, MD Gulla is a member of national and international surgical societies and author and coauthor of multiple publications. In 2019, in VU, the Center of Visceral Medicine Translational Research was started under Dr. Gulla’s supervision. Dr. Gulla is an active member in clinical and research trials. She is currently conducting the SMART specialization research project analysing mechanisms of acute pancreatitis severity and a project funded by Lithuanian Research council. Dr. Gulla holds 3 patents and specializes in pancreas and liver surgeries.

Samuilis Arturas
arturas.samuilis@santa.lt

A. Samuilis, MD at Vilnius University, leads Division of Radiology at Vilnius University Hospital “Santaros Klinikos”, Vilnius, Lithuania. Dr. Samuilis has multiple years of experience in clinical ultrasound applications for early diagnostic radiological changes in liver. He defended his thesis “Anatomical variants of the hepatic arteries and their influence on superior mesenteric artery hemodynamics”. He participates in clinical studies and is an active member of multiple international associations.

Raisutis Renaldas

R. Raisutis (M) is a chief researcher and Head of Numerical Simulation, Laboratory at Ultrasound Research Institute, Kaunas Univesity of Technology (KTU) and Professor at Department of Electrical Power systems, Faculty of Electrical and Electronics engineering, KTU. He graduated in 1999 from Kaunas University of Technology (Lithuania) with a BSE degree in electronics engineering, acquired an MS degree in ultrasound technology in 2001 and a PhD degree in measurement technology in 2005. His main field of research activity: fundamental and applied ultrasound, non-destructive testing, monitoring and quality control, signal and image processing, material characterization, solutions for clinical decision support, predictive maintenance and diagnostics. He is the author and co-author of more than 100 scientific publications, innovator and co-author of national patent and 10 international patents. He is a member of IEEE, ESIS, EFSUMB societies. He is an expert, mentor and consultant for local and international industry, start-ups and the research field.

Dzemyda Gintautas

G. Dzemyda received the doctoral degree in technical sciences (PhD) in 1984, and the degree of Doctor Habilius in 1997 from Kaunas University of Technology. He was conferred the title of professor at Kaunas University of Technology (1998) and Vilnius University (2018). Recent employment is at Vilnius University, Institute of Data Science and Digital Technologies, as the director of the Institute, the head of Cognitive Computing Group, professor and principal researcher. The research interests cover visualization of multidimensional data, optimization theory and applications, data mining, multiple criteria decision support, neural networks, image analysis. He is the author of more than 260 scientific publications, two monographs, five textbooks.

Strupas Kestutis

K. Strupas is a professor of surgery and transplantation at Vilnius University, a leading panreatobiliary and transplant surgeon in the country of Lithuania with specific interest in pancreas diseases, pathophysiology, mechanisms, surgical and non-surgical treatments. Prof. Strupas has over 30 years experience in treating the most challenging pancreatic, liver cases in the country, while establishing a robust surgical research program in the country. Under his leadership, Vilnius University Hospital “Santaros Clinics” has become the only centre in the country performing simultaneous pancreas-kidney transplantation. The liver transplantation program has been ranked #1 in the country and among Baltic states for many years. Prof. Strupas has expertise in acute liver failure, molecular mechanisms that play important role in the disease course of steatosis. In 2019, the Center for Visceral Medicine Translational Research was started, thanks to Prof. Strupas.


Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2021 Vilnius University
by logo by logo
Open access article under the CC BY license.

Keywords
severe pancreatitis acute necrotic pancreatitis heat shock protein-70 contrast-enhanced ultrasound algorithm artificial intelligence early diagnosis

Metrics
since January 2020
1665

Article info
views

533

Full article
views

773

PDF
downloads

178

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

INFORMATICA

  • Online ISSN: 1822-8844
  • Print ISSN: 0868-4952
  • Copyright © 2023 Vilnius University

About

  • About journal

For contributors

  • OA Policy
  • Submit your article
  • Instructions for Referees
    •  

    •  

Contact us

  • Institute of Data Science and Digital Technologies
  • Vilnius University

    Akademijos St. 4

    08412 Vilnius, Lithuania

    Phone: (+370 5) 2109 338

    E-mail: informatica@mii.vu.lt

    https://informatica.vu.lt/journal/INFORMATICA
Powered by PubliMill  •  Privacy policy