Pub. online:20 Nov 2023Type:Research ArticleOpen Access
Journal:Informatica
Volume 35, Issue 1 (2024), pp. 155–178
Abstract
Metaheuristics are commonly employed as a means of solving many distinct kinds of optimization problems. Several natural-process-inspired metaheuristic optimizers have been introduced in the recent years. The convergence, computational burden and statistical relevance of metaheuristics should be studied and compared for their potential use in future algorithm design and implementation. In this paper, eight different variants of dragonfly algorithm, i.e. classical dragonfly algorithm (DA), hybrid memory-based dragonfly algorithm with differential evolution (DADE), quantum-behaved and Gaussian mutational dragonfly algorithm (QGDA), memory-based hybrid dragonfly algorithm (MHDA), chaotic dragonfly algorithm (CDA), biogeography-based Mexican hat wavelet dragonfly algorithm (BMDA), hybrid Nelder-Mead algorithm and dragonfly algorithm (INMDA), and hybridization of dragonfly algorithm and artificial bee colony (HDA) are applied to solve four industrial chemical process optimization problems. A fuzzy multi-criteria decision making tool in the form of fuzzy-measurement alternatives and ranking according to compromise solution (MARCOS) is adopted to ascertain the relative rankings of the DA variants with respect to computational time, Friedman’s rank based on optimal solutions and convergence rate. Based on the comprehensive testing of the algorithms, it is revealed that DADE, QGDA and classical DA are the top three DA variants in solving the industrial chemical process optimization problems under consideration.
Pub. online:1 Jan 2019Type:Research ArticleOpen Access
Journal:Informatica
Volume 30, Issue 1 (2019), pp. 135–152
Abstract
The aim of this paper is to make a proposal for a new extension of the MULTIMOORA method extended to deal with bipolar fuzzy sets. Bipolar fuzzy sets are proposed as an extension of classical fuzzy sets in order to enable solving a particular class of decision-making problems. Unlike other extensions of the fuzzy set of theory, bipolar fuzzy sets introduce a positive membership function, which denotes the satisfaction degree of the element x to the property corresponding to the bipolar-valued fuzzy set, and the negative membership function, which denotes the degree of the satisfaction of the element x to some implicit counter-property corresponding to the bipolar-valued fuzzy set. By using single-valued bipolar fuzzy numbers, the MULTIMOORA method can be more efficient for solving some specific problems whose solving requires assessment and prediction. The suitability of the proposed approach is presented through an example.
Pub. online:1 Jan 2017Type:Research ArticleOpen Access
Journal:Informatica
Volume 28, Issue 1 (2017), pp. 181–192
Abstract
The aim of this manuscript is to propose a new extension of the MULTIMOORA method adapted for usage with a neutrosophic set. By using single valued neutrosophic sets, the MULTIMOORA method can be more efficient for solving complex problems whose solving requires assessment and prediction, i.e. those problems associated with inaccurate and unreliable data. The suitability of the proposed approach is presented through an example.
Journal:Informatica
Volume 25, Issue 1 (2014), pp. 73–93
Abstract
The comminution process, particularly grinding, is very important in the mineral processing industry. Some characteristics of ore particles, which occur as a product of grinding process, have a significant impact on the effects of further ore processing. At the same time, this process requires a significant amount of energy which significantly affects the overall processing costs. Therefore, in this paper, we propose new multiple criteria decision making model, based on the Ratio system part of the MOORA method, which should enable an efficient selection of the adequate comminution circuit design.
Journal:Informatica
Volume 23, Issue 1 (2012), pp. 1–25
Abstract
Multi-Objective Optimization takes care of different objectives with the objectives keeping their own units. The internal mechanical solution of a Ratio System, producing dimensionless numbers, is preferred. The ratio system creates the opportunity to use a second approach: a Reference Point Theory, which uses the ratios of the ratio system. This overall theory is called MOORA (Multi-Objective Optimization by Ratio Analysis). The results are still more convincing if a Full Multiplicative Form is added forming MULTIMOORA. The control by three different approaches forms a guaranty for a solution being as non-subjective as possible. MULTIMOORA, tested after robustness, showed positive results.