1 Introduction
2 Literature Review
2.1 Overall TFP Growth of Chinese Banks
2.2 Variable-Specific Productivity Change Measurement
2.3 Metafrontier Approach in TFP Growth
3 Methodology
3.1 MEA-Malmquist Productivity Index and Its Disaggregation
(1)
\[ \begin{array}{l@{\hskip4.0pt}l}\hspace{2.5pt}\hspace{2.5pt}& {x_{{k^{\prime }}n}^{t\ast }}(x,y,b)=\min {\theta _{{k^{\prime }}n}^{t}},\\ {} \text{s.t.}\hspace{2.5pt}\hspace{2.5pt}\hspace{2.5pt}& {\textstyle\textstyle\sum _{k=1}^{K}}{\lambda _{k}^{t}}{x_{kn}^{t}}\leqslant {\theta _{{k^{\prime }}n}^{t}},\hspace{1em}n=1,\dots ,N,\\ {} \hspace{2.5pt}\hspace{2.5pt}& {\textstyle\textstyle\sum _{k=1}^{K}}{\lambda _{k}^{t}}{x_{kn}^{t}}\leqslant {x_{{k^{\prime }}(-n)}^{t}},\hspace{1em}-n=N\setminus \{n\},\\ {} \hspace{2.5pt}\hspace{2.5pt}& {\textstyle\textstyle\sum _{k=1}^{K}}{\lambda _{k}^{t}}{y_{km}^{t}}\geqslant {y_{{k^{\prime }}m}^{t}},\hspace{1em}m=1,\dots ,M,\\ {} \hspace{2.5pt}\hspace{2.5pt}& {\textstyle\textstyle\sum _{k=1}^{K}}{\lambda _{k}^{t}}{b_{kl}^{t}}={b_{{k^{\prime }}l}^{t}},\hspace{1em}l=1,\dots ,L,\\ {} \hspace{2.5pt}\hspace{2.5pt}& {\lambda _{k}^{t}}\geqslant 0,\hspace{1em}k=1,\dots ,K,\end{array}\](2)
\[ \begin{array}{l@{\hskip4.0pt}l}\hspace{2.5pt}\hspace{2.5pt}& {y_{{k^{\prime }}m}^{t\ast }}(x,y,b)=\max {\psi _{{k^{\prime }}m}^{t}},\\ {} \text{s.t.}\hspace{2.5pt}\hspace{2.5pt}\hspace{2.5pt}& {\textstyle\textstyle\sum _{k=1}^{K}}{\lambda _{k}^{t}}{x_{kn}^{t}}\leqslant {x_{{k^{\prime }}n}^{t}},\hspace{1em}n=1,\dots ,N,\\ {} \hspace{2.5pt}\hspace{2.5pt}& {\textstyle\textstyle\sum _{k=1}^{K}}{\lambda _{k}^{t}}{y_{km}^{t}}\geqslant {\psi _{{k^{\prime }}m}^{t}},\hspace{1em}m=1,\dots ,M,\\ {} \hspace{2.5pt}\hspace{2.5pt}& {\textstyle\textstyle\sum _{k=1}^{K}}{\lambda _{k}^{t}}{y_{km}^{t}}\geqslant {y_{{k^{\prime }}(-m)}^{t}},\hspace{1em}-m=M\setminus \{m\},\\ {} \hspace{2.5pt}\hspace{2.5pt}& {\textstyle\textstyle\sum _{k=1}^{K}}{\lambda _{k}^{t}}{b_{kl}^{t}}={b_{{k^{\prime }}l}^{t}},\hspace{1em}l=1,\dots ,L,\\ {} \hspace{2.5pt}\hspace{2.5pt}& {\lambda _{k}^{t}}\geqslant 0,\hspace{1em}k=1,\dots ,K,\end{array}\](3)
\[ \begin{array}{l@{\hskip4.0pt}l}\hspace{2.5pt}\hspace{2.5pt}& {b_{{k^{\prime }}l}^{t\ast }}(x,y,b)=\min {\eta _{{k^{\prime }}l}^{t}},\\ {} \text{s.t.}\hspace{2.5pt}\hspace{2.5pt}\hspace{2.5pt}& {\textstyle\textstyle\sum _{k=1}^{K}}{\lambda _{k}^{t}}{x_{kn}^{t}}\leqslant {x_{{k^{\prime }}n}^{t}},\hspace{1em}n=1,\dots ,N,\\ {} \hspace{2.5pt}\hspace{2.5pt}& {\textstyle\textstyle\sum _{k=1}^{K}}{\lambda _{k}^{t}}{y_{km}^{t}}\geqslant {y_{{k^{\prime }}m}^{t}},\hspace{1em}m=1,\dots ,M,\\ {} \hspace{2.5pt}\hspace{2.5pt}& {\textstyle\textstyle\sum _{k=1}^{K}}{\lambda _{k}^{t}}{b_{kl}^{t}}={\eta _{{k^{\prime }}l}^{t}},\hspace{1em}l=1,\dots ,L,\\ {} \hspace{2.5pt}\hspace{2.5pt}& {\textstyle\textstyle\sum _{k=1}^{K}}{\lambda _{k}^{t}}{b_{kl}^{t}}={b_{{k^{\prime }}(-l)}^{t}},\hspace{1em}-l=L\setminus \{l\},\\ {} \hspace{2.5pt}\hspace{2.5pt}& {\lambda _{k}^{t}}\geqslant 0,\hspace{1em}k=1,\dots ,K.\end{array}\](4)
\[ \left\{\begin{array}{l}{g_{x}^{\mathit{MEA}}}=({x_{{k^{\prime }}1}^{t}}-{\theta _{{k^{\prime }}1}^{t}},\dots ,{x_{{k^{\prime }}N}^{t}}-{\theta _{{k^{\prime }}N}^{t}})\\ {} {g_{y}^{\mathit{MEA}}}=({\psi _{{k^{\prime }}1}^{t}}-{y_{{k^{\prime }}1}^{t}},\dots ,{\psi _{{k^{\prime }}M}^{t}}-{y_{{k^{\prime }}M}^{t}})\\ {} {g_{b}^{\mathit{MEA}}}=({b_{{k^{\prime }}1}^{t}}-{\eta _{{k^{\prime }}1}^{t}},\dots ,{b_{{k^{\prime }}L}^{t}}-{\eta _{{k^{\prime }}L}^{t}}).\end{array}\right.\](5)
\[ \begin{array}{l@{\hskip4.0pt}l}\hspace{2.5pt}\hspace{2.5pt}& \overrightarrow{D}(x,y,b)=\max \beta ,\\ {} \text{s.t.}\hspace{2.5pt}\hspace{2.5pt}\hspace{2.5pt}& {\textstyle\textstyle\sum _{k=1}^{K}}{\lambda _{k}^{t}}{x_{kn}^{t}}\leqslant {x_{{k^{\prime }}n}^{t}}-\beta {g_{{x_{{k^{\prime }}m}^{t}}}^{\mathit{MEA}}},\hspace{1em}n=1,\dots ,N,\\ {} \hspace{2.5pt}\hspace{2.5pt}& {\textstyle\textstyle\sum _{k=1}^{K}}{\lambda _{k}^{t}}{y_{km}^{t}}\geqslant {y_{{k^{\prime }}m}^{t}}+\beta {g_{{y_{{k^{\prime }}m}^{t}}}^{\mathit{MEA}}},\hspace{1em}m=1,\dots ,M,\\ {} \hspace{2.5pt}\hspace{2.5pt}& {\textstyle\textstyle\sum _{k=1}^{K}}{\lambda _{k}^{t}}{b_{kl}^{t}}={b_{{k^{\prime }}l}^{t}}-\beta {g_{{b_{{k^{\prime }}l}^{t}}}^{\mathit{MEA}}},\hspace{1em}l=1,\dots ,L,\\ {} \hspace{2.5pt}\hspace{2.5pt}& {\lambda _{k}^{t}}\geqslant 0,\hspace{1em}k=1,\dots ,K.\end{array}\](6)
\[ {e_{x{k^{\prime }}n}^{t}}=\frac{{x_{{k^{\prime }}n}^{t}}-{\beta _{{k^{\prime }}}^{t}}({x_{{k^{\prime }}n}^{t}}-{\theta _{{k^{\prime }}n}^{t}})}{{x_{{k^{\prime }}n}^{t}}},\](9)
\[ {e_{{k^{\prime }}}^{t}}=\frac{1-\frac{1}{N}\big(\frac{{\beta _{{k^{\prime }}}^{t}}({x_{{k^{\prime }}n}^{t}}-{\theta _{{k^{\prime }}n}^{t}})}{{x_{{k^{\prime }}n}^{t}}}\big)}{1+\frac{1}{M+L}\big(\frac{{\beta _{{k^{\prime }}}^{t}}({\varphi _{{k^{\prime }}m}^{t}}-{y_{{k^{\prime }}m}^{t}})}{{y_{{k^{\prime }}m}^{t}}}+\frac{{\beta _{{k^{\prime }}}^{t}}({b_{{k^{\prime }}l}^{t}}-{\eta _{{k^{\prime }}l}^{t}})}{{b_{{k^{\prime }}l}^{t}}}\big)}.\]3.2 Metafrontier Framework
(15)
\[ \mathit{PGG}=\frac{\mathit{MMPI}}{\mathit{GMPI}}=\frac{\mathit{MEC}\times \mathit{MTC}}{\mathit{GEC}\times \mathit{GTC}}=\left(\frac{\mathit{MEC}}{\mathit{GEC}}\right)\times \left(\frac{\mathit{MTC}}{\mathit{GTC}}\right)=\mathit{ECG}\times \mathit{TCG}.\](16)
\[\begin{array}{r@{\hskip4.0pt}c@{\hskip4.0pt}l}\displaystyle \mathit{MMPI}& \displaystyle =& \displaystyle \mathit{GMPI}\times \frac{\mathit{MMPI}}{\mathit{GMPI}}=\mathit{GMPI}\times \mathit{PGG}\\ {} & \displaystyle =& \displaystyle \mathit{GEC}\times \mathit{GTC}\times \mathit{ECG}\times \mathit{TCG}.\end{array}\]4 Data Used
Table 1
Variable | Mean | S.D. | C.V. | AGR |
LSCBs (IE) | 138285 | 64031 | 0.46 | 0.16 |
SMCBs (IE) | 27867 | 27752 | 1.00 | 0.26 |
LSCBs (NIE) | 90311 | 29712 | 0.33 | 0.09 |
SMCBs (NIE) | 12490 | 10780 | 0.86 | 0.17 |
LSCBs (NPL) | 152671 | 202360 | 1.33 | −0.05 |
SMCBs (NPL) | 9122 | 8240 | 0.90 | 0.08 |
LSCBs (II) | 345804 | 147656 | 0.43 | 0.13 |
SMCBs (II) | 58183 | 53557 | 0.92 | 0.22 |
LSCBs (NII) | 54563 | 31845 | 0.58 | 0.21 |
SMCBs (NII) | 7188 | 9772 | 1.36 | 0.40 |
5 Empirical Analysis
5.1 Overall TFP Growth
Table 2
Year | MMPI | GEC | GTC | ECG | TCG |
05/06 | 0.9317 | 0.9808 | 0.9761 | 1.0000 | 0.9883 |
06/07 | 0.9068 | 1.0392 | 0.8837 | 1.0009 | 0.9959 |
07/08 | 0.9032 | 0.9757 | 0.9465 | 0.9985 | 0.9936 |
08/09 | 0.9930 | 1.0244 | 0.9755 | 1.0011 | 0.9987 |
09/10 | 0.9538 | 1.0522 | 0.9261 | 0.9915 | 0.9938 |
10/11 | 0.9691 | 1.0056 | 0.9739 | 1.0069 | 0.9866 |
11/12 | 0.9728 | 0.9764 | 0.9965 | 1.0030 | 0.9979 |
12/13 | 0.9931 | 0.9951 | 0.9988 | 1.0007 | 0.9996 |
13/14 | 0.9977 | 1.0090 | 0.9846 | 0.9996 | 1.0076 |
14/15 | 0.9850 | 1.0139 | 0.9777 | 0.9895 | 1.0069 |
Mean | 0.9606 | 1.0072 | 0.9640 | 0.9992 | 0.9969 |
5.2 Variable-Specific Productivity Growth
5.3 Innovator Banks
Table 3
Year | Overall | IE | NIE | NPL | II | NII | ||||||
LSCB | SMCB | LSCB | SMCB | LSCB | SMCB | LSCB | SMCB | LSCB | SMCB | LSCB | SMCB | |
05/06 | 1 | 4 | 1 | 3 | 1 | 4 | 0 | 2 | 1 | 5 | 1 | 2 |
06/07 | 1 | 5 | 2 | 5 | 1 | 4 | 0 | 4 | 1 | 3 | 1 | 4 |
07/08 | 2 | 5 | 2 | 6 | 2 | 5 | 1 | 5 | 1 | 5 | 1 | 3 |
08/09 | 2 | 3 | 2 | 2 | 2 | 3 | 1 | 4 | 2 | 4 | 2 | 4 |
09/10 | 3 | 3 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 2 |
10/11 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 3 | 4 |
11/12 | 1 | 3 | 0 | 3 | 1 | 3 | 1 | 1 | 1 | 3 | 1 | 3 |
12/13 | 2 | 3 | 1 | 2 | 1 | 4 | 1 | 1 | 1 | 4 | 0 | 4 |
13/14 | 1 | 3 | 1 | 4 | 1 | 3 | 0 | 1 | 1 | 4 | 1 | 1 |
14/15 | 0 | 3 | 0 | 3 | 0 | 4 | 0 | 2 | 0 | 4 | 0 | 3 |
5.4 Comparison
Table 4
Component | MEA-MPI | MPI | Difference |
MMPI | 0.9606 | 0.9819 | −0.0213*** |
GEC | 1.0072 | 1.0003 | 0.0070 |
GTC | 0.9640 | 0.9880 | −0.0241*** |
ECG | 0.9992 | 1.0001 | −0.0010 |
TCG | 0.9969 | 0.9954 | 0.0015 |