Journal:Informatica
Volume 35, Issue 2 (2024), pp. 283–309
Abstract
In recent years, Magnetic Resonance Imaging (MRI) has emerged as a prevalent medical imaging technique, offering comprehensive anatomical and functional information. However, the MRI data acquisition process presents several challenges, including time-consuming procedures, prone motion artifacts, and hardware constraints. To address these limitations, this study proposes a novel method that leverages the power of generative adversarial networks (GANs) to generate multi-domain MRI images from a single input MRI image. Within this framework, two primary generator architectures, namely ResUnet and StarGANs generators, were incorporated. Furthermore, the networks were trained on multiple datasets, thereby augmenting the available data, and enabling the generation of images with diverse contrasts obtained from different datasets, given an input image from another dataset. Experimental evaluations conducted on the IXI and BraTS2020 datasets substantiate the efficacy of the proposed method compared to an existing method, as assessed through metrics such as Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR) and Normalized Mean Absolute Error (NMAE). The synthesized images resulting from this method hold substantial potential as invaluable resources for medical professionals engaged in research, education, and clinical applications. Future research gears towards expanding experiments to larger datasets and encompassing the proposed approach to 3D images, enhancing medical diagnostics within practical applications.
Journal:Informatica
Volume 12, Issue 3 (2001), pp. 455–468
Abstract
This paper describes a preliminary algorithm performing epilepsy prediction by means of visual perception tests and digital electroencephalograph data analysis. Special machine learning algorithm and signal processing method are used. The algorithm is tested on real data of epileptic and healthy persons that are treated in Kaunas Medical University Clinics, Lithuania. The detailed examination of results shows that computerized visual perception testing and automated data analysis could be used for brain damages diagnosing.