Pub. online:1 Jan 2019Type:Research ArticleOpen Access
Journal:Informatica
Volume 30, Issue 4 (2019), pp. 629–645
Abstract
Machine Translation has become an important tool in overcoming the language barrier. The quality of translations depends on the languages and used methods. The research presented in this paper is based on well-known standard methods for Statistical Machine Translation that are advanced by a newly proposed approach for optimizing the weights of translation system components. Better weights of system components improve the translation quality. In most cases, machine translation systems translate to/from English and, in our research, English is paired with a Slavic language, Slovenian. In our experiment, we built two Statistical Machine Translation systems for the Slovenian-English language pair of the Acquis Communautaire corpus. Both systems were optimized using self-adaptive Differential Evolution and compared to the other related optimization methods. The results show improvement in the translation quality, and are comparable to the other related methods.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 1 (2018), pp. 21–39
Abstract
The heliostat field of Solar Central Receiver Systems takes up to 50% of the initial investment and can cause up to 40% of energetic loss in operation. Hence, it must be carefully optimized. Design procedures usually rely on particular heliostat distribution models. In this work, optimization of the promising biomimetic distribution model is studied. Two stochastic population-based optimizers are applied to maximize the optical efficiency of fields: a genetic algorithm, micraGA, and a memetic one, UEGO. As far as the authors know, they have not been previously applied to this problem. However, they could be a good option according to their structure. Additionally, a Brute-Force Grid is used to estimate the global optimum and a Pure-Random Search is applied as a baseline reference. Our empirical results show that many different configurations of the distribution model lead to very similar solutions. Although micraGA exhibits poor performance, UEGO achieves the best results in a reduced time and seems appropriate for the problem at hand.
Journal:Informatica
Volume 5, Issues 3-4 (1994), pp. 364–372
Abstract
We consider finite population slotted ALOHA where each of n terminals has its own transmission probability pi. Given the overall traffic load λ, the probabilities pi are determined in such a way as to maximize throughput. This is achieved by solving a constrained optimization problem. The results of Abramson (1970) are obtained as a special case. Our recent results are improved (Mathar and Žilinskas, 1993).
Journal:Informatica
Volume 5, Issues 1-2 (1994), pp. 211–230
Abstract
The paper deals with a simple model of the competition of two queuing systems, providing the same service. Each system may vary its service price and its service rate. The customers choose the system with less total service price, that depends on the waiting time and on the service price. The possibility for the existence of equilibrium is investigated. Simple cases are investigated analytically. It is shown that the Nash equilibrium exists in special cases only. A modification of the Stakelberg equilibrium is proposed as a model of competition with a prognosis. This prognosis helps form more stable prices and more stable strategies of competitors. The case of social economics is investigated, too. The dynamics of the competition of more realistic stochastic queuing systems is investigated by Monte Carlo simulation. The simulative analysis is realized by means of a rule-based simulation system.
Journal:Informatica
Volume 5, Issues 1-2 (1994), pp. 123–166
Abstract
We consider here the average deviation as the most important objective when designing numerical techniques and algorithms. We call that a Bayesian approach.
We start by describing the Bayesian approach to the continuous global optimization. Then we show how to apply the results to the adaptation of parameters of randomized techniques of optimization. We assume that there exists a simple function which roughly predicts the consequences of decisions. We call it heuristics. We define the probability of a decision by a randomized decision function depending on heuristics. We fix this decision function, except for some parameters that we call the decision parameters.
We repeat the randomized decision procedure several times given the decision parameters and regard the best outcome as a result. We optimize the decision parameters to make the search more efficient. Thus we replace the original optimization problem by an auxiliary problem of continuous stochastic optimization. We solve the auxiliary problem by the Bayesian methods of global optimization. Therefore we call the approach as the Bayesian one.
We discuss the advantages and disadvantages of the Bayesian approach. We describe the applications to some of discrete programming problems, such as optimization of mixed Boolean bilinear functions including the scheduling of batch operations and the optimization of neural networks.