1 Introduction
-
i. The first aim of the study is to extend the traditional EDAS method to Z-fuzzy EDAS for the solution of MCDM problems under vagueness and impreciseness, which takes the reliability of the experts’ data into account.
-
ii. The second aim of this study is to integrate Z-fuzzy AHP method with Z-fuzzy EDAS method in order to use the criteria weights obtained from AHP in the Z-fuzzy EDAS method for ranking the alternatives.
-
iii. The proposed methodology is applied to a wind turbine technology selection problem to present its practicality and efficiency. A comparative analysis is performed by using the same data with the Z-fuzzy TOPSIS method.
-
i. First, a novel Z-fuzzy EDAS has been developed for the first time by formulating it step by step using Z-fuzzy numbers. Thus, the literature gap on Z-fuzzy MCDM methods will be filled.
-
ii. Second, to the best of our knowledge, a methodology integrating Z-fuzzy numbers and AHP & EDAS methods has not been developed.
-
iii. Third, all steps of the Z-fuzzy EDAS method have been performed by Z-fuzzy numbers which prevents the loss of information existing in the fuzzy data.
-
iv. Finally, the proposed approach has been applied to a renewable energy problem in the literature illustrating how to use the proposed methodology step by step.
2 Literature Review on EDAS and Z-Fuzzy MCDM
Table 1
Year | Authors | Extension of EDAS | Application area |
2015 | Keshavarz Ghorabaee et al. | Crisp EDAS | Inventory classification |
2016 | Keshavarz Ghorabaee et al. | Fuzzy EDAS | Supplier selection |
2017 | Kahraman et al. | Intuitionistic EDAS | Solid waste disposal site selection |
2017a | Keshavarz Ghorabaee et al. | Stochastic EDAS | Performance evaluation of bank branches |
2017 | Stanujkic et al. | Interval grey valued EDAS | Contractor selection |
2017b | Keshavarz Ghorabaee et al. | Interval type-2 fuzzy EDAS | Supplier selection with respect to environmental criteria |
2017c | Keshavarz Ghorabaee et al. | Interval type-2 fuzzy EDAS | Evaluation of subcontractors |
2017 | Peng and Liu | Single valued neutrosophic EDAS | Evaluation of software development project |
2018 | Stević et al. | Fuzzy EDAS | Carpenter manufacturer selection |
2018 | Feng et al. | Hesitant fuzzy EDAS | Project selection |
2018c | Chatterjee et al. | Crisp EDAS | Material selection |
2018 | Keshavarz Ghorabaee et al. | Dynamic fuzzy EDAS | Evaluation of subcontractors |
2018 | Karabasevic et al. | Crisp EDAS | Personnel Selection |
2018 | Liang et al. | Integrated EDAS-ELECTRE method | Cleaner Production Evaluation |
2018 | Ilieva | Interval type-2 fuzzy EDAS | An illustrative example |
2018 | Karaşan and Kahraman | Interval-valued neutrosophic EDAS | Prioritization of the united nations national sustainable development goals |
2018 | Kutlu Gündoğdu et al. | Hesitant fuzzy EDAS | Hospital selection |
2019 | Karaşan et al. | Interval-valued neutrosophic EDAS | Ranking of social responsibility projects |
2019 | Zhang et al. | Picture 2-tuple linguistic EDAS | Green supplier selection |
2019 | Schitea et al. | Intuitionistic EDAS | Selection of hydrogen collection site |
2019 | Kundakcı | Crisp EDAS | Steam boiler selection |
2019 | Wang et al. | 2-tuple linguistic neutrosophic EDAS | Safety assessment of construction project |
2019 | Stević et al. | Fuzzy EDAS | Supplier selection |
2020 | Yanmaz et al. | Interval-valued Pythagorean Fuzzy EDAS | Car selection |
2020 | Han and Wei | Neutrosophic EDAS | Investment evaluation |
2020 | Liang | Intuitionistic Fuzzy EDAS | Selection of energy-saving design projects |
2020 | He et al. | Pythagorean 2-tuple linguistic sets based EDAS | Construction project selection |
2020 | Darko and Liang | q-rang orthopair fuzzy EDAS | Mobile payment platform selection |
2020 | Li et al. | q-rung orthopair fuzzy EDAS | Refrigerator selection |
2020 | Mishra et al. | Intuitionistic fuzzy EDAS | Disposal method selection |
2020 | Tolga and Basar | Fuzzy EDAS | Hydroponic system evaluation |
2021 | Wei et al. | Probabilistic EDAS | Supplier selection |
2021 | Chinram et al. | Intuitionistic fuzzy EDAS | Geographical site selection for construction |
2021 | Özçelik and Nalkıran | Trapezoidal bipolar Fuzzy numbers based EDAS | Medical device selection |
2021 | Jana and Pal | Bipolar fuzzy EDAS | Construction company selection |
2021 | Mao et al. | Z-fuzzy EDAS | Ranking of engineering characteristics in quality function deployment |
2022 | Mitra | Crisp EDAS | Selection of cotton fabric |
2022 | Batool et al. | EDAS method under Pythagorean probabilistic hesitant fuzzy information | Drug selection for coronavirus disease |
2022 | Garg and Sharaf | Spherical fuzzy EDAS | Supplier selection and industrial robot selection |
2022 | Mishra et al. | Fermatean fuzzy EDAS | Evaluation of sustainable third-party reverse logistics providers |
2022 | Naz et al. | 2-tuple linguistic T-spherical fuzzy EDAS | Selecting of the best COVID-19 vaccine |
2022 | Liao et al. | Probabilistic hesitant fuzzy EDAS | Evaluation of the commercial vehicles and green suppliers |
2022 | Demircan and Acarbay | Neutrosophic fuzzy EDAS | Vendor selection |
2022 | Rogulj et al. | Intuitionistic fuzzy EDAS | Prioritization of historic bridges |
2022 | Huang et al. | 2-tuple spherical linguistic EDAS | Selection of the optimal emergency response solution |
2022 | Polat and Bayhan | Fuzzy EDAS | Supplier selection |
2022 | Su et al. | Probabilistic uncertain linguistic EDAS | Green finance evaluation of enterprises |
2023 | Akram et al. | Linguistic Pythagorean fuzzy EDAS | Selection of waste management technique |
Table 2
Year | Authors | MCDM method’s used Z-fuzzy number | Application areas |
2012a | Kang et al. | A proposed approach | Vehicle selection |
2013 | Azadeh et al. | AHP | Weighing the performance evaluation factors of universities |
2014 | Xiao | A proposed approach | Evaluation of cloths |
2015 | Sahrom and Dom | AHP and DEA | Risk assessment |
2015 | Yaakob and Gegov | TOPSIS | Stock selection |
2016 | Azadeh and Kokabi | DEA | Portfolio selection |
2016 | Sadi-Nezhad and Sotoudeh-Anvari | DEA | Efficiency assessment |
2016 | Yaakob and Gegov | TOPSIS | Stock selection |
2017 | Peng and Wang | A proposed approach | ERP selection |
2017a | Khalif et al. | TOPSIS | Performance assessment |
2017b | Khalif et al. | TOPSIS | Staff selection |
2017 | Wang et al. | TODIM | Evaluation of medical inquiry applications |
2018 | Karthika and Sudha | AHP | Risk assessment |
2018 | Forghani et al. | TOPSIS | Supplier selection |
2018 | Chatterjee and Kar | COPRAS | Renewable energy selection |
2018 | Aboutorab et al. | Best-worst method | Supplier development problem |
2018 | Peng and Wang | MULTIMOORA | Evaluation of potential areas of air pollution |
2018 | Shen and Wang | VIKOR | Selection of economic development plan |
2018 | Akbarian Saravi et al. | DEA | Evaluation of biomass power plants location |
2018 | Kahraman and Otay | AHP | Power plant location selection |
2019 | Gardashova | TOPSIS | Vehicle selection |
2019 | Wang and Mao | TOPSIS | Supplier selection |
2019 | Xian et al. | TOPSIS | Numerical examples on investment and medical diagnosis |
2019 | Kahraman et al. | AHP | Evaluation of law offices |
2019 | Krohling et al. | TODIM and TOPSIS | Case studies from literature |
2019 | Shen et al. | MABAC | Selection of economy development program |
2020 | Yildiz and Kahraman | AHP | Prioritization of social sustainable development factors |
2020 | Qiao et al. | PROMETHEE | Travel plan selection |
2020 | Das et al. | VIKOR | Prioritizing risk of hazards for crane operations. |
2020 | Jiang et al. | DEMATEL | Hospital performance measurement |
2020 | Mohtashami and Ghiasvand | DEA | Evaluation of banks and financial institutes |
2020 | Liu et al. | ANP and TODIM | Evaluation of suppliers for the nuclear power industry |
2020a | Tüysüz and Kahraman | AHP | Evaluation of social sustainable development factors |
2020b | Tüysüz and Kahraman | CODAS | Supplier selection |
2021 | Akhavein et al. | DEMATEL and VIKOR | Evaluation of projects |
2021 | Zhu and Hu | DEMATEL | Evaluation of sustainable value propositions for smart product-service systems |
2021 | Wang et al. | DEMATEL | Evaluation of human error probability for cargo loading operations. |
2021 | Mao et al. | EDAS | Ranking of engineering characteristics in quality function deployment |
2021 | Sergi and Ucal Sari | AHP and WASPAS | Evaluation of public services |
2021 | Karaşan et al. | DEMATEL | Blockchain risk assessment |
2022 | Peng et al. | MULTIMOORA | Hotel selection |
2022 | İlbahar et al. | DEMATEL and VIKOR | Evaluation of hydrogen energy storage systems |
2022 | Sari and Tüysüz | AHP and TOPSIS | Covid-19 risk assessment of occupations |
2022 | Liu et al. | ELECTRE II | Selection of logistics provider |
2022 | Rahmati et al. | SWARA and WASPAS | Prioritization of financial risk factors |
2022 | Gai et al. | MULTIMOORA | Green supplier selection |
2022 | RezaHoseini et al. | AHP and DEA | Performance evaluation of sustainable projects |
2022 | Božanić et al. | MABAC | Selection of the best contingency strategy |
3 Z-Fuzzy Numbers: Preliminaries
Definition 1.
Definition 2 (Converting Z-fuzzy number to Regular Fuzzy Number, Kang et al., 2012b).
(4)
\[ {\tilde{Z}^{\prime }}=\bigg\{\langle x,{\mu _{{\tilde{Z}^{\prime }}}}(x)\rangle \hspace{0.1667em}\big|\hspace{0.1667em}{\mu _{{\tilde{Z}^{\prime }}}}(x)={\mu _{\tilde{A}}}\bigg(\frac{x}{\sqrt{\alpha }}\bigg),\hspace{2.5pt}\mu (x)\in [0,1]\bigg\},\](5)
\[\begin{aligned}{}& {\mu _{\tilde{A}}^{\delta }}(x)=\left\{\begin{array}{l@{\hskip4.0pt}l}\frac{x-{a_{1}}}{{a_{2}}-{a_{1}}}\delta ,\hspace{1em}& \text{if}\hspace{2.5pt}{a_{1}}\leqslant x\leqslant {a_{2}},\\ {} \delta ,\hspace{1em}& \text{if}\hspace{2.5pt}{a_{2}}\leqslant x\leqslant {a_{3}},\\ {} \frac{{a_{4}}-x}{{a_{4}}-{a_{3}}}\delta ,\hspace{1em}& \text{if}\hspace{2.5pt}{a_{3}}\leqslant x\leqslant {a_{4}},\\ {} 0,\hspace{1em}& \text{otherwise},\end{array}\right.\end{aligned}\](6)
\[\begin{aligned}{}& {\mu _{\tilde{B}}^{\beta }}(x)=\left\{\begin{array}{l@{\hskip4.0pt}l}\frac{x-{b_{1}}}{{b_{2}}-{b_{1}}}\beta ,\hspace{1em}& \text{if}\hspace{2.5pt}{b_{1}}\leqslant x\leqslant {b_{2}},\\ {} \frac{{b_{3}}-x}{{b_{3}}-{b_{2}}}\beta ,\hspace{1em}& \text{if}\hspace{2.5pt}{b_{2}}\leqslant x\leqslant {b_{3}},\\ {} 0,\hspace{1em}& \text{otherwise}.\end{array}\right.\end{aligned}\](7)
\[ \sqrt{\alpha }=\sqrt{\frac{\textstyle\int x{\mu _{\tilde{B}}^{\beta }}(x)dx}{\textstyle\int {\mu _{\tilde{B}}^{\beta }}(x)dx}}.\](8)
\[ {\tilde{Z}_{\delta ,\beta }^{\alpha }}=\bigg\{\big\langle x,{\mu _{{\tilde{A}^{\alpha }}}^{\delta }}(x)\big\rangle \hspace{0.1667em}\big|\hspace{0.1667em}{\mu _{{\tilde{A}^{\alpha }}}^{\delta }}(x)=\frac{\textstyle\int x{\mu _{\tilde{B}}^{\beta }}(x)dx}{\textstyle\int {\mu _{\tilde{B}}^{\beta }}(x)dx}{\mu _{\tilde{A}}^{\delta }}(x),\hspace{2.5pt}\mu (x)\in [0,1]\bigg\}.\](9)
\[ {\tilde{Z}^{\prime }_{\delta ,\beta }}=\bigg\{\big\langle x,{\mu _{{\tilde{z}^{\prime }}}^{\delta }}(x)\big\rangle \hspace{0.1667em}\big|\hspace{0.1667em}{\mu _{{\tilde{z}^{\prime }}}^{\delta }}(x)={\mu _{\tilde{A}}^{\delta }}\bigg(x\frac{\textstyle\int {\mu _{\tilde{B}}^{\beta }}(x)dx}{\textstyle\int x{\mu _{\tilde{B}}^{\beta }}(x)dx}\bigg),\hspace{2.5pt}\mu (x)\in [0,1]\bigg\}.\]4 Z-Fuzzy AHP
Table 3
Linguistic terms | Abbreviation | Restriction function |
Equally Important | EI | $(1,1,1;1)$ |
Slightly Important | SLI | $(1,1,3;1)$ |
Moderately Important | MI | $(1,3,5;1)$ |
Strongly Important | STI | $(3,5,7;1)$ |
Very Strongly Important | VSTI | $(5,7,9;1)$ |
Certainly Important | CI | $(7,9,10;1)$ |
Absolutely Important | AI | $(9,10,10;1)$ |
Table 4
Linguistic terms | Abbreviation | Reliability function |
Certainly Reliable | CR | $(1,1,1;1)$ |
Very Strongly Reliable | VSR | $(0.8,0.9,1;1)$ |
Strongly Reliable | SR | $(0.7,0.8,0.9;1)$ |
Very Highly Reliable | VHR | $(0.6,0.7,0.8;1)$ |
Highly Reliable | HR | $(0.5,0.6,0.7;1)$ |
Fairly Reliable | FR | $(0.4,0.5,0.6;1)$ |
Weakly Reliable | WR | $(0.3,0.4,0.5;1)$ |
Very Weakly Reliable | VWR | $(0.2,0.3,0.4;1)$ |
Strongly Unreliable | SU | $(0.1,0.2,0.3;1)$, |
Absolutely Unreliable | AU | $(0,0.1,0.2;1)$ |
(11)
\[ {\tilde{Z}^{Agg}}=\big({\tilde{A}^{Agg}},{\tilde{B}^{Agg}}\big)=\left[\begin{array}{c@{\hskip4.0pt}c@{\hskip4.0pt}c@{\hskip4.0pt}c}{\tilde{c}_{11}}\hspace{1em}& {\tilde{c}_{12}}\hspace{1em}& \dots \hspace{1em}& {\tilde{c}_{1m}}\\ {} {\tilde{c}_{21}}\hspace{1em}& {\tilde{c}_{22}}\hspace{1em}& \dots \hspace{1em}& {\tilde{c}_{2m}}\\ {} \vdots \hspace{1em}& \vdots \hspace{1em}& \ddots \hspace{1em}& \vdots \\ {} {\tilde{c}_{m1}}\hspace{1em}& {\tilde{c}_{m2}}\hspace{1em}& \dots \hspace{1em}& {\tilde{c}_{mm}}\end{array}\right],\](12)
\[\begin{aligned}{}& {\tilde{c}_{ij}}=\left(\hspace{-0.1667em}\hspace{-0.1667em}\begin{array}{l}\Big(\sqrt[3]{{a_{1,ij}^{\textit{DM}1}}\ast {a_{1,ij}^{\textit{DM}2}}\ast {a_{1,ij}^{\textit{DM}3}}},\sqrt[3]{{a_{2,ij}^{\textit{DM}1}}\ast {a_{2,ij}^{\textit{DM}2}}\ast {a_{2,ij}^{\textit{DM}3}}},\sqrt[3]{{a_{3,ij}^{\textit{DM}1}}\ast {a_{3,ij}^{\textit{DM}2}}\ast {a_{3,ij}^{\textit{DM}3}}}\hspace{0.1667em}\Big),\\ {} \hspace{1em}\Big(\sqrt[3]{{b_{1,ij}^{\textit{DM}1}}\ast {b_{1,ij}^{\textit{DM}2}}\ast {b_{1,ij}^{\textit{DM}3}}},\sqrt[3]{{b_{2,ij}^{\textit{DM}1}}\ast {b_{2,ij}^{\textit{DM}2}}\ast {b_{2,ij}^{\textit{DM}3}}},\sqrt[3]{{b_{3,ij}^{\textit{DM}1}}\ast {b_{3,ij}^{\textit{DM}2}}\ast {b_{3,ij}^{\textit{DM}3}}}\hspace{0.1667em}\Big)\end{array}\hspace{-0.1667em}\hspace{-0.1667em}\right),\\ {} & \hspace{1em}i=1,2,\dots ,m;\hspace{2.5pt}j=1,2,\dots ,m.\end{aligned}\](13)
\[\begin{aligned}{}& {\alpha _{ij}}=\frac{\Big(\sqrt[3]{{b_{1,ij}^{\textit{DM}1}}\ast {b_{1,ij}^{\textit{DM}2}}\ast {b_{1,ij}^{\textit{DM}3}}}+2\ast \sqrt[3]{{b_{2,ij}^{\textit{DM}1}}\ast {b_{2,ij}^{\textit{DM}2}}\ast {b_{2,ij}^{\textit{DM}3}}}+\sqrt[3]{{b_{3,ij}^{\textit{DM}1}}\ast {b_{3,ij}^{\textit{DM}2}}\ast {b_{3,ij}^{\textit{DM}3}}}\hspace{0.1667em}\Big)}{4},\\ {} & \hspace{1em}i=1,2,\dots ,m;\hspace{2.5pt}j=1,2,\dots ,m.\end{aligned}\](14)
\[ \tilde{O}=\left[\begin{array}{c@{\hskip4.0pt}c@{\hskip4.0pt}c@{\hskip4.0pt}c}{\tilde{o}_{11}}\hspace{1em}& {\tilde{o}_{12}}\hspace{1em}& \dots \hspace{1em}& {\tilde{o}_{1m}}\\ {} {\tilde{o}_{21}}\hspace{1em}& {\tilde{o}_{22}}\hspace{1em}& \dots \hspace{1em}& {\tilde{o}_{2m}}\\ {} \vdots \hspace{1em}& \vdots \hspace{1em}& \ddots \hspace{1em}& \vdots \\ {} {\tilde{o}_{m1}}\hspace{1em}& {\tilde{o}_{m2}}\hspace{1em}& \dots \hspace{1em}& {\tilde{o}_{mm}}\end{array}\right],\](15)
\[ {\tilde{o}_{ij}}=\left(\begin{array}{l}\sqrt[3]{{a_{1,ij}^{\textit{DM}1}}\ast {a_{1,ij}^{\textit{DM}2}}\ast {a_{1,ij}^{\textit{DM}3}}}\sqrt{{\alpha _{ij}}},\sqrt[3]{{a_{2,ij}^{\textit{DM}1}}\ast {a_{2,ij}^{\textit{DM}2}}\ast {a_{2,ij}^{\textit{DM}3}}}\sqrt{{\alpha _{ij}}},\\ {} \hspace{1em}\sqrt[3]{{a_{3,ij}^{\textit{DM}1}}\ast {a_{3,ij}^{\textit{DM}2}}\ast {a_{3,ij}^{\textit{DM}3}}}\sqrt{{\alpha _{ij}}}\end{array}\right).\](16)
\[ \widetilde{\textit{GM}}=\left[\begin{array}{c}{\tilde{g}_{11}}\\ {} {\tilde{g}_{21}}\\ {} \vdots \\ {} {\tilde{g}_{m1}}\end{array}\right],\](17)
\[ {\tilde{g}_{i1}}=\left(\begin{array}{l}\sqrt[m]{{\textstyle\textstyle\prod _{j=1}^{m}}\Big(\sqrt[3]{{a_{1,ij}^{\textit{DM}1}}\ast {a_{1,ij}^{\textit{DM}2}}\ast {a_{1,ij}^{\textit{DM}3}}}\sqrt{{\alpha _{ij}}}\Big)},\\ {} \hspace{1em}\sqrt[m]{{\textstyle\textstyle\prod _{j=1}^{m}}\Big(\sqrt[3]{{a_{2,ij}^{\textit{DM}1}}\ast {a_{2,ij}^{\textit{DM}2}}\ast {a_{2,ij}^{\textit{DM}3}}}\sqrt{{\alpha _{ij}}}\Big)},\\ {} \hspace{1em}\sqrt[m]{{\textstyle\textstyle\prod _{j=1}^{m}}\Big(\sqrt[3]{{a_{3,ij}^{\textit{DM}1}}\ast {a_{3,ij}^{\textit{DM}2}}\ast {a_{3,ij}^{\textit{DM}3}}}\sqrt{{\alpha _{ij}}}\Big)}\end{array}\right),\hspace{1em}i=1,2,\dots ,m.\](18)
\[ \tilde{S}=\left(\begin{array}{l}{\textstyle\textstyle\sum _{i=1}^{m}}\Big(\sqrt[m]{{\textstyle\textstyle\prod _{j=1}^{m}}\Big(\sqrt[3]{{a_{1,ij}^{\textit{DM}1}}\ast {a_{1,ij}^{\textit{DM}2}}\ast {a_{1,ij}^{\textit{DM}3}}}\sqrt{{\alpha _{ij}}}\Big)}\hspace{0.1667em}\Big),\\ {} \hspace{1em}{\textstyle\textstyle\sum _{i=1}^{m}}\Big(\sqrt[m]{{\textstyle\textstyle\prod _{j=1}^{m}}\Big(\sqrt[3]{{a_{2,ij}^{\textit{DM}1}}\ast {a_{2,ij}^{\textit{DM}2}}\ast {a_{2,ij}^{\textit{DM}3}}}\sqrt{{\alpha _{ij}}}\Big)}\hspace{0.1667em}\Big),\\ {} \hspace{1em}{\textstyle\textstyle\sum _{i=1}^{m}}\Big(\sqrt[m]{{\textstyle\textstyle\prod _{j=1}^{m}}\Big(\sqrt[3]{{a_{3,ij}^{\textit{DM}1}}\ast {a_{3,ij}^{\textit{DM}2}}\ast {a_{3,ij}^{\textit{DM}3}}}\sqrt{{\alpha _{ij}}}\Big)}\hspace{0.1667em}\Big)\end{array}\right).\](19)
\[ \tilde{R}=\left[\begin{array}{c}{\tilde{r}_{11}}\\ {} {\tilde{r}_{21}}\\ {} \vdots \\ {} {\tilde{r}_{m1}}\end{array}\right]=\left[\begin{array}{c}{\tilde{g}_{11}}/\tilde{S}\\ {} {\tilde{g}_{21}}/\tilde{S}\\ {} \vdots \\ {} {\tilde{g}_{m1}}/\tilde{S}\end{array}\right],\](20)
\[\begin{aligned}{}& {\tilde{r}_{i1}}=\left(\begin{array}{l}\frac{\sqrt[m]{{\textstyle\textstyle\prod _{j=1}^{m}}\big(\sqrt[3]{{a_{1,ij}^{\textit{DM}1}}\ast {a_{1,ij}^{\textit{DM}2}}\ast {a_{1,ij}^{\textit{DM}3}}}\sqrt{{\alpha _{ij}}}\big)}}{{\textstyle\textstyle\sum _{i=1}^{m}}\sqrt[m]{{\textstyle\textstyle\prod _{j=1}^{m}}\big(\sqrt[3]{{a_{3,ij}^{\textit{DM}1}}\ast {a_{3,ij}^{\textit{DM}2}}\ast {a_{3,ij}^{\textit{DM}3}}}\sqrt{{\alpha _{ij}}}\big)}},\\ {} \hspace{1em}\frac{\sqrt[m]{{\textstyle\textstyle\prod _{j=1}^{m}}\big(\sqrt[3]{{a_{2,ij}^{\textit{DM}1}}\ast {a_{2,ij}^{\textit{DM}2}}\ast {a_{2,ij}^{\textit{DM}3}}}\sqrt{{\alpha _{ij}}}\big)}}{{\textstyle\textstyle\sum _{i=1}^{m}}\sqrt[m]{{\textstyle\textstyle\prod _{j=1}^{m}}\big(\sqrt[3]{{a_{2,ij}^{\textit{DM}1}}\ast {a_{2,ij}^{\textit{DM}2}}\ast {a_{2,ij}^{\textit{DM}3}}}\sqrt{{\alpha _{ij}}}\big)}},\\ {} \hspace{1em}\frac{\sqrt[m]{{\textstyle\textstyle\prod _{j=1}^{m}}\big(\sqrt[3]{{a_{3,ij}^{\textit{DM}1}}\ast {a_{3,ij}^{\textit{DM}2}}\ast {a_{3,ij}^{\textit{DM}3}}}\sqrt{{\alpha _{ij}}}\big)}}{{\textstyle\textstyle\sum _{i=1}^{m}}\sqrt[m]{{\textstyle\textstyle\prod _{j=1}^{m}}\big(\sqrt[3]{{a_{1,ij}^{\textit{DM}1}}\ast {a_{1,ij}^{\textit{DM}2}}\ast {a_{1,ij}^{\textit{DM}3}}}\sqrt{{\alpha _{ij}}}\big)}}\end{array}\right),\hspace{1em}i=1,2,\dots ,m.\end{aligned}\](21)
\[\begin{aligned}{}& {d_{j}}=\left(\begin{array}{l}\frac{\sqrt[m]{{\textstyle\textstyle\prod _{j=1}^{m}}\Big(\sqrt[3]{{a_{1,ij}^{\textit{DM}1}}\ast {a_{1,ij}^{\textit{DM}2}}\ast {a_{1,ij}^{\textit{DM}3}}}\sqrt{{\alpha _{ij}}}\Big)}}{{\textstyle\textstyle\sum _{i=1}^{m}}\sqrt[m]{{\textstyle\textstyle\prod _{j=1}^{m}}\Big(\sqrt[3]{{a_{3,ij}^{\textit{DM}1}}\ast {a_{3,ij}^{\textit{DM}2}}\ast {a_{3,ij}^{\textit{DM}3}}}\sqrt{{\alpha _{ij}}}\Big)}}\\ {} \hspace{1em}+2\ast \frac{\sqrt[m]{{\textstyle\textstyle\prod _{j=1}^{m}}\Big(\sqrt[3]{{a_{2,ij}^{\textit{DM}1}}\ast {a_{2,ij}^{\textit{DM}2}}\ast {a_{2,ij}^{\textit{DM}3}}}\sqrt{{\alpha _{ij}}}\Big)}}{{\textstyle\textstyle\sum _{i=1}^{m}}\sqrt[m]{{\textstyle\textstyle\prod _{j=1}^{m}}\Big(\sqrt[3]{{a_{2,ij}^{\textit{DM}1}}\ast {a_{2,ij}^{\textit{DM}2}}\ast {a_{2,ij}^{\textit{DM}3}}}\sqrt{{\alpha _{ij}}}\Big)}}\\ {} \hspace{1em}+\frac{\sqrt[m]{{\textstyle\textstyle\prod _{j=1}^{m}}\Big(\sqrt[3]{{a_{3,ij}^{\textit{DM}1}}\ast {a_{3,ij}^{\textit{DM}2}}\ast {a_{3,ij}^{\textit{DM}3}}}\sqrt{{\alpha _{ij}}}\Big)}}{{\textstyle\textstyle\sum _{i=1}^{m}}\sqrt[m]{{\textstyle\textstyle\prod _{j=1}^{m}}\Big(\sqrt[3]{{a_{1,ij}^{\textit{DM}1}}\ast {a_{1,ij}^{\textit{DM}2}}\ast {a_{1,ij}^{\textit{DM}3}}}\sqrt{{\alpha _{ij}}}\Big)}}\end{array}\right)\ast {4^{-1}},\\ {} & \hspace{1em}j=1,2,\dots ,m.\end{aligned}\]5 Z-Fuzzy EDAS
(24)
\[ \tilde{D}={[{\tilde{x}_{ij}}]_{n\times m}}=\begin{array}{c}{A_{1}}\\ {} {A_{2}}\\ {} \vdots \\ {} {A_{n}}\end{array}\left[\begin{array}{c@{\hskip4.0pt}c@{\hskip4.0pt}c@{\hskip4.0pt}c}{\tilde{x}_{11}}\hspace{1em}& {\tilde{x}_{12}}\hspace{1em}& \dots \hspace{1em}& {\tilde{x}_{1m}}\\ {} {\tilde{x}_{21}}\hspace{1em}& {\tilde{x}_{22}}\hspace{1em}& \dots \hspace{1em}& {\tilde{x}_{2m}}\\ {} \vdots \hspace{1em}& \vdots \hspace{1em}& \ddots \hspace{1em}& \vdots \\ {} {\tilde{x}_{n1}}\hspace{1em}& {\tilde{x}_{n2}}\hspace{1em}& \dots \hspace{1em}& {\tilde{x}_{nm}}\end{array}\right],\](25)
\[ {\tilde{Z}_{\tilde{D}}^{Agg}}=\left[\begin{array}{c@{\hskip4.0pt}c@{\hskip4.0pt}c@{\hskip4.0pt}c}{\tilde{x}_{11}}\hspace{1em}& {\tilde{x}_{12}}\hspace{1em}& \dots \hspace{1em}& {\tilde{x}_{1m}}\\ {} {\tilde{x}_{21}}\hspace{1em}& {\tilde{x}_{22}}\hspace{1em}& \dots \hspace{1em}& {\tilde{x}_{2m}}\\ {} \vdots \hspace{1em}& \vdots \hspace{1em}& \ddots \hspace{1em}& \vdots \\ {} {\tilde{x}_{n1}}\hspace{1em}& {\tilde{x}_{n2}}\hspace{1em}& \dots \hspace{1em}& {\tilde{x}_{nm}}\end{array}\right],\](26)
\[\begin{aligned}{}& {\tilde{x}_{ij}}=\left(\hspace{-0.1667em}\hspace{-0.1667em}\begin{array}{l}\Big(\sqrt[3]{{a_{1,ij}^{\textit{DM}1}}\ast {a_{1,ij}^{\textit{DM}2}}\ast {a_{1,ij}^{\textit{DM}3}}},\sqrt[3]{{a_{2,ij}^{\textit{DM}1}}\ast {a_{2,ij}^{\textit{DM}2}}\ast {a_{2,ij}^{\textit{DM}3}}},\sqrt[3]{{a_{3,ij}^{\textit{DM}1}}\ast {a_{3,ij}^{\textit{DM}2}}\ast {a_{3,ij}^{\textit{DM}3}}}\hspace{0.1667em}\Big),\\ {} \Big(\sqrt[3]{{b_{1,ij}^{\textit{DM}1}}\ast {b_{1,ij}^{\textit{DM}2}}\ast {b_{1,ij}^{\textit{DM}3}}},\sqrt[3]{{b_{2,ij}^{\textit{DM}1}}\ast {b_{2,ij}^{\textit{DM}2}}\ast {b_{2,ij}^{\textit{DM}3}}},\sqrt[3]{{b_{3,ij}^{\textit{DM}1}}\ast {b_{3,ij}^{\textit{DM}2}}\ast {b_{3,ij}^{\textit{DM}3}}}\hspace{0.1667em}\Big)\end{array}\hspace{-0.1667em}\hspace{-0.1667em}\right),\\ {} & \hspace{1em}i=1,2,\dots ,n;\hspace{2.5pt}j=1,2,\dots ,m.\end{aligned}\]Table 5
Linguistic terms | Abbreviation | Restriction function |
Very Poor | VP | $(1/4,1/2,1/2,1;1)$ |
Poor | P | $(1/2,1,1,3;1)$ |
Medium Poor | MP | $(1,3,3,5;1)$ |
Fair | F | $(3,5,5,7;1)$ |
Medium Good | MG | $(5,7,7,9;1)$ |
Good | G | $(7,9,9,10;1)$ |
Very Good | VG | $(9,10,10,10;1)$ |
(27)
\[\begin{aligned}{}& \widetilde{\textit{AV}}={[{\widetilde{\textit{AV}}_{j}}]_{1\times m}}=\left[\begin{array}{c@{\hskip4.0pt}c@{\hskip4.0pt}c@{\hskip4.0pt}c}{\widetilde{\textit{AV}}_{1}}\hspace{1em}& {\widetilde{\textit{AV}}_{2}}\hspace{1em}& \dots \hspace{1em}& {\widetilde{\textit{AV}}_{j}}\end{array}\right],\end{aligned}\](29)
\[\begin{aligned}{}& \widetilde{\textit{PDA}}={[{\widetilde{\textit{PDA}}_{ij}}]_{n\times m}},\end{aligned}\](30)
\[\begin{aligned}{}& \widetilde{\textit{NDA}}={[{\widetilde{\textit{NDA}}_{ij}}]_{n\times m}},\end{aligned}\](31)
\[\begin{aligned}{}& \left\{\begin{array}{l}{\widetilde{\textit{PDA}}_{ij}}=\frac{\max (0,({\tilde{x}_{ij}}-{\widetilde{\textit{AV}}_{j}}))}{{\widetilde{\textit{AV}}_{j}^{\phantom{M}}}},\\ {} {\widetilde{\textit{NDA}}_{ij}}=\frac{\max (0,({\widetilde{\textit{AV}}_{j}}-{\tilde{x}_{ij}}))}{{\widetilde{\textit{AV}}_{j}^{\phantom{M}}}},\end{array}\right.\hspace{1em}\text{for benefit criteria},\end{aligned}\](32)
\[\begin{aligned}{}& \left\{\begin{array}{l}{\widetilde{\textit{PDA}}_{ij}}=\frac{\max (0,({\widetilde{\textit{AV}}_{j}}-{\tilde{x}_{ij}}))}{{\widetilde{\textit{AV}}_{j}^{\phantom{M}}}},\\ {} {\widetilde{\textit{NDA}}_{ij}}=\frac{\max (0,({\tilde{x}_{ij}}-{\widetilde{\textit{AV}}_{j}}))}{{\widetilde{\textit{AV}}_{j}^{\phantom{M}}}},\end{array}\right.\hspace{1em}\text{for cost criteria},\end{aligned}\](41)
\[ {\widetilde{\textit{NSP}}_{{i_{a}}}^{Res}}=\bigg(\frac{{\widetilde{\textit{SSP}}_{i{a_{1}}}}}{{\max _{i}}({\widetilde{\textit{SP}}_{i}^{Res}})},\frac{{\widetilde{\textit{SSP}}_{i{a_{2}}}}}{{\max _{i}}({\widetilde{\textit{SP}}_{i}^{Res}})},\frac{{\widetilde{\textit{SSP}}_{i{a_{3}}}}}{{\max _{i}}({\widetilde{\textit{SP}}_{i}^{Res}})},\frac{{\widetilde{\textit{SSP}}_{i{a_{4}}}}}{{\max _{i}}({\widetilde{\textit{SP}}_{i}^{Res}})}\bigg)\](42)
\[\begin{aligned}{}& {\widetilde{\textit{NSN}}_{{i_{a}}}^{Res}}\\ {} & \hspace{1em}=(1,1,1,1)-\bigg(\frac{{\widetilde{\textit{SSN}}_{i{a_{4}}}}}{{\max _{i}}({\widetilde{\textit{SN}}_{i}^{Res}})},\frac{{\widetilde{\textit{SSN}}_{i{a_{3}}}}}{{\max _{i}}({\widetilde{\textit{SN}}_{i}^{Res}})},\frac{{\widetilde{\textit{SSN}}_{i{a_{2}}}}}{{\max _{i}}({\widetilde{\textit{SN}}_{i}^{Res}})},\frac{{\widetilde{\textit{SSN}}_{i{a_{1}}}}}{{\max _{i}}({\widetilde{\textit{SN}}_{i}^{Res}})}\bigg)\end{aligned}\](43)
\[ {\widetilde{\textit{NSP}}_{{i_{b}}}^{Rel}}=\bigg(\frac{{\widetilde{\textit{SSP}}_{i{b_{1}}}}}{{\max _{i}}({\widetilde{\textit{SP}}_{i}^{Rel}})},\frac{{\widetilde{\textit{SSP}}_{i{b_{2}}}}}{{\max _{i}}({\widetilde{\textit{SP}}_{i}^{Rel}})},\frac{{\widetilde{\textit{SSP}}_{i{b_{3}}}}}{{\max _{i}}({\widetilde{\textit{SP}}_{i}^{Rel}})}\bigg)\](44)
\[ {\widetilde{\textit{NSN}}_{{i_{b}}}^{Rel}}=(1,1,1)-\bigg(\frac{{\widetilde{\textit{SSN}}_{i{b_{3}}}}}{{\max _{i}}({\widetilde{\textit{SN}}_{i}^{Rel}})},\frac{{\widetilde{\textit{SSN}}_{i{b_{2}}}}}{{\max _{i}}({\widetilde{\textit{SN}}_{i}^{Rel}})},\frac{{\widetilde{\textit{SSN}}_{i{b_{1}}}}}{{\max _{i}}({\widetilde{\textit{SN}}_{i}^{Rel}})}\bigg).\]6 Application: Wind Turbine Selection
Table 6
DM1 | C1 | C2 | C3 | C4 | C5 | C6 |
C1 | (EI, CR) | (CI, VSR) | (STI, HR) | (SLI, VSR) | (VSTI, VHR) | (CI, VSR) |
C2 | (1/CI, VSR) | (EI, CR) | (1/MI, SR) | (1/VSTI, FR) | (1/MI, SR) | (MI, FR) |
C3 | (1/STI, HR) | (MI, SR) | (EI, CR) | (1/MI, VHR) | (SLI, VSR) | (STI, VHR) |
C4 | (1/SLI, VSR) | (VSTI, FR) | (MI, VHR) | (EI, CR) | (STI, FR) | (CI, VSR) |
C5 | (1/VSTI, VHR) | (MI, SR) | (1/SLI, VSR) | (1/STI, FR) | (EI, CR) | (STI, WR) |
C6 | (1/CI, VSR) | (1/MI, FR) | (1/STI, VHR) | (1/CI, VSR) | (1/STI, WR) | (EI, CR) |
Table 7
DM2 | C1 | C2 | C3 | C4 | C5 | C6 |
C1 | (EI, CR) | (VSTI, VHR) | (MI, FR) | (EI, SR) | (STI, SR) | (VSTI, HR) |
C2 | (1/VSTI, VHR) | (EI, CR) | (1/STI, VHR) | (1/CI, HR) | (1/SLI, VSR) | (SLI, VSR) |
C3 | (1/MI, FR) | (STI, VHR) | (EI, CR) | (1/STI, FR) | (MI, FR) | (MI, HR) |
C4 | (EI, SR) | (CI, HR) | (STI, FR) | (EI, CR) | (VSTI, VHR) | (CI, VHR) |
C5 | (1/STI, SR) | (SLI, VSR) | (1/MI, FR) | (1/VSTI, VHR) | (EI, CR) | (MI, FR) |
C6 | (1/VSTI, HR) | (1/SLI, VSR) | (1/MI, HR) | (1/CI, VHR) | (1/MI, FR) | (EI, CR) |
Table 8
DM3 | C1 | C2 | C3 | C4 | C5 | C6 |
C1 | (EI, CR) | (AI, SR) | (VSTI, VHR) | (MI, WR) | (VSTI, VHR) | (STI, HR) |
C2 | (1/AI, SR) | (EI, CR) | (1/SLI, SR) | (1/STI, VHR) | (EI, VSR) | (1/SLI, SR) |
C3 | (1/VSTI, VHR) | (SLI, SR) | (EI, CR) | (1/MI, VSR) | (MI, FR) | (SLI, FR) |
C4 | (1/MI, WR) | (STI, VHR) | (MI, VSR) | (EI, CR) | (CI, HR) | (VSTI, HR) |
C5 | (1/VSTI, VHR) | (EI, VSR) | (1/MI, FR) | (1/CI, HR) | (EI, CR) | (1/SLI, VSR) |
C6 | (1/STI, HR) | (SLI, SR) | (1/SLI, FR) | (1/VSTI, HR) | (SLI, VSR) | (EI, CR) |
Table 9
Reliability | Technical char. | Performance | Cost factors | Availability | Maintenance |
0.353 | 0.046 | 0.118 | 0.355 | 0.074 | 0.053 |
Table 10
C1 | C2 | C3 | C4 | C5 | C6 | |
A1 | (MG, SR) | (VP, HR) | (VG, SR) | (F, HR) | (MG, FR) | (P, SR) |
A2 | (VG, FR) | (F, VHR) | (P, SU) | (G, VHR) | (P, WR) | (VG, SR) |
A3 | (MG, HR) | (MG, HR) | (G, HR) | (VG, FR) | (MP, SU) | (G, HR) |
A4 | (G, HR) | (G, SR) | (F, WR) | (P, SR) | (VG, HR) | (F, SU) |
A5 | (P, SR) | (VG, HR) | (VP, FR) | (G, HR) | (MG, HR) | (VG, HR) |
Table 11
C1 | C2 | C3 | C4 | C5 | C6 | |
A1 | (F, VHR) | (MP, VHR) | (MG, HR) | (G, SR) | (MG, SR) | (F, FR) |
A2 | (G, SR) | (G, WR) | (F, VWR) | (G, WR) | (P, HR) | (G, FR) |
A3 | (MP, SU) | (G, VSR) | (VG, FR) | (G, HR) | (G, HR) | (MG, SR) |
A4 | (VG, FR) | (VG, HR) | (G, HR) | (VP, HR) | (VG, SU) | (G, HR) |
A5 | (F, HR) | (G, SR) | (P, HR) | (MG, FR) | (MG, VHR) | (G, VSR) |
Table 12
C1 | C2 | C3 | C4 | C5 | C6 | |
A1 | (MP, HR) | (F, SR) | (G, FR) | (MG, SU) | (G,SU) | (MP, HR) |
A2 | (MG, WR) | (MG, FR) | (MP, HR) | (VG, FR) | (VP, VHR) | (VG, VHR) |
A3 | (G, FR) | (MG, SR) | (G, SR) | (G, SR) | (F, SU) | (F, WR) |
A4 | (F, HR) | (VG, FR) | (MG, FR) | (P, WR) | (G, SR) | (MG, SR) |
A5 | (MP, VHR) | (G, FR) | (F, CR) | (MG, SU) | (F, HR) | (G, WR) |
Table 13
Criteria | Z-fuzzy aggregated evaluations | |
A1 | Reliability | ((2.47,4.72, 4.72, 6.80), (0.59, 0.70, 0.80)) |
Technical characteristics | ((0.91, 1.96, 1.96, 3.27), (0.59, 0.70, 0.80)) | |
Performance | ((6.80, 8.57, 8.57, 9.65), (0.52, 0.62, 0.72)) | |
Cost factors | ((4.72, 6.80, 6.80, 8.57), (0.33, 0.46, 0.57)) | |
Availability | ((5.59, 7.61, 7.61, 9.32), (0.30, 0.43, 0.55)) | |
Maintenance | ((1.14, 2.47, 2.47, 4.72), (0.52, 0.62, 0.72)) | |
A2 | Reliability | ((6.80, 8.57, 8.57, 9.65), (0.44, 0.54, 0.65)) |
Technical characteristics | ((4.72, 6.80, 6.80, 8.57), (0.42, 0.52, 0.62)) | |
Performance | ((1.14, 2.47, 2.47, 4.72), (0.22, 0.33, 0.44)) | |
Cost factors | ((7.61, 9.32, 9.32, 10.00), (0.42, 0.52, 0.62)) | |
Availability | ((0.40, 0.79, 0.79, 2.08), (0.45, 0.55, 0.65)) | |
Maintenance | ((8.28, 9.65, 9.65, 10.00), (0.55, 0.65, 0.76)) | |
A3 | Reliability | ((3.27, 5.74, 5.74, 7.66), (0.27, 0.39, 0.50)) |
Technical characteristics | ((5.59, 7.61, 7.61, 9.32), (0.63, 0.73, 0.83)) | |
Performance | ((7.61, 9.32, 9.32, 10.00), (0.52, 0.62, 0.72)) | |
Cost factors | ((7.61, 9.32, 9.32, 10.00), (0.52, 0.62, 0.72)) | |
Availability | ((2.76, 5.13, 5.13, 7.05), (0.17, 0.29, 0.40)) | |
Maintenance | ((4.72, 6.80, 6.80, 8.57), (0.47, 0.58, 0.68)) | |
A4 | Reliability | ((5.74, 7.66, 7.66, 8.88), (0.46, 0.56, 0.66) |
Technical characteristics | ((8.28, 9.65, 9.65, 10.00), (0.52, 0.62, 0.72)) | |
Performance | ((4.72, 6.80, 6.80, 8.57), (0.39, 0.49, 0.59)) | |
Cost factors | ((0.40, 0.79, 0.79, 2.08), (0.47, 0.58, 0.68)) | |
Availability | ((8.28, 9.65, 9.65, 10.00), (0.33, 0.46, 0.57)) | |
Maintenance | ((4.72, 6.80, 6.80, 8.57), (0.33, 0.46, 0.57)) | |
A5 | Reliability | ((1.14, 2.47, 2.47, 4.72), (0.59, 0.70, 0.80)) |
Technical characteristics | ((7.61, 9.32, 9.32, 10.00), (0.52, 0.62, 0.72)) | |
Performance | ((0.72, 1.36, 1.36, 2.76), (0.54, 0.65, 0.75)) | |
Cost factors | ((5.59, 7.61, 7.61, 9.32), (0.27, 0.39, 0.50)) | |
Availability | ((4.22, 6.26, 6.26, 8.28), (0.53, 0.63, 0.73)) | |
Maintenance | ((7.61, 9.32, 9.32, 10.00), (0.47, 0.58, 0.68)) |
Table 14
Criteria | Z-fuzzy average values |
Reliability | ((3.88, 5.83, 5.83, 7.54), (0.47, 0.58, 0,68)) |
Technical characteristics | ((5.42, 7.07, 7.07, 8.23), (0.53, 0.64, 0.74)) |
Performance | ((4.2, 5.7, 5.7, 7.14), (0.44, 0.54, 0.65)) |
Cost factors | ((5.19, 6.77, 6.77, 7.99), (0.4, 0.51, 0.62)) |
Availability | ((4.25, 5.89, 5.89, 7.35), (0.36, 0.47, 0.58)) |
Maintenance | ((5.29, 7.01, 7.01, 8.37), (0.47, 0.58, 0.68)) |
Table 15
Criteria | Z-fuzzy $\widetilde{\textit{PDA}}$ values | |
A1 | Reliability | ((0, 0, 0, 0), (−0.127, 0.203, 0.684)) |
Technical characteristics | ((0, 0, 0, 0), (−0.195, 0.092, 0.488)) | |
Performance | ((−0.047, 0.503, 0.503, 1.299), (−0.196, 0.145, 0.652)) | |
Cost factors | ((0, 0, 0, 0), (−0.279, 0.108, 0.73)) | |
Availability | ((−0.238, 0.292, 0.292, 1.194), (0, 0, 0)) | |
Maintenance | ((0.069, 0.648, 0.648, 1.365), (0, 0, 0)) | |
A2 | Reliability | ((−0.098, 0.47, 0.47, 1.485), (0, 0, 0)) |
Technical characteristics | ((0, 0, 0, 0), (0, 0, 0)) | |
Performance | ((0, 0, 0, 0), (0, 0, 0)) | |
Cost factors | ((0, 0, 0, 0), (0, 0, 0)) | |
Availability | ((0, 0, 0, 0), (−0.228, 0.169, 0.836)) | |
Maintenance | ((0, 0, 0, 0), (0, 0, 0)) | |
A3 | Reliability | ((0, 0, 0, 0), (0, 0, 0)) |
Technical characteristics | ((−0.321, 0.077, 0.077, 0.719), (−0.152, 0.141, 0.547)) | |
Performance | ((0.066, 0.634, 0.634, 1.381), (−0.196, 0.145, 0.652)) | |
Cost factors | ((0, 0, 0, 0), (0, 0, 0)) | |
Availability | ((0, 0, 0, 0), (0, 0, 0)) | |
Maintenance | ((−0.392, 0.029, 0.029, 0.69), (−0.311, 0.001, 0.45)) | |
A4 | Reliability | ((−0.239, 0.314, 0.314, 1.285), (0, 0, 0)) |
Technical characteristics | ((0.005, 0.366, 0.366, 0.844), (0, 0, 0)) | |
Performance | ((−0.339, 0.193, 0.193, 1.041), (0, 0, 0)) | |
Cost factors | ((0.389, 0.883, 0.883, 1.465), (0, 0, 0)) | |
Availability | ((0.127, 0.639, 0.639, 1.354), (0, 0, 0)) | |
Maintenance | ((−0.392, 0.029, 0.029, 0.69), (−0.155, 0.207, 0.759)) | |
A5 | Reliability | ((0, 0, 0, 0), (−0.127, 0.203, 0.684)) |
Technical characteristics | ((−0.075, 0.318, 0.318, 0.844), (0, 0, 0)) | |
Performance | ((0, 0, 0, 0), (−0.159, 0.191, 0.711)) | |
Cost factors | ((0, 0, 0, 0), (−0.162, 0.237, 0.869)) | |
Availability | ((−0.426, 0.062, 0.062, 0.948), (−0.085, 0.338, 1.054)) | |
Maintenance | ((0, 0, 0, 0), (−0.311, 0.001, 0.45)) |
Table 16
Criteria | Z-fuzzy $\widetilde{\textit{NDA}}$ values | |
A1 | Reliability | ((−0.387, 0.191, 0.191, 1.307), (−0.475, −0.203, 0.183)) |
Technical characteristics | ((0.261, 0.723, 0.723, 1.351), (−0.353, −0.092, 0.269)) | |
Performance | ((0, 0, 0, 0), (0, 0, 0)) | |
Cost factors | ((−0.41, 0.005, 0.005, 0.653), (−0.472, −0.108, 0.431)) | |
Availability | ((0, 0, 0, 0), (0, 0, 0)) | |
Maintenance | ((0, 0, 0, 0), (0, 0, 0)) | |
A2 | Reliability | ((0, 0, 0, 0), (0, 0, 0)) |
Technical characteristics | ((−0.383, 0.038, 0.038, 0.648), (−0.117, 0.185, 0.602)) | |
Performance | ((−0.073, 0.568, 0.568, 1.428), (0, 0.391, 0.983)) | |
Cost factors | ((−0.048, 0.377, 0.377, 0.928), (−0.329, 0.011, 0.549)) | |
Availability | ((0.295, 0.865, 0.865, 1.635), (−0.513, −0.169, 0.372)) | |
Maintenance | ((−0.011, 0.377, 0.377, 0.889), (−0.192, 0.133, 0.614)) | |
A3 | Reliability | ((−0.501, 0.016, 0.016, 1.1), (−0.042, 0.323, 0.867)) |
Technical characteristics | ((0, 0, 0, 0), (0, 0, 0)) | |
Performance | ((0, 0, 0, 0), (0, 0, 0)) | |
Cost factors | ((−0.048, 0.377, 0.377, 0.928), (−0.163, 0.21, 0.803)) | |
Availability | ((−0.381, 0.129, 0.129, 1.079), (−0.072, 0.389, 1.15)) | |
Maintenance | ((0, 0, 0, 0), (0, 0, 0)) | |
A4 | Reliability | ((0, 0, 0, 0), (0, 0, 0)) |
Technical characteristics | ((0, 0, 0, 0), (0, 0, 0)) | |
Performance | ((0, 0, 0, 0), (0, 0, 0)) | |
Cost factors | ((0, 0, 0, 0), (0, 0, 0)) | |
Availability | ((0, 0, 0, 0), (0, 0, 0)) | |
Maintenance | ((0, 0, 0, 0), (0, 0, 0)) | |
A5 | Reliability | ((−0.11, 0.577, 0.577, 1.647), (−0.475, −0.203, 0.183)) |
Technical characteristics | ((0, 0, 0, 0), (0, 0, 0)) | |
Performance | ((0.202, 0.762, 0.762, 1.529), (−0.482, −0.191, 0.234)) | |
Cost factors | ((−0.3, 0.124, 0.124, 0.797), (−0.562, −0.237, 0.25)) | |
Availability | ((0, 0, 0, 0), (0, 0, 0)) | |
Maintenance | ((−0.091, 0.33, 0.33, 0.889), (−0.309, −0.001, 0.453)) |
Table 17
Z-fuzzy $\widetilde{\textit{SP}}$ values | |
A1 | ((−0.02, 0.115, 0.115, 0.314), (−0.176, 0.132, 0.601)) |
A2 | ((−0.035, 0.166, 0.166, 0.525), (−0.017, 0.013, 0.062)) |
A3 | ((−0.028, 0.08, 0.08, 0.233), (−0.046, 0.024, 0.126)) |
A4 | ((0.003, 0.513, 0.513, 1.274), (−0.008, 0.011, 0.04)) |
A5 | ((−0.035, 0.019, 0.019, 0.11), (−0.144, 0.204, 0.737)) |
Table 18
Z-fuzzy $\widetilde{\textit{SN}}$ values | |
A1 | ((−0.27, 0.103, 0.103, 0.756), (−0.352, −0.114, 0.23)) |
A2 | ((−0.022, 0.287, 0.287, 0.697), (−0.171, 0.053, 0.399)) |
A3 | ((−0.222, 0.149, 0.149, 0.799), (−0.078, 0.218, 0.677)) |
A4 | ((0, 0, 0, 0), (0, 0, 0)) |
A5 | ((−0.127, 0.355, 0.355, 1.093), (−0.441, −0.179, 0.205)) |
Table 19
Z-fuzzy $\widetilde{\textit{SSP}}$ values | |
A1 | ((0.015, 0.150, 0.150, 0.349), (0, 0.308, 0.777)) |
A2 | ((0, 0.201, 0.201, 0.560), (0.159, 0.189, 0.238)) |
A3 | ((0.007, 0.115, 0.115, 0.268), (0.130, 0.200, 0.302)) |
A4 | ((0.038, 0.549, 0.549, 1.309), (0.168, 0.187, 0.216)) |
A5 | ((0, 0.055, 0.055, 0.145), (0.032, 0.380, 0.913)) |
Table 20
Z-fuzzy $\widetilde{\textit{SSN}}$ values | |
A1 | ((0, 0.373, 0.373, 1.027), (0.089, 0.326, 0.671)) |
A2 | ((0.248, 0.557, 0.557, 0.967), (0.270, 0.494, 0.840)) |
A3 | ((0.048, 0.419, 0.419, 1.069), (0.363, 0.658, 1.118)) |
A4 | ((0.270, 0.270, 0.270, 0.270), (0.441, 0.441, 0.441)) |
A5 | ((0.144, 0.626, 0.626, 1.363), (0, 0.262, 0.646)) |
Table 21
Z-fuzzy $\widetilde{\textit{NSP}}$ values | |
A1 | ((0.012, 0.115, 0.115, 0.267), (0, 0.337, 0.851)) |
A2 | ((0, 0.154, 0.154, 0.428), (0.174, 0.207, 0.261)) |
A3 | ((0.006, 0.088, 0.088, 0.205), (0.142, 0.219, 0.331)) |
A4 | ((0.029, 0.419, 0.419, 1), (0.184, 0.205, 0.237)) |
A5 | ((0, 0.042, 0.042, 0.11), (0.035, 0.416, 1)) |
Table 22
Z-fuzzy $\widetilde{\textit{NSN}}$ values | |
A1 | ((0.247, 0.726, 0.726, 1), (0.4, 0.708, 0.921)) |
A2 | ((0.291, 0.591, 0.591, 0.818), (0.249, 0.558, 0.758)) |
A3 | ((0.216, 0.692, 0.692, 0.965), (0, 0.411, 0.675)) |
A4 | ((0.802, 0.802, 0.802, 0.802), (0.606, 0.606, 0.606)) |
A5 | ((0, 0.541, 0.541, 0.895), (0.422, 0.766, 1)) |
Table 23
Z-fuzzy ${\widetilde{\textit{AS}}_{i}}$ values | |
A1 | ((0.129, 0.421, 0.421, 0.633), (0.200, 0.522, 0.886)) |
A2 | ((0.145, 0.373, 0.373, 0.623), (0.211, 0.382, 0.51)) |
A3 | ((0.111, 0.390, 0.390, 0.585), (0.071, 0.315, 0.503)) |
A4 | ((0.415, 0.610, 0.610, 0.901), (0.395, 0.405, 0.421)) |
A5 | ((0, 0.291, 0.291, 0.503), (0.229, 0.591, 1)) |
Table 24
Trapezoidal fuzzy${\widetilde{\textit{AS}}_{i}}$ values of alternatives | |
A1 | (0.094, 0.307, 0.307, 0.462) |
A2 | (0.089, 0.227, 0.227, 0.380) |
A3 | (0.061, 0.214, 0.214, 0.321) |
A4 | (0.265, 0.389, 0.389, 0.574) |
A5 | (0, 0.226, 0.226, 0.39) |
Table 25
Alternative | Crisp ${\textit{AS}_{i}}$ |
A1 | 0.2926 |
A2 | 0.2306 |
A3 | 0.2024 |
A4 | 0.4044 |
A5 | 0.2106 |
Table 26
Alternative | Crisp ${\textit{AS}_{i}}$ |
A1 | 0.2431 |
A2 | 0.2751 |
A3 | 0.3071 |
A4 | 0.5332 |
A5 | 0.2220 |
Table 27
Reliability | Technical char. | Performance | Cost factors | Availability | Maintenance |
0.396 | 0.049 | 0.119 | 0.328 | 0.066 | 0.042 |
7 Comparative Analysis Using Z-Fuzzy AHP&TOPSIS Methodology
Table 28
${d^{\ast }}$ | ${d^{-}}$ | CC* | |
A1 | 5.5530 | 1.4140 | 0.2030 |
A2 | 5.5551 | 1.3976 | 0.2010 |
A3 | 5.5572 | 1.3945 | 0.2006 |
A4 | 5.4034 | 1.5714 | 0.2253 |
A5 | 5.6267 | 1.3523 | 0.1938 |
Table 29
Alternatives | Ranking of Z-fuzzy EDAS | Ranking of Z-fuzzy TOPSIS |
A1 | 2 | 2 |
A2 | 3 | 3 |
A3 | 5 | 4 |
A4 | 1 | 1 |
A5 | 4 | 5 |