1 Introduction
2 Digital Transformation Era and Strategies
2.1 Literature Review
2.2 The Technological Enablers of DSC
2.3 Key Challenges and Opportunities of Digital Supply Chain
Table 1
Sharing information | DSC provides sharing information about demand, manufacturing, inventories, and logistics capacity, and thus it enables much closer integration with customers by boosting the agility of the entire chain (Raab and Griffin-Cryan, 2011; Alicke et al., 2016; Schrauf and Berttram, 2016; Xu, 2014; Ivanov et al., 2019; WTO, 2019). |
Cross-functional relationship | Inter-functional cooperation between various elements in the organization provides to ensure the elimination of various bottlenecks, delays, or interruptions in the processes and to create a smooth flow within the organization (Raab and Griffin-Cryan, 2011; The Center for Global Enterprise, 2015; Farahani et al., 2020; Alicke et al., 2016; Schrauf and Berttram, 2016; Xu, 2014). |
Adoption of advanced analytical tools | Adoption of advanced analytical tools provide to gain a better understanding and forecasting of the demand and accelerate the decision-making process (The Center for Global Enterprise, 2015; Farahani et al., 2020; Schrauf and Berttram, 2016; Xu, 2014; Kearney, 2015; Gezgin et al., 2017). |
Supply chain visibility | Real-time visibility in the supply chain improves better DSC management by creating a coordinated end-to-end supply chain (Raab and Griffin-Cryan, 2011; Farahani et al., 2020; Agrawal and Narain, 2018; Schrauf and Berttram, 2016). |
Financial approach | Financial measurements enable quick execution of digital transformation efforts with less cost (The Center for Global Enterprise, 2015; Schrauf and Berttram, 2016; Kearney, 2015; Gezgin et al., 2017). |
Customer orientation | Customer orientation aims to offer personalized products by meeting customer expectations through end-to-end connectivity between suppliers and customers through cloud-based platforms (Alicke et al., 2016; Schrauf and Berttram, 2016; Xu, 2014; Kearney, 2015; Gezgin et al., 2017). |
Training and skills development | DSC requires providing employees with the necessary digital supply chain management skills to ensure an end-to-end understanding of value chain mechanics in digital transformation (Schrauf and Berttram, 2016; Xu, 2014; Luthra and Mangla, 2018; Gezgin et al., 2017). |
Digital culture | Digital culture is necessary for the adoption of a cultural change in the thinking of each member in the organization to realize end-to-end digital transformation (Schrauf and Berttram, 2016; Luthra and Mangla, 2018). |
Innovation | Digital supply chain helps a company strengthen business models through innovations in its designs and collaborates more effectively with both suppliers and customers (Farahani et al., 2020; Alicke et al., 2016; Schrauf and Berttram, 2016). |
Standardization | Identify the roles, duties and responsibilities of all parties in the digital supply chain and ensure that the terms of all agreements are clearly defined and agreed upon, as well as adopt a single set of global standards that support data exchange, processes and capabilities (Farahani et al., 2020; Xu, 2014; Luthra and Mangla, 2018; Kearney, 2015). |
Automation | Automated operations facilitate the work of supply chain professionals and increase operational efficiency by allowing them to focus on more valuable tasks (Farahani et al., 2020; Alicke et al., 2016; Schrauf and Berttram, 2016; Xu, 2014; Kearney, 2015; Gezgin et al., 2017). |
Integration | Integration enables simultaneous management of information and processes with all stakeholders in digital supply chain (The Center for Global Enterprise, 2015; Farahani et al., 2020; Alicke et al., 2016; Schrauf and Berttram, 2016; Xu, 2014; Kearney, 2015; Gezgin et al., 2017). |
Flexibility | Digitalization in the supply chain allows easy adaptation to change circumstances and quickly assess changes in end-customer demand (Raab and Griffin-Cryan, 2011; Farahani et al., 2020; Alicke et al., 2016; Schrauf and Berttram, 2016; Kearney, 2015). |
Enhanced response management | DSC increases the speed of responding to highly variable markets and changing customer needs (Farahani et al., 2020; Alicke et al., 2016; Schrauf and Berttram, 2016; Xu, 2014). |
Security and privacy | Security and privacy stand for the tools used to transform a factory into a smarter factor and a supply chain into smarter value chains by avoiding security vulnerabilities increasing with digitalization in the supply chain (The Center for Global Enterprise, 2015; Luthra and Mangla, 2018; Kearney, 2015). |
3 Preliminaries: Intuitionistic, Pythagorean, and Fermatean Fuzzy Sets
3.1 Intuitionistic Fuzzy Sets (IFSs)
Definition 3.1.
(1)
\[ I=\big\{\big(x,{\mu _{I}}(x),{\nu _{I}}(x)\big)\hspace{0.1667em}\big|\hspace{0.1667em}x\epsilon X\big\},\]Definition 3.2.
3.2 Pythagorean Fuzzy Sets (PFSs)
Definition 3.3.
(6)
\[ P=\big\{\big\langle x,{\mu _{P}}(x),{\nu _{P}}(x)\big\rangle \hspace{0.1667em}\big|\hspace{0.1667em}x\epsilon X\big\},\]Definition 3.4.
3.3 Fermatean Fuzzy Sets (FFSs)
Definition 3.5.
(11)
\[ \mathcal{F}=\big\{\big\langle x,{\mu _{F}}(x),{\nu _{F}}(x)\big\rangle \hspace{0.1667em}\big|\hspace{0.1667em}x\epsilon X\big\},\]Definition 3.6.
Definition 3.7.
(16)
\[\begin{aligned}{}& {\mathcal{F}_{1}}\oplus {\mathcal{F}_{2}}=\Big(\sqrt[3]{{\mu _{F1}^{3}}+{\mu _{F2}^{3}}-{\mu _{F1}^{3}}{\mu _{F2}^{3}}},{\nu _{F1}}{\nu _{F2}}\Big),\end{aligned}\](17)
\[\begin{aligned}{}& {\mathcal{F}_{1}}\otimes {\mathcal{F}_{2}}=\Big({\mu _{F1}}{\mu _{F2}},\sqrt[3]{{\nu _{F1}^{3}}+{\nu _{F2}^{3}}-{\nu _{F1}^{3}}{\nu _{F2}^{3}}}\hspace{0.1667em}\Big),\end{aligned}\]Definition 3.8.
Definition 3.9.
3.4 Interval-Valued Fermatean Fuzzy Sets (IVFFSs)
Definition 3.10.
(22)
\[ \tilde{\mathcal{F}}=\big\{\big\langle x,{\mu _{\tilde{\mathcal{F}}}}(x),{\nu _{\tilde{\mathcal{F}}}}(x)\big\rangle \hspace{0.1667em}\big|\hspace{0.1667em}x\epsilon X\big\},\](25)
\[ 0\leqslant {\big({\mu _{\tilde{\mathcal{F}}}^{U}}(x)\big)^{3}}+{\big({\upsilon _{\tilde{\mathcal{F}}}^{U}}(x)\big)^{3}}\leqslant 1.\]Definition 3.11.
(26)
\[\begin{aligned}{}& {\tilde{\mathcal{F}}_{1}}\oplus {\tilde{\mathcal{F}}_{2}}=\Bigg(\Bigg[\begin{array}{l}\sqrt[3]{{({\mu _{{\tilde{\mathcal{F}}_{1}}}^{L}})^{3}}+{({\mu _{{\tilde{\mathcal{F}}_{2}}}^{L}})^{3}}-{({\mu _{{\tilde{\mathcal{F}}_{1}}}^{L}})^{3}}{({\mu _{{\tilde{\mathcal{F}}_{2}}}^{L}})^{3}}},\\ {} \sqrt[3]{{({\mu _{{\tilde{\mathcal{F}}_{1}}}^{U}})^{3}}+{({\mu _{{\tilde{\mathcal{F}}_{2}}}^{U}})^{3}}-{({\mu _{{\tilde{\mathcal{F}}_{1}}}^{U}})^{3}}{({\mu _{{\tilde{\mathcal{F}}_{2}}}^{U}})^{3}}}\end{array}\Bigg],\big[{\upsilon _{{\tilde{\mathcal{F}}_{1}}}^{L}}{\upsilon _{{\tilde{\mathcal{F}}_{2}}}^{L}},{\upsilon _{{\tilde{\mathcal{F}}_{1}}}^{U}}{\upsilon _{{\tilde{\mathcal{F}}_{2}}}^{U}}\big]\Bigg),\end{aligned}\](27)
\[\begin{aligned}{}& {\tilde{\mathcal{F}}_{1}}\otimes {\tilde{\mathcal{F}}_{2}}=\Bigg(\big[{\mu _{{\tilde{\mathcal{F}}_{1}}}^{L}}{\mu _{{\tilde{\mathcal{F}}_{2}}}^{L}},{\mu _{{\tilde{\mathcal{F}}_{1}}}^{U}}{\mu _{{\tilde{\mathcal{F}}_{2}}}^{U}}\big],\Bigg[\begin{array}{l}\sqrt[3]{{({\upsilon _{{\tilde{\mathcal{F}}_{1}}}^{L}})^{3}}+{({\upsilon _{{\tilde{\mathcal{F}}_{2}}}^{L}})^{3}}-{({\upsilon _{{\tilde{\mathcal{F}}_{1}}}^{L}})^{3}}{({\upsilon _{{\tilde{\mathcal{F}}_{2}}}^{L}})^{3}}},\\ {} \sqrt[3]{{({\upsilon _{{\tilde{\mathcal{F}}_{1}}}^{U}})^{3}}+{({\upsilon _{{\tilde{\mathcal{F}}_{2}}}^{U}})^{3}}-{({\upsilon _{{\tilde{\mathcal{F}}_{1}}}^{U}})^{3}}{({\upsilon _{{\tilde{\mathcal{F}}_{2}}}^{U}})^{3}}}\end{array}\Bigg]\Bigg),\end{aligned}\](28)
\[\begin{aligned}{}& \lambda \tilde{\mathcal{F}}=\Big(\Big[\sqrt[3]{1-{\big(1-{\big({\mu _{\tilde{\mathcal{F}}}^{L}}\big)^{3}}\big)^{\lambda }}},\sqrt[3]{1-{\big(1-{\big({\mu _{\tilde{\mathcal{F}}}^{U}}\big)^{3}}\big)^{\lambda }}}\Big],\big[{\big({\upsilon _{\tilde{\mathcal{F}}}^{L}}\big)^{\lambda }},{\big({\upsilon _{\tilde{\mathcal{F}}}^{U}}\big)^{\lambda }}\big]\Big),\end{aligned}\](29)
\[\begin{aligned}{}& {\tilde{\mathcal{F}}^{\lambda }}=\Big(\big[{\big({\mu _{\tilde{\mathcal{F}}}^{L}}\big)^{\lambda }},{\big({\mu _{\tilde{\mathcal{F}}}^{U}}\big)^{\lambda }}\big],\Big[\sqrt[3]{1-{\big(1-{\big({\upsilon _{\tilde{\mathcal{F}}}^{L}}\big)^{3}}\big)^{\lambda }}},\sqrt[3]{1-{\big(1-{\big({\upsilon _{\tilde{\mathcal{F}}}^{U}}\big)^{3}}\big)^{\lambda }}}\hspace{0.1667em}\Big]\Big).\end{aligned}\]Definition 3.12.
(30)
\[\begin{aligned}{}& \textit{IVFFWA}({\tilde{\mathcal{F}}_{1}},{\tilde{\mathcal{F}}_{2}},\dots ,{\tilde{\mathcal{F}}_{n}})\\ {} & \hspace{1em}=\Bigg(\Bigg[\sqrt[3]{\Bigg(1-{\prod \limits_{i=1}^{n}}{\big(1-{\big({\mu _{{\tilde{\mathcal{F}}_{i}}}^{L}}\big)^{3}}\big)^{{w_{i}}}}\Bigg),}\sqrt[3]{\Bigg(1-{\prod \limits_{i=1}^{n}}{\big(1-{\big({\mu _{{\tilde{\mathcal{F}}_{i}}}^{U}}\big)^{3}}\big)^{{w_{i}}}}\Bigg)}\Bigg],\\ {} & \hspace{2em}\times \Bigg[{\prod \limits_{i=1}^{n}}{\big({\upsilon _{{\tilde{\mathcal{F}}_{i}}}^{L}}\big)^{{w_{i}}}},{\prod \limits_{i=1}^{n}}{\big({\upsilon _{{\tilde{\mathcal{F}}_{i}}}^{U}}\big)^{{w_{i}}}}\Bigg]\Bigg).\end{aligned}\]Definition 3.13.
(31)
\[\begin{aligned}{}& \textit{IVFFWG}({\tilde{\mathcal{F}}_{1}},{\tilde{\mathcal{F}}_{2}},\dots ,{\tilde{\mathcal{F}}_{n}})\\ {} & \hspace{1em}=\Bigg(\Bigg[{\prod \limits_{i=1}^{n}}{\big({\mu _{i}^{L}}\big)^{{w_{i}}}},{\prod \limits_{i=1}^{n}}{\big({\mu _{i}^{U}}\big)^{{w_{i}}}}\Bigg],\\ {} & \hspace{2em}\times \Bigg[\sqrt[\mathbf{3}]{\Bigg(1-{\prod \limits_{i=1}^{n}}{\big(1-{\big({\upsilon _{{\tilde{\mathcal{F}}_{i}}}^{L}}\big)^{3}}\big)^{{w_{i}}}}\Bigg)},\sqrt[3]{\Bigg(1-{\prod \limits_{i=1}^{n}}{\big(1-{\big({\upsilon _{{\tilde{\mathcal{F}}_{i}}}^{U}}\big)^{3}}\big)^{{w_{i}}}}\Bigg)}\Bigg]\Bigg).\end{aligned}\]Definition 3.14.
(32)
\[ \mathrm{Deff}({\tilde{\mathcal{F}}_{i}})=\left\{\begin{array}{l}\frac{1+|{({\mu _{i}^{L}})^{3}}-{({\nu _{i}^{L}})^{3}}|+1+|{({\mu _{i}^{U}})^{3}}-{({\nu _{i}^{U}})^{3}}|-{({\pi _{ij}^{L}})^{3}}-{({\pi _{ij}^{U}})^{3}}}{4}\times 10,\\ {} \hspace{1em}\textit{EI}\leqslant \textit{IVFFN}\leqslant \textit{CHI},\\ {} \frac{1}{\big(\frac{1+|{({\mu _{ij}^{{L^{\phantom{M}}}}})^{3}}-{({\nu _{ij}^{L}})^{3}}|+1+|{({\mu _{ij}^{U}})^{3}}-{({\nu _{ij}^{U}})^{3}}|-{({\pi _{ij}^{L}})^{3}}-{({\pi _{ij}^{U}})^{3}}}{4}\times 10\big)},\\ {} \hspace{1em}\textit{SLI}\leqslant \textit{IVFFN}\leqslant \textit{CLI}.\end{array}\right.\]4 A Novel Fermatean Fuzzy Analytic Hierarchy Process Method
4.1 Proposed Method: IVFF-AHP
(33)
\[ Z=\left[\begin{array}{c@{\hskip4.0pt}c@{\hskip4.0pt}c@{\hskip4.0pt}c}1\hspace{1em}& {z_{12}}\hspace{1em}& \cdots \hspace{1em}& {z_{1m}}\\ {} {z_{21}}\hspace{1em}& 1\hspace{1em}& \cdots \hspace{1em}& {z_{2m}}\\ {} \vdots \hspace{1em}& \vdots \hspace{1em}& \ddots \hspace{1em}& \vdots \\ {} {z_{m1}}\hspace{1em}& {z_{m2}}\hspace{1em}& \cdots \hspace{1em}& 1\end{array}\right],\hspace{1em}\text{where}\hspace{2.5pt}{z_{ij}}=\left\langle \big[{\mu _{ij}^{L}},{\mu _{ij}^{U}}\big],\big[{\nu _{ij}^{L}},{\nu _{ij}^{U}}\big]\right\rangle .\]Table 2
Linguistic terms | IVFFN equivalents | |||
${\mu _{L}}$ | ${\mu _{U}}$ | ${\nu _{L}}$ | ${\upsilon _{U}}$ | |
Certainly High Importance (CHI) | 0.95 | 1 | 0 | 0 |
Very High Importance (VHI) | 0.8 | 0.9 | 0.1 | 0.2 |
High Importance (HI) | 0.7 | 0.8 | 0.2 | 0.3 |
Slightly More Importance (SMI) | 0.6 | 0.65 | 0.35 | 0.4 |
Equally Importence (EI) | 0.5 | 0.5 | 0.5 | 0.5 |
Slightly Less Importance (SLI) | 0.35 | 0.4 | 0.6 | 0.65 |
Low Importance (LI) | 0.2 | 0.3 | 0.7 | 0.8 |
Very Low Importance (VLI) | 0.1 | 0.2 | 0.8 | 0.9 |
Certainly Low Importance (CLI) | 0 | 0 | 0.95 | 1 |
(34)
\[\begin{aligned}{}& \textit{IVPFWG}({z_{1}},{z_{2}},\dots ,{z_{k}})\\ {} & \hspace{1em}=\Bigg(\Bigg[{\prod \limits_{k=1}^{K}}{\big({\mu _{k}^{L}}\big)^{{w_{k}}}},{\prod \limits_{k=1}^{K}}{\big({\mu _{k}^{U}}\big)^{{w_{k}}}}\Bigg],\\ {} & \hspace{2em}\times \Bigg[\sqrt[3]{\Bigg(1-{\prod \limits_{k=1}^{K}}{\big(1-{\big({\upsilon _{k}^{L}}\big)^{3}}\big)^{{w_{k}}}}\Bigg)},\sqrt[3]{\Bigg(1-{\prod \limits_{k=1}^{K}}{\big(1-{\big({\upsilon _{k}^{U}}\big)^{3}}\big)^{{w_{k}}}}\Bigg)}\Bigg]\Bigg).\end{aligned}\]5 Application
5.1 Problem Definition
5.2 Problem Solution
Table 3
E1 | E2 | E3 | |||||||
DC | $\text{O}$ | $\text{M}$ | DC | $\text{O}$ | $\text{M}$ | DC | $\text{O}$ | $\text{M}$ | |
DC | EI | SMI | SLI | EI | SMI | SLI | EI | HI | SLI |
O | SLI | EI | LI | SLI | EI | VLI | LI | EI | VLI |
M | SMI | HI | EI | SMI | VHI | EI | SMI | VHI | EI |
CR | 0.033 | 0.006 | 0.056 |
Table 4
E1 | E2 | E3 | |||||||||||||
DC1 | DC2 | DC3 | DC4 | DC5 | DC1 | DC2 | DC3 | DC4 | DC5 | DC1 | DC2 | DC3 | DC4 | DC5 | |
DC1 | EI | VHI | HI | VHI | SMI | EI | HI | SMI | VHI | SMI | EI | HI | SMI | VHI | EI |
DC2 | VLI | EI | LI | SMI | LI | LI | EI | LI | EI | LI | LI | EI | SLI | SMI | VLI |
DC3 | LI | HI | EI | HI | SLI | SLI | HI | EI | VHI | EI | SLI | SMI | EI | HI | SLI |
DC4 | VLI | SLI | LI | EI | VLI | VLI | EI | VLI | EI | VLI | VLI | SLI | LI | EI | VLI |
DC5 | SLI | HI | SMI | VHI | EI | SLI | HI | EI | VHI | EI | EI | VHI | SMI | VHI | EI |
CR | 0.098 | 0.047 | 0.035 |
Table 5
E1 | E2 | E3 | ||||||||||
O1 | O2 | O3 | O4 | O1 | O2 | O3 | O4 | O1 | O2 | O3 | O4 | |
O1 | EI | HI | EI | HI | EI | HI | SLI | VHI | EI | SMI | SLI | HI |
O2 | LI | EI | LI | SLI | LI | EI | LI | SMI | SLI | EI | LI | SMI |
O3 | EI | HI | EI | HI | SMI | HI | EI | VHI | SMI | HI | EI | VHI |
O4 | LI | SMI | LI | EI | VLI | SLI | VLI | EI | LI | SLI | VLI | EI |
CR | 0.059 | 0.086 | 0.044 |
Table 6
E1 | E2 | E3 | ||||||||||||||||
M1 | M2 | M3 | M4 | M5 | M6 | M1 | M2 | M3 | M4 | M5 | M6 | M1 | M2 | M3 | M4 | M5 | M6 | |
M1 | EI | SMI | CHI | EI | VHI | HI | EI | SMI | CHI | EI | HI | SMI | EI | EI | VHI | SLI | HI | SMI |
M2 | SLI | EI | VHI | SLI | HI | HI | SLI | EI | VHI | EI | HI | SMI | EI | EI | VHI | SLI | VHI | HI |
M3 | CLI | VLI | EI | VLI | SLI | SLI | CLI | VLI | EI | VLI | SLI | LI | VLI | VLI | EI | CLI | SLI | SLI |
M4 | EI | SMI | VHI | EI | VHI | HI | EI | EI | VHI | EI | VHI | HI | SMI | SMI | CHI | EI | HI | SMI |
M5 | VLI | LI | SMI | VLI | EI | SLI | LI | LI | SMI | VLI | EI | SLI | LI | VLI | SMI | LI | EI | EI |
M6 | LI | LI | SMI | LI | SMI | EI | SLI | SLI | HI | LI | SMI | EI | SLI | LI | SMI | SLI | EI | EI |
CR | 0.055 | 0.046 | 0.05 |
Table 7
DC1 | E1 | E2 | E3 | |||||||||
A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | |
A1 | EI | VHI | HI | EI | EI | HI | HI | SMI | EI | VHI | HI | SLI |
A2 | VLI | EI | LI | LI | LI | EI | SLI | LI | VLI | EI | SLI | VLI |
A3 | LI | HI | EI | SLI | LI | SMI | EI | SLI | LI | SMI | EI | LI |
A4 | EI | HI | SMI | EI | SLI | HI | SMI | EI | SMI | VHI | HI | EI |
CR | 0.079 | 0.075 | 0.086 |
Table 8
DC2 | E1 | E2 | E3 | |||||||||
A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | |
A1 | EI | SLI | LI | CLI | EI | SLI | LI | CLI | EI | LI | SLI | CLI |
A2 | SMI | EI | SLI | VLI | SMI | EI | LI | VLI | HI | EI | SMI | LI |
A3 | HI | SMI | EI | LI | HI | HI | EI | SLI | SMI | SLI | EI | VLI |
A4 | CHI | VHI | HI | EI | CHI | VHI | SMI | EI | CHI | HI | VHI | EI |
CR | 0.064 | 0.067 | 0.064 |
Table 9
DC3 | E1 | E2 | E3 | |||||||||
A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | |
A1 | EI | VLI | VLI | CLI | EI | LI | LI | CLI | EI | VLI | VLI | CLI |
A2 | VHI | EI | EI | LI | HI | EI | SMI | SLI | VHI | EI | EI | LI |
A3 | VHI | EI | EI | LI | HI | SLI | EI | SLI | VHI | EI | EI | SLI |
A4 | CHI | HI | HI | EI | CHI | SMI | SMI | EI | CHI | HI | SMI | EI |
CR | 0.09 | 0.071 | 0.068 |
Table 10
DC4 | E1 | E2 | E3 | |||||||||
A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | |
A1 | EI | SLI | LI | LI | EI | LI | LI | VLI | EI | SLI | LI | LI |
A2 | SMI | EI | SLI | LI | HI | EI | SLI | LI | SMI | EI | LI | LI |
A3 | HI | SMI | EI | SLI | HI | SMI | EI | SLI | HI | HI | EI | EI |
A4 | HI | HI | SMI | EI | VHI | HI | SMI | EI | HI | HI | EI | EI |
CR | 0.075 | 0.093 | 0.059 |
Table 11
DC5 | E1 | E2 | E3 | |||||||||
A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | |
A1 | EI | VLI | VLI | LI | EI | CLI | CLI | VLI | EI | LI | VLI | VLI |
A2 | VHI | EI | EI | SMI | CHI | EI | EI | HI | HI | EI | SLI | SLI |
A3 | VHI | EI | EI | SMI | CHI | EI | EI | HI | VHI | SMI | EI | EI |
A4 | HI | SLI | SLI | EI | VHI | LI | LI | EI | VHI | SMI | EI | EI |
CR | 0.028 | 0.093 | 0.028 |
Table 12
O1 | E1 | E2 | E3 | |||||||||
A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | |
A1 | EI | LI | SLI | HI | EI | VLI | LI | SMI | EI | VLI | VLI | HI |
A2 | HI | EI | SMI | CHI | VHI | EI | SMI | VHI | VHI | EI | EI | CHI |
A3 | SMI | SLI | EI | VHI | HI | SLI | EI | HI | VHI | EI | EI | CHI |
A4 | LI | CLI | VLI | EI | SLI | VLI | LI | EI | LI | CLI | CLI | EI |
CR | 0.065 | 0.088 | 0.094 |
Table 13
O2 | E1 | E2 | E3 | |||||||||
A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | |
A1 | EI | SLI | SLI | HI | EI | LI | SLI | HI | EI | SLI | LI | HI |
A2 | SMI | EI | EI | CHI | HI | EI | SMI | CHI | SMI | EI | SLI | VHI |
A3 | SMI | EI | EI | CHI | SMI | SLI | EI | VHI | HI | SMI | EI | VHI |
A4 | LI | CLI | CLI | EI | LI | CLI | VLI | EI | LI | VLI | VLI | EI |
CR | 0.012 | 0.065 | 0.091 |
Table 14
O3 | E1 | E2 | E3 | |||||||||
A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | |
A1 | EI | SLI | EI | HI | EI | SLI | SMI | HI | EI | SLI | SMI | VHI |
A2 | SMI | EI | SMI | VHI | SMI | EI | SMI | VHI | SMI | EI | HI | VHI |
A3 | EI | SLI | EI | VHI | SLI | SLI | EI | HI | SLI | LI | EI | HI |
A4 | LI | VLI | VLI | EI | LI | VLI | LI | EI | VLI | VLI | LI | EI |
CR | 0.045 | 0.086 | 0.091 |
Table 15
O4 | E1 | E2 | E3 | |||||||||
A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | |
A1 | EI | CHI | HI | HI | EI | VHI | HI | HI | EI | VHI | HI | HI |
A2 | CLI | EI | SLI | SLI | VLI | EI | LI | SLI | VLI | EI | SLI | EI |
A3 | LI | SMI | EI | SMI | LI | HI | EI | SMI | LI | SMI | EI | SMI |
A4 | LI | SMI | SLI | EI | LI | SMI | SLI | EI | LI | EI | SLI | EI |
CR | 0.071 | 0.071 | 0.045 |
Table 16
M1 | E1 | E2 | E3 | |||||||||
A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | |
A1 | EI | CLI | LI | LI | EI | CLI | LI | LI | EI | CLI | LI | VLI |
A2 | CHI | EI | HI | SMI | CHI | EI | SMI | SMI | CHI | EI | HI | SMI |
A3 | HI | LI | EI | SLI | HI | SLI | EI | EI | HI | LI | EI | SLI |
A4 | HI | SLI | SMI | EI | HI | SLI | EI | EI | VHI | SLI | SMI | EI |
CR | 0.07 | 0.012 | 0.065 |
Table 17
M2 | E1 | E2 | E3 | |||||||||
A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | |
A1 | EI | VLI | LI | SLI | EI | CLI | LI | LI | EI | CLI | LI | VLI |
A2 | VHI | EI | HI | HI | CHI | EI | HI | SMI | CHI | EI | HI | SMI |
A3 | HI | LI | EI | SMI | HI | LI | EI | SLI | HI | LI | EI | EI |
A4 | SMI | LI | SLI | EI | HI | SLI | SMI | EI | VHI | SLI | EI | EI |
CR | 0.091 | 0.07 | 0.051 |
Table 18
M3 | E1 | E2 | E3 | |||||||||
A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | |
A1 | EI | LI | VLI | CLI | EI | VLI | VLI | CLI | EI | LI | VLI | CLI |
A2 | HI | EI | EI | VLI | VHI | EI | EI | LI | HI | EI | SLI | VLI |
A3 | VHI | EI | EI | LI | VHI | EI | EI | LI | VHI | SMI | EI | SLI |
A4 | CHI | VHI | HI | EI | CHI | HI | HI | EI | CHI | VHI | SMI | EI |
CR | 0.096 | 0.09 | 0.079 |
Table 19
M4 | E1 | E2 | E3 | |||||||||
A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | |
A1 | EI | VLI | LI | SLI | EI | VLI | VLI | SLI | EI | LI | SLI | SLI |
A2 | VHI | EI | EI | HI | VHI | EI | SMI | SMI | HI | EI | SMI | SMI |
A3 | HI | EI | EI | HI | VHI | SLI | EI | SMI | SMI | SLI | EI | EI |
A4 | SMI | LI | LI | EI | SMI | SLI | SLI | EI | SMI | SLI | EI | EI |
CR | 0.046 | 0.06 | 0.016 |
Table 20
M5 | E1 | E2 | E3 | |||||||||
A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | |
A1 | EI | VLI | LI | SMI | EI | CLI | VLI | SLI | EI | VLI | VLI | SLI |
A2 | VHI | EI | SMI | VHI | CHI | EI | EI | HI | VHI | EI | SMI | HI |
A3 | HI | SLI | EI | HI | VHI | EI | EI | SMI | VHI | SLI | EI | HI |
A4 | SLI | VLI | LI | EI | SMI | LI | SLI | EI | SMI | LI | LI | EI |
CR | 0.088 | 0.015 | 0.086 |
Table 21
M6 | E1 | E2 | E3 | |||||||||
A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | |
A1 | EI | CLI | VLI | LI | EI | CLI | VLI | VLI | EI | VLI | LI | LI |
A2 | CHI | EI | SMI | HI | CHI | EI | SMI | SMI | VHI | EI | SMI | HI |
A3 | VHI | SLI | EI | SMI | VHI | SLI | EI | SMI | HI | SLI | EI | SMI |
A4 | HI | LI | SLI | EI | VHI | SLI | SLI | EI | HI | LI | SLI | EI |
CR | 0.065 | 0.093 | 0.093 |
Table 22
Goal | DC | O | M |
DC | $([0.5,0.5],[0.5,0.5])$ | $([0.632,0.697],[0.315,0.373])$ | $([0.35,0.4],[0.6,0.65])$ |
O | $([0.29,0.363],[0.639,0.71])$ | $([0.5,0.5],[0.5,0.5])$ | $([0.126,0.229],[0.773,0.875])$ |
M | $([0.6,0.65],[0.35,0.4])$ | $([0.765,0.865],[0.149,0.243])$ | $([0.5,0.5],[0.5,0.5])$ |
Table 23
Goal | DC | O | M | |||
DC | 0 | 0 | 0.2 | 0.307 | −0.232 | −0.152 |
O | −0.34 | −0.21 | 0 | 0 | −0.668 | −0.449 |
M | 0.152 | 0.232 | 0.434 | 0.645 | 0 | 0 |
Table 24
Goal | DC | O | M | |||
DC | 1 | 1 | 1.586 | 2.026 | 0.586 | 0.708 |
O | 0.457 | 0.613 | 1 | 1 | 0.215 | 0.355 |
M | 1.419 | 1.705 | 2.714 | 4.412 | 1 | 1 |
Table 26
Main criteria | DC | O | M | ||||||||||||
Weights | 0.316 | 0.167 | 0.517 | ||||||||||||
Sub-criteria | DC1 | DC2 | DC3 | DC4 | DC5 | O1 | O2 | O3 | O4 | M1 | M2 | M3 | M4 | M5 | M6 |
Weights | 0.32 | 0.1 | 0.21 | 0.08 | 0.29 | 0.33 | 0.15 | 0.39 | 0.13 | 0.27 | 0.22 | 0.05 | 0.26 | 0.08 | 0.11 |
Overall | 0.10 | 0.03 | 0.07 | 0.02 | 0.09 | 0.055 | 0.025 | 0.066 | 0.021 | 0.14 | 0.11 | 0.03 | 0.14 | 0.04 | 0.06 |
Table 27
DC1 | DC2 | DC3 | DC4 | DC5 | O1 | O2 | O3 | O4 | |
A1 | 0.353 | 0.092 | 0.071 | 0.121 | 0.074 | 0.153 | 0.186 | 0.277 | 0.461 |
A2 | 0.121 | 0.155 | 0.224 | 0.197 | 0.310 | 0.455 | 0.398 | 0.375 | 0.126 |
A3 | 0.202 | 0.190 | 0.219 | 0.308 | 0.374 | 0.318 | 0.343 | 0.250 | 0.237 |
A4 | 0.324 | 0.564 | 0.487 | 0.375 | 0.242 | 0.074 | 0.073 | 0.099 | 0.176 |
M1 | M2 | M3 | M4 | M5 | M6 | |
A1 | 0.080 | 0.091 | 0.069 | 0.127 | 0.109 | 0.079 |
A2 | 0.499 | 0.467 | 0.185 | 0.374 | 0.435 | 0.437 |
A3 | 0.191 | 0.220 | 0.238 | 0.296 | 0.319 | 0.274 |
A4 | 0.230 | 0.222 | 0.508 | 0.202 | 0.136 | 0.210 |
5.3 Sensitivity Analysis
5.4 Comparative Analysis
Table 31
Main criteria | DC | O | M | ||||||||||||
Weights | 0.203 | 0.08 | 0.717 | ||||||||||||
Sub-criteria | DC1 | DC2 | DC3 | DC4 | DC5 | O1 | O2 | O3 | O4 | M1 | M2 | M3 | M4 | M5 | M6 |
Weights | 0.64 | 0.018 | 0.08 | 0.01 | 0.26 | 0.299 | 0.07 | 0.57 | 0.06 | 0.299 | 0.18 | 0.03 | 0.37 | 0.05 | 0.06 |
Overall | 0.13 | 0.004 | 0.016 | 0.002 | 0.05 | 0.024 | 0.006 | 0.046 | 0.005 | 0.215 | 0.132 | 0.023 | 0.27 | 0.035 | 0.045 |
Table 32
Main criteria | DC | O | M | ||||||||||||
Weights | 0.262 | 0.088 | 0.65 | ||||||||||||
Sub-criteria | DC1 | DC2 | DC3 | DC4 | DC5 | O1 | O2 | O3 | O4 | M1 | M2 | M3 | M4 | M5 | M6 |
Weights | 0.43 | 0.06 | 0.18 | 0.04 | 0.285 | 0.33 | 0.09 | 0.51 | 0.07 | 0.284 | 0.216 | 0.03 | 0.33 | 0.054 | 0.08 |
Overall | 0.11 | 0.02 | 0.047 | 0.01 | 0.075 | 0.03 | 0.008 | 0.045 | 0.006 | 0.185 | 0.14 | 0.02 | 0.217 | 0.035 | 0.054 |
Table 33
Alternatives | A1 | A2 | A3 | A4 |
Final Scores | 0.116 | 0.488 | 0.201 | 0.195 |
Rank | 4 | 1 | 2 | 3 |