Pub. online:8 Feb 2023Type:Research ArticleOpen Access
Journal:Informatica
Volume 34, Issue 1 (2023), pp. 35–52
Abstract
We study the burst ratio of packet loss processes in networking. This parameter characterizes the inclination of packet losses to form long, consecutive sequences. Such long sequences of losses may have a negative impact on multimedia streams, particularly those of real-time type. In packet networks, the burst ratio is often elevated due to overflows of packet buffers, which are present in all routers and switches. In the article, we investigate the burst ratio in the per-flow manner, i.e. individually for every flow of packets traversing a network node. We first confront all the per-flow burst ratios with each other, as well as with the burst ratio computed for the multiplexed traffic. Next, we study the influence of different features of the system on these burst ratios. In particular, the influence of rates of flows and their proportions, the standard deviation of interarrival times, the capacity of the buffer, the system load and the distribution of the service time, is studied. Special attention is paid to models with non-Poisson flows, which are not analytically tractable.
Pub. online:27 Jan 2023Type:Research ArticleOpen Access
Journal:Informatica
Volume 34, Issue 1 (2023), pp. 169–198
Abstract
This contribution presents a brief survey of clipping and intersection algorithms in ${E^{2}}$ and ${E^{3}}$ with a nearly complete list of relevant references. Some algorithms use the projective extension of the Euclidean space and vector-vector operations, which support GPU and SSE use.
This survey is intended to help researchers, students, and practitioners dealing with intersection and clipping algorithms.
Pub. online:23 Jan 2023Type:Research ArticleOpen Access
Journal:Informatica
Volume 34, Issue 2 (2023), pp. 249–270
Abstract
The focus of this paper is on the criteria weight approximation in Multiple Criteria Decision Making (MCDM). An approximate weighting method produces the weights that are surrogates for the exact values that cannot be elicited directly from the DM. In this field, a very famous model is Rank Order Centroid (ROC). The paper shows that there is a drawback to the ROC method that could be resolved. The paper gives an idea to develop a revised version of the ROC method called Improved ROC (IROC). The behaviour of the IROC method is investigated using a set of simulation experiments. The IROC method could be employed in situations of time pressure, imprecise information, etc. The paper also proposes a methodology including the application of the IROC method in a group decision making mode, to estimate the weights of the criteria in a tree-shaped structure. The proposed methodology is useful for academics/managers/decision makers who want to deal with MCDM problem. A study case is examined to show applicability of the proposed methodology in a real-world situation. This case is engine/vehicle selection problem, that is one of the fundamental challenges of road transport sector of any country.
Pub. online:10 Jan 2023Type:Research ArticleOpen Access
Journal:Informatica
Volume 34, Issue 1 (2023), pp. 147–168
Abstract
The coordinated integration of heterogeneous TinyML-enabled elements in highly distributed Internet of Things (IoT) environments paves the way for the development of truly intelligent and context-aware applications. In this work, we propose a hierarchical ensemble TinyML scheme that permits system-wide decisions by considering the individual decisions made by the IoT elements deployed in a certain scenario. A two-layered TinyML-based edge computing solution has been implemented and evaluated in a real smart-agriculture use case, permitting to save wireless transmissions, reduce energy consumption and response times, at the same time strengthening data privacy and security.
Pub. online:19 Dec 2022Type:Research ArticleOpen Access
Journal:Informatica
Volume 34, Issue 2 (2023), pp. 223–248
Abstract
In this study, Intuitionistic Fuzzy Consistency Method (IF-FUCOM) and Grey Relation Analysis (GRA) were combined to assess the effects of Bacillus subtilis bacteria on concrete properties, as well as to determine the optimal bacteria concentration and curing day. Three different concentrations of bacteria were added to the mortar mixes, like 103, 105, and 107 cells/ml of water. Mortar samples were left to cure for 7 days, 14 days, and 28 days to evaluate compressive strength, water absorption, crack healing. According to the proposed algorithm, 105 bacteria are the optimal concentration, while 28 days is the ideal curing time.
Pub. online:19 Dec 2022Type:Research ArticleOpen Access
Journal:Informatica
Volume 34, Issue 1 (2023), pp. 199–222
Abstract
Due to the popularity of mobile communication, many computing devices are exposed to remote environments without physical protection so that these devices easily suffer from leakage attacks (e.g., side-channel attacks). Under such leakage attacks, when a computing device performs some cryptographic algorithm, an adversary may acquire partial bits of secret keys participated in this cryptographic algorithm. To resist leakage attacks, researchers offer leakage-resilient cryptography as a solution. A signcryption scheme combines signing and encrypting processes to simultaneously provide both authentication and confidentiality, which is an important cryptographic primitive. Indeed, many leakage-resilient signcryption schemes under various public key system (PKS) settings were proposed. Unfortunately, these schemes still have two shortcomings, namely, bounded leakage resilience and conditionally continuous leakage resilience. In this paper, a “fully” continuous leakage-resilient certificate-based signcryption (FCLR-CBSC) scheme is proposed. Security analysis is formally proved to show that our scheme possesses both authentication and confidentiality against two types of adversaries in the certificate-based PKS setting. Performance analysis and simulation experience show that our scheme is suited to run on both a PC and a mobile device.
Pub. online:9 Dec 2022Type:Research ArticleOpen Access
Journal:Informatica
Volume 33, Issue 4 (2022), pp. 833–856
Abstract
Commonly modern symmetric encryption schemes (e.g. AES) use rather simple actions repeated many times by defining several rounds to calculate the ciphertext. An idea we previously offered was to trade these multiple repeats for one non-linear operation. Recently we proposed a perfectly secure symmetric encryption scheme based on the matrix power function (MPF). However, the platform group we used was commuting. In this paper, we use a non-commuting group whose cardinality is a power of 2 as a platform for MPF. Due to the convenient cardinality value, our scheme is more suitable for practical implementation. Moreover, due to the non-commuting nature of the platform group, some “natural” constraints on the power matrices arise. We think that this fact complicates the cryptanalysis of our proposal. We demonstrate that the newly defined symmetric cipher possesses are perfectly secure as they were previously done for the commuting platform group. Furthermore, we show that the same secret key can be used multiple times to encrypt several plaintexts without loss of security. Relying on the proven properties we construct the cipher block chaining mode of the initial cipher and show that it can withstand an adaptive chosen plaintext attack.
Pub. online:7 Dec 2022Type:Research ArticleOpen Access
Journal:Informatica
Volume 33, Issue 4 (2022), pp. 749–769
Abstract
In this paper, we propose a light-weight electronic voting protocol. The approach used by our protocol to conceal the ballots does not imply encryption, and guarantees the privacy of the direction of the vote unless all the contestants (parties) agree to do so. Our method is based on the division of the ballot into different pieces of information, which separately reveal no information at all, and that can be latter aggregated to recover the original vote. We show that, despite its simplicity, this scheme is powerful, it does not sacrifice any of the security properties demanded in a formal electronic voting protocol, and, furthermore, even in post-quantum scenarios, neither the casted votes can be tampered with, nor the identity of any elector can be linked with the direction of her vote.
Pub. online:6 Dec 2022Type:Research ArticleOpen Access
Journal:Informatica
Volume 33, Issue 4 (2022), pp. 795–832
Abstract
Intonation is a complex suprasegmental phenomenon essential for speech processing. However, it is still largely understudied, especially in the case of under-resourced languages, such as Lithuanian. The current paper focuses on intonation in Lithuanian, a Baltic pitch-accent language with free stress and tonal variations on accented heavy syllables. Due to historical circumstances, the description and analysis of Lithuanian intonation were carried out within different theoretical frameworks and in several languages, which makes them hardly accessible to the international research community. This paper is the first attempt to gather research on Lithuanian intonation from both the Lithuanian and the Western traditions, the structuralist and generativist points of view, and the linguistic and modelling perspectives. The paper identifies issues in existing research that require special attention and proposes directions for future investigations both in linguistics and modelling.