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Abstract. It is well known that many pra.ctlca.l optumzatlon problems
w1th random élements lead from the mathematical point of view to determlmsnc
optimization problems depending on the randém elements through prob.bility
laws only. Further, it is also well known that these probability laws are known,
very seldom. Consequently, statistical estimates of the unknown probability
measure, if they exist, must be employed to obtain some estimates of the optimal
value and the optimal solution, at least. «

If the theoretical distribution function is completely unknown then an em-
pirical distribution usually substitutes it [2, 3, 9, 17, 31]. The great attention
has been already paid to the studying of statistical properties of such arised
empirical estimates, in the literature. We can remember here the works [4, 5, 6,
10, 13, 16, 32], for example. The aim of this paper is to discuss the convergence
rate. For this we shall employed the assertions of the papers [10, 11, 13}."

Key words: stochastic programming, problem with penalty, determmstxc
equivalent, random sequence fulfilling ®-mixing condition.

1. Introduction. Let _(Q,_S;P) be probability space, ¢ = &(w) =
[€i(w,...,&(w)] be an s-dimensional random vector defined on
(R.8,P), F(z) be the distribution function of, the random vector
§(w), Z C E, denote the support of the probability measure corre-
sponding to the distribution fu::ction F(2), gi(=,2),7 = 0,1,2,...,¢
be real”val'u,e‘d.‘continuous functions defined on E, x E,, X C E,
be a nonempty set (E,, n > 1 denotes an n-dimensional Euclidean
space).
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The general optimization problem with random element can
- be introduced as the problem to find

min {go(z,£(w)) |z € X.: gi(z, W) €0, i=1,2,...,¢}. (1)

It happens rather often that the solution z must be found with-
out the realization knowledge of the random vector £(w). Evidently,
it is necessary, first to determine the decision rule, in such situa-
tion. It means to set to the original stochastic optimization prob-
lem (1) some deterministic equivalent. Two well known types of
the deterministic equivalents can be introduced as the following
deterministic problems. v

I. To find

' inf {Eg(z,£(w)) | z € X}.

tochastic programming problems with penalty and two-stage sto-
chastic programming probiems belong to this class of optimization
problems.
II. To find

inf { Eg(z, &(w)) |.a: €X : Plw: gi(z,&(w)) €0, i=1, 2,..,4> a}.

This determlmstuc equivalent is known as the chance constrained
stochastic progra,mmmg problem, from the literature.

« € (0,1) is a parameter, g(z,z), g(z,z) some real valued con-
tinuous functions defined on E, x E,, E denotes the operator of the
mathematical expectation.

REMARKS:

1. The choice of the functions §(.,.), g(., ) depends on the char-

acter of the original stochastic problem.

2. It can generally happen that some above mentioned symbols
are not meaningful. However, this situation cannot appear
under the assumptions considered in this paper. »

3. It is easy to see that I is a special case of II, from the math-
ematical Point’of view. We consider these problems sep-
arately, according to the historical development and thexr
specific properties. ‘
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If we define the sets Z(z), X (a), a€ El, z€E, by the pre-
scription

X(1) fora>1, )
X(0). for a <0,
Z(z)={z€ Es: gi(z,2) <0, i=1,2,...,4},

{zeX: PZ(z)| 2 o} forae (0,1,
X(a)

then we can rewrite the dgterminiétic equivalent II in the form: to
find S : o
inf Bg(e,6(). S ®

If, further, ¢¥(w) = & = [¢}(v),...,€%(w)] is a sequence of
random vectors with the common distribution function F(z), the
functions U;(z,w) = Ui(z), Fn(z,w) = Fn(2), z = (21,...,2,) € E,,
weR, kE=12,...,N, N=1,2,... are defined by

Uk(z,w)=1 <=$£f(w)<zj forall j=1,2,...,s,
=0 <= Ef(u)?zj for at least one j € {1,2,...,s},

Fy(z,w)= ( ) ZUk(z w).
k=1
Ey and Py, N=1,2,... denote the operator of mathematical
expectation and probability measure corresponding to the distri-
bution function Fy(-), the set mapping Xn(a) = Xn(a,w), N =
1,2,..., a€(0,1), w € Q is defined by the prescription

Xn(e)=Xn(e,w)={z€X: Pn [Z(.t)] 2 a},

then under general conditions inf,cx Eng(z,£(w)) estimates the va-
lue infzex Eg(z,&(w)) in the case of the deterministic equivalent L.
In the case of the deterministic equivalent II the theoretical value
infx(a) Eg(z,6(w)) can be estimated by the value infx,(s) ENg(z
£w))-

The statistical behaviour of vae just introduced estimates ha.s
been studied in the literature many times. We can remember here
the works (2, 3, 6, 9, 12, 32], where the conditions are given under
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whith these estimates are consistent. Fu:‘thei"; the rate conv’ergence
_was studied in (10, 11, 22, 29, 30]. In detail, mostly the upper bound
for the expressions

P{w lmeNg(:c E(w)) ~ mf Eg(z f(w))f > t}

g )

ln(f Eng(z,&(w)) ~ mf E‘g(z £(w))
t >0, were’ presented there.

Further, the asymptotic distributions of the random value
VN(Zn(w) - %) was studied in {4, 5, 16,17, 32],

- a':-atgminEi(z Ew), . e L W)

zzv(w) = a:N argmmENg(z f(w))

In thls paper we shall try to present some tlghter results for
the convergence rate. In detail,  we sha.ll determme B8>0 such that

P{w W lmeNg(z Ew)) - lnf Eg(z f(w))l > t} ~H(Nws00) 0 (5)

P{w : Nﬁl -inf ENg(z £(w))

—ﬁnf)Eg(:c E(w))l > t} "(N-oo) 0 | ‘ N | (6)

i

for every t> 0. ‘ ,
Further, if g(., z), g( z) are unlformly strongly convex w1th

parameter p >0 functions of z € X (for the definition of atronglv

convex functions see Definition 3), then we have also 8 > 0 such

that .

Plu: NP llen(e) - im > t}‘ew-w) o

and “ B | o

| Plw: NP|jzn(a, w)—x(a)llz > t} "'*(N—ooo) 0 B ()

Zn(w), Z fulfil the relation (4) and zn(a,w) = zn(a), ::(a) are defined

by :

zn(@,w) = zn(a) = arg min ENQ(“C f(“)) B )

z(a) = argm rmn E‘g(z {(w))
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- We shall employ the works [10, 11, 13] to obtain the above men-
tmned results. Consequently, some types of stochastic dependent
random samples will be included into our investigation. However,
we restrict our consideration to the case when ‘

9;(3 Z) f;(t)-z;, ‘.= 1,2,.-.- ,e,

in the case of the deterministic equivalent II. f;(z), i=1,2,...,£ are
same real valued continuous functions defined on E,,.
Evidently, it holds £=s in the case. » o

2. Some auxiliary definitions. In this part we shall rexlnerh-”
ber some definitions. The Hausdorff dlstance between two subsets
in E, is defined by the following way:

DeriNiTiON 1. If X!, X" C E,, n 2 1 are two non-empty sets
then the Hausdorff distance of these sets is defined by

A Xl u} max [6 (Xl XM) 6"(X” XI)]
I l : J II
b [X' X" = sup inf [l ~ 2"
it- || denotes the Euclidean norm in E,.
(We usually omit the subscripts in the symbols A,, é,.) ‘

Let {7*(w)}2_., be an s-dimensional strongly stationary ran-
dom sequence defined on (Q,S, P), B(—0,a) be the o-algebra given
by ...,7°"}(w),7°(w), B(b,+oc) be the c-algebra given by n*(w),
1+ (w),..: (e, b are integers).

If N denotes the set of all natural numbers, ¢(-) is a non-
negative real valued function defined on A" then we can define the
¢-mixing random sequence by the following definition from [1]. -

DeFINITION 2. We say that the strongly stationary random
sequence {n*(w)}{ _,, fulfils the condition of ¢-mixing if

|P(A1 N Az) — P(41)P(42)] € $(N)P(A))

for A; € B(—o0,m), A; € B(m+ N,+0), —co<m <400, N21,m
is an integral number.
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Further, we shall remember one deﬁmtlorx of convex ‘analysis:-

DEFINITION 3. Let h(z) be a real valued functzon defined on”
a convex set K C E,. h(z) is a strongly. convex function with the
parameter p > 0 if

Bt + (1 — A)ea) € Ah(es) + (1 — )f(es) - A1~ plles = 2ol

LRSS 2

for every z1, z; €K, A€ {(0,1).

REMARK. The assumptions under vi"h:l'ch a function is a strongly
convex one with a parameter p> 0 are mtroduced in [20] for ex-
ample. e

‘It is known that the class of logarithmic concave ‘proba,bxhty
measures is very important for change constrained stochastic pro-
gramming problems [8, 18, 19].- If B, denotes the Borel o-algebra of
the subsets of E, then we can already remember the corresponding
definition [18].

DEFINITION 4. A probabib'ty measure P(-) defined on the B, is
logarithmic concave if for every A, B € B, and for every A€ (0 1)
the following meq,dahty

| Pf,\A+(1—f\)B] PAPPEI -

holds. (AA +(1- A)B means Mmkowskz addmon of sets)

" If D C E, is'a-bounded set then there e);lst ;, df € E;, j=
1,2,...,n and natural numbers m; = mj(D,d), j = 1,2,...,n for
d> o, de By, d< nﬁnj(d;' —d) such that o

d;(D) = d; = inf{2; : ¢ = (21,+..,2a)€ D}, . (10)
d/(D)y=dj = sup{z,- i z=(2y,...,%,) € D},
N Ja
b s d
‘Further, we can define z;,,...,zjm;, j = 1,2,.. ,n such that

) d SRR "
! e s . = —_— - .
d; =2j,, 2, =%, + (\/ﬁ)’ r=2,...,mj,

<mj<Di¥=+1, . Dj=d/-d.

"o 1 .
Zim;=-1 <dJ’ Tim; >dJy J= 1!2)' - N,
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‘axid. ﬁh.e system S as the fellowitig” ’ ’
S= S(D’d) = {Z = [21," ’zn]: z; € [‘zijl;-‘\- ] -’Ci'm,-]a i= 1g2: . "vin’}' |
It holds that -
zi'xéfsﬂz—z'llsd for all z€D,

- jnf ||lo - 2'||< d | .feerall z€ H(d;,d;'

and E -

’

m_;Hm,, L

where we denote by m = m[D d) the number of the elements of the
system S. .

At the end of this part we denote the surroundmgs of a non-
empty set X C E, by the symbol X[6]. It means that

={_1:EE,.: z2=21+ 22, 21 € X, zzeB(é)}
where B($) is the §-surroundings of zero in E,.

8. Main results. The aim of this section is to present the
values 8 > 0 for which the relations (5), (6), (7), (8) hold. More
precisely, we shall try to obtain the results for the case when either
{€*(w)}2, is a sequence of independent random vectors or when
{e¥ (W)} iz -o fulfils the ¢-mixing condition.

Our investigation will be devided into two parts. We shall deal
separately with the deterministic equivalent I and the determinis-
tic equivalent II. The reason for this is practical especially in the
mathematical technic of proof. Moreover, the interval for g will
Be rather greater in the deterministic equivalent I. In detail, this
interval does not depend on the dimension of the random vector
&(w). Further, the results achieved for this slimpler case will be
employed to obtain the results for the deterministic equivalent II.
‘However, we start our-investigation by very simple case of deter-

- ministic equivalent I. By this access it will be seen the dependence
of interval for 8 on the complexity of the corresponding problems.
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a) Deterministic equivalent I. We shall consider a special,
simple case, at the beginning. So first, let us assume that there
exist a natural number s; and continuous functions g;(z), hj(z),
i=1,2,...,s, defined on E, x E, such that

L3} .
(z,2) =Y g ()i (2). , (12)
i=1
We shall see that in this very special case (however from the
mathematical point of view enough important) the terminal result
will be the same in the both considered cases.

Theorem 1. Let X be a compact set, the function §(z,z)
fulfils the relation (12), where g;(z) and hi(z), i = 1,2,...,81, are
continuous, real valued, bounded functions defined on Z x X. If
either : :

1. {€*¥(w)}, is a sequence of independent random vectors

or
2. {&¥(w)}2 ., is a strongly stationary random sequence ful-
filling the ¢-mixing condition for which there exists
' y M=l
i :,V:;(N — B)g(k) < +o0,
then

Plw: N?| inf Enj(,6@)) - inf B3(2,6W))| > t} (o) 0

fort>0, Be(0,1).
If moreover
3. X is a convex set,
4. hi(z)i=1,2,...,si, are convex functions on X,
5. there exists i € {1,2,...,5} such that h(z) is a strongly
convex with a parameter p > 0 function on X, '
then also

Plu: N?|jen(w) = 2l >t} —=(v—ce) O
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fort >0, g€ (0,1/2). :
(Remark: Zy(w), Z, N =1,2,... are defined by the relation (4).)

Proof. The assertion of Theorem 1 follows 1mmed1ately from
the next Theorem. It is sufficient to employe there the substitution
t = (t/(N?)) and generally known limit properties of the corre-
sponding functions.

Theorem 2. Let X bea a compact set and the function §(z, z)
fulfil the relation (12) where g(z) and hi(z), i = 1,2,...,s1, are
continuous real valued functions defined on Z x X. Let further K,
M, be real valued constants such that

UK, INE@ISM,  zeX, ze'z,;‘zt=“1,,_,g‘;L..,s1

IF o s s S
R & {.{"‘(‘c.v)}k._1 is a sequence of mdependent ra,ndom vertors,
Tt them”

P{w : ! inf Eng(e,é@)) - inf Eg(z,g(w))t‘> t}
Nt?
2M{K{s

(13)

s2s1-exp{— } for N=1,2,...,t>0,

2 {EH W) is a ‘strongly stationary random sequence ful-
: ﬁlhng the ¢- mxxxng condmon then

'P{w: l inf ENg(z f(w)) - mf Ej(z, 5(0)))‘ >t}

KM W

<A [N+ Z‘;(N—kw(la)],

. N=12...,t>0.

If moreover - ‘ : T
3. X is a convex set,
4. hi(z) i=1,2,...,5;, are convax funct:ons on X,

5. there exists i € {1,2,...,s} such that h}(z) is a strongly
convex with a para.meter p> 0 function,
then also
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in the case 1

oty Nt
TP _ a2y &
P{“" lizn(w) - 21" > p}ggs;ex’p{ IMIK?s Klsl}’ (15)
for N=1,2,..., t>0, . '

and in the case 2

Plo: flen) -3l > %‘-} <25 i%i'ifl-[N+ gw k)¢(k)}

for N=1,2,..., t>0. | (-16)

The proof of Theorem 2 will be given in the Appendlx

It follows from the assertion of Theorem 1 that the interval
for B is the same in the both considered cases. According to well
known results of [4, 5, 16, 32] we can recognize that it is not possible
this interval to expand. However, Theorem 1 deals only with the
very special form of the function §(z,z). Further, we shall consider
rather general case. .

Theorem 8. I_et -

1. X CE, be a compact set,
2. §(z,z) be 2 continuous, bounded function on X [d] x Z for .
some d > 0 :
3. g(z z) be for every €7 a L1pscb1tz functlon of z e X[d}
with the Lipschitz constant L not depending on z € Z.
r _
4. either
a) {€¥(w)}X, is a sequence of independent random vec-
tors and simultaneously 0 < < 1/2,
or
b) {€*(w)}¥ _.. is a strongly stationary random sequen-
ce fulfilling the ¢-mixing conditiox} for which

N-1

hm = \;(N k)¢ (k) < +oo, .

k-.l

and simultaheously 0< B < 1/(r;+ 2), tbén
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P{w: N%| inf Eni(z,€(w) - int E5(2,6))| > t} —(voee) 0,

. for t-> 0.
If moreover
5. X is a convex set, :
6. §(z,z2) is for every z € Za strongly convex with a para.meter
p >0 functionof z € X[d],
then also
Plw: N?||zn(w) = &lf* > t} mv—co) O,
fort > 0. .
To prove the assertion of Theorem 3 we shall employ some

former results (10, 11]. However, we introduce them in a modified
fotm.

.-Theorem 4. If the assumptions 1, 2, 3 of Theorem 3 are ful-
filled and if {§*(w)}{2, is a sequence of independent random vectors
then -

P{w : |Eng(z,6(w)) = Eg(z,E(w))| > tL for at least one z € X[d]}
I Nt?
‘2M[X, (5)] exp { - Té—}w—z},
and simultaﬁeously , (17)
P{wt ‘igf Eng(z,§(w)) - inf E?(r,é(w))! > tL}
‘ t N2
<mlX, (3)] exp { - W}

for 0 < t < 3d and a constant M fulfilling the mequahty |§(z,2)| <
zeX[d),z€e2Z.

If moreover the assumptions 5, 6 of Theorem 3 are satisfied,
then also

Pl e -l 310- ()} < amix, Dl e { - 212} 19
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Theorem 5. If the assumptions 1, 2, 3 of Theorem 3 are ful-
filled and if {€*¥(w)}._., Is a strongly stat;onary random sequence
fulfilling the ¢-mixing condxtxons, then

Pl |enates - E9=f<w))|>”‘} -

36M2 [

<X, (3)) xr e Z(N b)qs(k)]

and s:multaneously : R (19)

Plw: |Eng(z,€(w)) - E’g(z &(w))] > tL for at least one z € X[d]}

<l (][ + S0 - bow)] - B, )
S k=1

A

for 0 < t < 3d'and a constant M fulfilling the inequality |§(z,2)| < M
zeX[d),z€ Z.

If moreover the assumptzons 5, 6 of Theorem 3 are satfsﬁed
then also : e :

Plot han)-aiP > 2} |
: ; 2 N-1 ' ’ (20) .

2rh[x ( )] ?;gf‘fz ¥+ Z(Jy ~ B)8(k)) -

=1
The assertions given by the relations (17) and (19) follow im-
mediately from the results of the papers [10, 11]. (Theorem 2 and
its proof in [10] and also Theorem 2 and the corresponding proof.
in [11]). It remains to prove the relation (18), (20). However this
results will be proved in the Appendix. Here we shall prove the
assertion of Theorem 3 only.

Proof of Theorem 3. To prove the assertion of Theorem 3 we
shall first find an upper estimate of the number m[X,d]. For thxs

we shall verify the vahdlty of the a.ux1hary asserfion.

Lemma 1. If X C E, is a nonempty, bounded set, d >0, tI_lén/

mix, d < [2AXR )"
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.where rad X =sup, e x |lz - 2'||.

Proof Smce it follows from definition of the number m[X d
that
m[X,d] < 1'[ [ 2+,
) ) j=1.-
we .can see tha.t the a.ssertlon of Lemma 1 holds.
Consequentlv, as X is a compact set, it follows from:Lemma 1

that
X( ) QE( )rradX~3f]

fort > 0.
Further, if we substitute (in Theorems 4, 5) t:=t/(LNP) then
there exzsts a natural number Ny and a constant K = K(n, X ) such

that
@ ﬂ!'&dX

vn>1 for N > N,

and simultaneously -

mx, thW] < (21)
Now already the validity of the assertion of Theorem 3 follows
from the last inequality, Theorems 4 and 5 and well known limit
properties of the corresponding functions.

We have finished the part of the section 3 correspondmg to the
deterministic equivalent I. Comparing these results with the ones
of the works [4, 6] (where the problems of asymptotic distribution.
of VN (2n(w) — Z) is discussed), we can believe that it is impossible
to expand the interval for # at least in the case of independent
random samples. s

Further, it follows from Theorem 1 that the same mterva.l can
be achieved in special cases for dependent samples too. Of course, it
was done only for the case when the optimalized function satisfy the
relation (12) and the random samp.e satisfy the ¢-mixing condition.

The chance constrained stochastic programming problems will
'be considered in the next part of this section. We shall see that the
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interval for 8 will be smaller everywhere, it means in the case of
independent random samples too. This is evidently draw by new
" ineccuraccy arising by the set X(a) approximation.

b) 'f)eterministicequivalent I1. We have already mentioned
that employing the results of the works [12, 13] we have to restrict
the original stochastic problem in the case of the deterministic
equivalent II. In detail, we have to deal with the original stochastic
problems in which the random element appears on the constraints
right-hand side only. So we shall assume that there exist real valued -
functions fi(z), i=1,2,.. . 2 defined on E, such that

9i(z,2) = fi(z) — 2, i=12...,2

-Consequently £ = s. Of course, the original optimalized function
may depend on the random element as well. Now, we shall repeat
the definition of some symbols in this case.

Let fi(z), i =.1,2,...,£ be real valued, continuous functions
defined on E,, n>1,

X =E],
ZC E?', i
Z(z)= {z € £‘7+ tz2=(21,...,2), fi(2) Sz, i= 1,2,...,2},
X(a) = {z € Ef : P[Z(z)] > } - for @ € (0,1), (22)
= X(1) fora>1,
= X(0) for a <0,
Xn(a)={z € B} : Pn[Z(2)] > o} for a € (0,1),

Where PlZ(z)] = P{w: &(w) € Z(2)}; Pn[] = Pn{-,w} is the empiri-
cal probability measure corresponding to the distribution function
Fn(), EY ={z€E,: z=(z1,-..,2n), 2i 20, i=1,2,...,n}.

Let further ’

2(B) = arg ¥ min E'y(z,f(w)),f - (238)

zn(B,w) = arg xm(%) Eng(z,é(w)) for-8€(0,1).
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If § >0, a €(0,1) are arbitrary chosen but fix in the sequel we set.
the following assumptions.
i) fi(z), i=1,2,...,€ are real valued continuous functions on E}
 such that ‘
a) fi(0)=0, i=1,2, ,..,t 0-€.Ey,
b) there- exist a.constant 7; such that

fie) = =) > m 2(% -z})

for- every T= (zl, ,z,.), 2 =(z4,...,2h), = 2.2/ component- '
‘wise, i=1,2,...,¢, 2,2 € E}, ,
c) there-exists.a constant v, >0 such that '

Ifi(=) - £i(2)] € ‘hllz—zll

for i = 1,2,...,¢ z,2 € X(e,26), z < .2 componenthse, -
. X(a,6) is. deﬁned by the following relation

.X(a‘) 6)= {z =T1+22: .21 € X(a)v z2 € 8(5)}, ’

where B($) denotes the §-surrounding of 0 € E,..
ii) &(w) fulfils the conditions:

a) the probability measure of the random vector £(w) is abso-
lutely continuous with respect to the Lebesgue measure in E;.
Let us denote by h(z) the probability density corresponding
‘to the distribution-function F(z) of the random vector §(w);

b) there exist real numbers c;, j =1,2,...,£ such that ¢; > 0 and

Z= H,-;(O ¢j) (it means P{w: f(‘*’) € HJ_1(0 ¢j)} = 1)’
c) there exnst ¥y, 95 such' that

. ¢
- 0< 91 < h(2) €9 forevery.z EV;H(O_, )
) ) ji=1
iii)
a) g(z,z) is a bounded function on E; x Z,

b) g(z,z) is for.every z € Z a Lipschitz function of z € X(e,6)
with Lipschitz constant L not depending on z € Z,
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iv) at least one of the following assumptlons is sa.tlsﬁed
~a) {€"(w)}2, is a sequence of independent random vectors a.nd”
simultaneously 0 < 8 < 1/(2¢),
b) {€*(w)}2_., is a strongly stationary random sequence fulﬁ]l-
ing the ¢-mixing condition for whlch

hm = Z(N Ic)¢(k) < 400

N

and simultaneously 0 < 8 < 1/((n + 2)¢).
v) g(z,z) is for every z € Z,strongly convex w1th pa.rameter p>0

function on X(a,$é), ‘ .

vi) fi(z), i=1,2,...,2 are convex function on E,T , .

vii) the probability measur» corresponding to F(z) is logarithmic
concave.
Now we can already introduce the ma,m result of thls pa.rt of

the paper.

, Theorem 6. Let X = E} and the assumptions i, ii, iii, iv be .
 fulfilled for gwen arbitrary o € (0 1), §>0. Ift >0 then

P{w. Npl e1}1{1{ )El’ﬁ(z,f(u)) - mf ENg(:: E(w) |> t} ~(N=oo) 0.

If moreover the adsumptmns v, vi, vii are fuIﬁHed then a,lso
Plw: NﬁH:cN(a,w) —z(a)||®? >t} - (n=ob) 0.

To prove the assertion of Theorem 6 we shall employ the former’
results [13]. However we shall have to'employ them_ in modiﬁed
forms, again.

Theorem 7. Let a€(0,1), §>0,t> 0 to = 4(f/71))
v2t/(91). Let, further, the assumptions i, ii, iii be fulfilled. If

d < min(8,¢/6), (vV//(1)) /2] (01) < 8, Dr72d Ticy [Lyps 0 < /6, M
is a constant for which |g(z,z)] < M, z € X(,268), z € Z and if
{€¥(w)}2, is a sequence of independent random vectors, then
Plu: ] inf  Bg(e,6w)) - __ }rrg(a)ENg(z,wE(u))l > tolL } "
<2m[X(a, 26),d]exp{-Nt2/18} i - (24,
+ 2m[X (e, 26),d)exp{—Nt3L?/4 - 18M?}.
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"+ If moreover the assumptions'v, vi, vii are fulfilled, then also

Plo: llen(e,w) - 2P > 4‘°L L |
<BmlX (o, 26), d] exp{— Nt2/18} B )
+ 4m[X (e, 26), d}'exp{—thL2/4- 13M2}.

Theorem 8. Let a € (0,1), 6 >0, t >0, to = 4(vn/(n))
t/(dl) Let further, the assumptions i, ii, iii be fulfilled. If
4.< ming6,4/6), (/o) VBT < 6, Dur2dTs Thoieo <1/6, M
is a constant for which |g(z,z)| < M, z € X(a,26), z € Z and if

{€¥(w)}$2_, is a random sequence fuIﬁIImg a ¢-m1x1ng condition,
then : .

P{w I mf Eg(x Ew)) —- mf ENg(z f(w))l >toL}

36 -4 4»36M2]
N2 T L23N2 1

(26)

m{X (a,26),d] [V + Z(N Bk |
If moreover the assumptions v, vi, vii are fulfilled, then also

Plo llen(a,0) - @)l > 4t°’“}

<3m[X (e, 26), d][N+ Z(N k)¢(k)] 326 Nf (27)
k=1
LSAM2
+ 2m[X(a 26), d][N + Z(N k)¢(k)] 4L22§,Af2 :
k=1 :

The assertions glven by the relations (24) and (26) follows imme-
diately from the results of the paper [13]. It remains to prove the
relation (25), (27). The proof of this resuits will be given in the
Appendix. Here we shall prove the assertion of Theorem 6, only.
Proof of Theorem 6, To prove the assertion of Theorem 6
we shall have first to determine an upper estimate of the number
m[X(a,26),d] for d = t/(‘TN") However, employing the results of
Lemma 1 and further following the cc rresponding part of Theorem
3 proof we obtain that

m[X(a,26), d] < E(n, X(a)) e
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for enough large N and some constant k(n, X(a)).

~ Now already, the validity of the assertion of Theorem 6 fol-
lows from the last inequality, Theorems 7 and 8, the substitution
to =t/(LN?) and well known limit properties of the corresponding
functions.

4. Appendix. The aim of this section is to give a proof of the
introduced but unverified results. First, we prove some auxiliary
assertions.

Lemma 2. Let K C E, be a non-empty, compact convex set.
Let, further, h(z) be a strongly convex with a parameter p > 9, con-
tinuous, real valued function defined on K. If zo € K is'determined
by the relation '

o = arg il’élg h(z),

then 5 '
iz = 2ol < (5)(z) = hceoll,

for every z € K.-

Proof. We refér to the paper [14], for this proof. There namely,
the proof of the {corresponding assertion for concave functions is-
presented. Besides this, the assertion of Lemma 2 has already been
introduced in [28], too.

If we denote by the symbol B, the Borel s-algebra in E, then
we can remember one well known inequality from the probability
theory.

Lemma 3. If

1. k(z) is a measurable (according to B, ) function defined on E,
such that there exists a constant M fulfilling the inequality
|x(z)| < M for all z € E,, ,
2. {€¥(w)},2, is a sequence of independent random vectors,
then

Plo: Enn(6w) — Ex(Ew)) >t} <exp{ - -2-"%12 ,
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for every t € Ey, t > 0.
Proof. The mequahty introduced in Lemma 3 has been first
proved in [7].

. Further, we present one result for ¢-mixing random sequences.

Lemma 4. If. the assumption 1 of Lemma 3 is fulfilled and if
{€¥(w)},._,, is a strongly stationary random sequence fulfilling the
¢-mixing condition, then

Plu: 1E~;(e<w>) Ee(e)] >4

2

<N+ E(N, Bek)].

Proof. First, it follows from Lemma 2, Chapter 4 of [1] |

Bl - — Br(e@)] k(€ @) - En(eu))] < I 6(r— ) (28)

for r# k,rk=..-2,-1,0,12,....
Since it follows from Chebyshev’s inequality that

Plu: IENN(f(w)) Ex((W)| >t}
<z sziz (n(€' ) = Bne)][
and since
Elr((w) - Ex(€@))] =0 foreveryi=...,-2,-1,0,1,2,...,

we obtain the assertion of Lemma 4 immediately from the rela-
tion (28).

Now, we can already present the proof of Theorem 2.

Proof of Theorem 2. Let t > 0 be arbitrary given. Since it
follows from the relation (12) that

lEuy(z £(w)) ~ Ej(=, e(u))l < EMxlENy, (€W) - Eg; (s(w))l

i=1



516 - Convergence rate. . -
we can obtain successfully furtrler
Plu: | inf Endle.6@)) - jnf Bale.6@)| > 1} )
& P{w: |Eng(z,8(w)) — Eg(2,€(w))| > t for at least one z € X }
< EP{w |Bnat (€) - Bof @) > 3} 09

i=1-

Employing now Lemma 3 and Lemma 4 we obtain immediately the
validity of the assertion (13) and (14).
It remains to prove the validity of the relations (15), (16).
" However, evidently if the assumptions 3, 4, 5 of Theorem 2 are -
satisfied then Eg(z,£(w)) is a strongly convex with the parameter
p function. So, a,ccordlng to Lemma. 2 11: is

I2() - 317 < ()IEM@N(“’) €w)) - i, W)},

for allw € Q, N =1,2,...and E'g(zN(w) E(w)) = [Ej(z, f(w))]z_,N(w). _
Employing the tnangula.r inequality we. get
(o) - 21 £ (2 2) {1B3(ex(w),60)) = ENg(zN(w) @)
+|Eng(2n(w), 5(‘*’)) Ey(-"-' E(w))‘}
for all w € Q, N-12 ‘and so also .. °
Nz =12 2
Pl llzw(w) - 2> ¢ (p-)} |
<P{w: |E3(z,£(w)) - Eng(z,6w))]| > (%) for at: least one z € X }
" - . - t
+P{u: | jnf Ena(et) - iof Bale )| > (3) )
Now already we obtain the validity of the relations (15), (16)
on the basis of the inequalities givén by'the relations (13), (14),
(29), Lemma 3 and Lemma 4. By thls we have ﬁmshed the proof
of Theorem 2. : ’
Theorems 4 and 5 generalize the results of Theorem 2 to rather

great class of the optimalized functions. Of ‘course, the achieved u
per bound is higher. Namely, there*appears the factor m(X, (¢/3))
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in the relations (17), (18), (19), (20). We shall present here the
proof of the new part of the assertion of Theorem 4.

Proof of Theorem 4. The assertion given by the relations 17
follows immediately from the results of the paper [10] {Theorem
2 and its proof).  So it remains to prove the assertion given by
the relation (18). Since Eg(z,£&(w)) is a strongly convex with the
parameter p > 0 function on X[d] we can apply the idea of the
second part proof of Theorem 2 to get successfully

lewe) = 217 <(2) |0 (an(e),€6)) - Ea(,6)]
<(§){|Eg(5,v(w),g(u)) - Eni(En(),£@)]
+|Eng(En(w), éW)) — Eg(2,6W) |}

forallw €Q, N =1,2,... and E§(En(w), £(w)) = [Ed(2,€@))]. o yu-

- However, now we can already see that the validity of (18) fol-
lows immediately from the last inequalities system and from the
relations (17). ' »

Proof of Theorem 5. As the proof of Theorem 5 is very similar
to the proof of Theorem 4, we omit it. It is necessary to employ
there the results of the paper [11] (Theorem 2 and the correspond-
ing proof) and Lemma 4 instead of the results of the paper [10] and
Lemma 3. ‘

We have finished the proof of the assertions corresponding to
the deterministic equivalent I. Now we shall deal with the assertions
belonging to the deterministic equivalent II.

Proof of Theorem 7. The proof of the relation (24) is given in
[13]. Since this proof is rather complicated and long we shall not
repeat it here. However we shall verify carefully the validity of the
relation (25). For this let ¢ > 0 fulfil the assumptions of Theorem 7.
We define the set Q; by the relation '

U={weQ: Xna)CX(a-1)}.

The following auxiliary assertion follows from [13].
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Lemma 5. Let a € (0,1), 6 > 0. If the assumptions i, ii are ful-
filled and if {¢*(w)}§2, is a sequence of independent random vectors
"then fort > 0, d > 0 such that d < §,

NE 2 t
C == <4, ¥32Aq2d < =

then ‘
Plw: X{a+1t)C Xn(e) C X(a—1t)}

> 1 -2m[X(a,26),d]exp{~Nt?/18}.

Proof. 1t is proved in [13] (Lemma 5) that under our assump-
tions ‘

| P{w: X(a+1t)C Xn(e)C X(a—-1)}
o»1- Y Pl IPN(Z(z")-P(Z(z")|>%}.

27 €5(X(,26),d)

However now already the assertion of Lemma 5 follows immediately
from the last inequality, Lemma 3 and the definition of the number
(X (. 26),d). |

We can confinue in the proof of Theorem 7.

According to Lemma 5 we obtain that

Plw: w €N -} $v2m[X(a,25),J]exp{-Nt2/18},

and so also
Plo lizn(e,0) - s(a)lf > 477}
<2m[X (e,26),dlexp{-Nt?/18} (30)
+P{[u: llen(av) - z‘(a)Hz > 41‘;)5] na.}. -
Since

llzn(e.w) = z(a)lf? € 2{llzn(e,w) = 2(e = 1)|I* + ||2(e) — 2(a = )|}
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and since Eg(z,é(w)) is a strongly convex with the parameter
p > 0 function and X(a) is a convex set [19], we obtain for w € O
successively

lew(ew) = 2@ €(5){1Ba(an(a,), 6(0) ~ Bala(a - 0,6
| +|Eg(z(a), €@)) - Ea(a(a — £),6@))I}
<) {1Ba(zn(e:0),60)) - Enslana -0, €@)I
+|Englen(e,w), @) — Bg(a(a)é(w))]
+|Eg(2(e), €w)) - Eg(z(a - 1),E@))|.
+1Bg(2(), W) - Eg(a(e - ),6@)I},  (81)

where Eg(xN(a’w)’ E(W)) = ‘Eg(zas(w))]zzzN\;a,w)-
The next auxiliary assertion was proved in [13] too

Lemma 6. Let o € (0,1). If the assumptions i, ii are fulfilled
‘then for t > 0 the inequality

Zt
AlX(). X (e~ 0] < /G
. 1
holds.
However according to this assertion and to the relations (24),
(31) it is easy to see that the relation (25) will be proved if we
verify the relation

P{w e : |Egan(ew),6w) - Eng(zn(aw),€w))|
+1Brglan(ew), 6@) - Bo(a(@) €N > ()} 9
" <4m[X(«, 26). d) exp[-N12/18]
+ 4m[X (o, 26), d]exp{—Nt3L?/4 - 18M?}.
However as

Plo €t 1Bolen(ew),€6) - Englen(aw).E@)) > (2)}

<Pl IBo(en(a) 8~ Bnslen(e €N > ()
for at least one z € X(a, 26)}
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‘and ‘as X(ay28) is a compact set ‘we:see that the validity of the
-relation {32} follows immediately by Theorem 4 and the inequal-
ity (24).
.Theorem 7 deal with:the case of independent random samples.
' ing case is £onsidered in Theox“e'm 8. Since the proof of
1 8 g very similar to the proof of Theoremn 7 we omit it.
"-W ‘member here only.that instead of the results of Theorem 4 in
this, case the resultsiof’ Theo‘tcm..»f; is employed.

“REMARK. A proof of: méa,sfu‘;aibility of the random vectors
En(w), zn(a,w) is omited in:this paper. But it follows from the
-paper [30].

5. Conclusion. The presented paper have dealt with conver-
gence rate of the empirical estimates in stochastic programming
problems. Former results on this-topic are improved.

It is seen that the interval for 4 fulfilling the relations (5),
(6), (7), (8) are greater in simplest case, of course. Especially this
interval is rather smaller in the case of deterministic equivalent II..
This reality is ¢vidently caused by new inaccuracy that arised by
the approximatiofi of the constraints set X(a). We can recognize
this following the proof of the corresponding results and proofs
introduced in [13]. However this question will not be discussed
more in this paper.
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