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Abstract. This paper discusses a soft sample clustering problem for multivariate independent ran-
dom data satisfying the mixture model of the Gaussian distribution. The theory recommends to es-
timate the parameters of model by the maximum likelihood method and to use “plug-in” approach
for data clustering. Unfortunately, the calculation problem of the maximum likelihood estimate is
not completely solved in multivariate case. This work proposes a new constructive a few stage pro-
cedure to solve this task. This procedure includes statistical distribution analysis of a large number
of the univariate projections of observations, geometric clustering of a multivariate sample and ap-
plication of EM algorithm. The results of the accuracy analysis of the proposed methods is made
by means of Monte-Carlo simulation.
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1. Introduction

This paper analyses a sample clustering problem in the case where distribution of the
observed random vector satisfies a Gaussian mixture model. The clustering problem is
closely connected with a mixture model identification problem. It is natural to use the
MLE (maximum likelihood estimator) for calculation of parameters. Unfortunately, find-
ing of the maximum likelihood estimate is complicated task in the multivariate case,
because the dimension of parameter is large. Traditionally the EM (expectation max-
imisation) algorithm is used to accomplish this task. But this algorithm converges locally
and precise enough initial value of parameter should be used to ensure convergence to the
MLE, see (Boyles, 1983). There is no widely accepted good method for initializing the
parameters, see (Vlassis and Likas, 2000), so the calculation of initial parameter value is
the main problem in the clustering of the multivariate Gaussian mixture. Usually follow-
ing initialization methods are used: random multistart method,k-means or some heuristic
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method and hierarchical clustering start. Some procedures combines EM algorithm with
incremental adding components to the mixture.

In spite of a popularity of clustering methods, most clustering software are based
on the datamining approach or heuristic procedures. Only a few probabilistic model-
based clustering packages designed for the Gaussian mixture model data are available:
NORMIX, EMMIX and MCLUST. NORMIX uses a random start method, EMMIX uses
a random start ork-means start from random centres and MCLUST package uses hierar-
chical model-based clustering for initialization of the EM algorithm, see (Wolfe, 1967),
(McLachlan et al, 1999) and (Fraley and Raftery, 1999).

The authors of this paper propose the new probabilistic clustering algorithm for multi-
variate data satisfying a Gaussian mixture model. This constructive procedure is several-
stage that embraces various ideas of data projection, geometric clustering and application
of the EM algorithm. The large number of projection directions is used to avoid loss of
data clustering structure.

Let us introduce some notation. LetO(1), ..., O(n) be the observed objects. Clus-
tering is partitioning of these objects into several homogeneous groups, in a certain
sense. In the case of geometric clustering sample data are matrices[ρi,j ]i,j=1,...,n of dis-
tances (or pseudo-distances) between the observed objectsO(i) andO(j). By denoting

N
def
= {1, ..., n}, we will call the non-intersecting subsetsK1, ..., Kq,

q⋃
j=1

Kj = N as

clusters.
One of the most popular geometric clustering methods is minimization of the sum of

mean distances inside the clusters:

q∑
j=1

1
‖Kj‖

∑
s,r∈Kj

ρs,r −→ min . (1)

Here and later we denote the number of elements of setA by ‖A‖.
The probabilistic model is applied under the assumption that the observed objects

belong to some aggregate that consists ofq non-intersecting classes. If ad-dimensional
features vectorX corresponds to every object andν denotes the number of a class to
which the object belongs, then the vectorX and numberν are random. When features
X(k) of the observed objectsO(k), k = 1, n are known and the class numbersν(k)
are unknown, we have a clustering problem. We’ll restrict to the case, where objects are
selected independently. So, we have a sampleX = {X(1), ..., X(n)} consisting of an
independent copies of the random column-vectorX. In the case of hard clustering, we
have to estimate the unknown valuesν(k) ∈ {1, ..., q}, i.e., to obtain̂ν(k) = ν̂(k, X),
k = 1, n. In case of soft clustering, the a posteriori probabilitiesπ(j, X(k)), j = 1, q,
k = 1, n are estimated. These probabilities are defined by the equality

π(j, x) = P{ν = j|X = x}. (2)
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Let Φj denote a conditional distribution ofX givenν = j. If Φj is a Gaussian distri-
bution with densityϕj , j = 1, q, then the distribution densityf of vectorX satisfies the
equality

f(x) =
q∑

j=1

pjϕj(x)
def
= f(x, θ), x ∈ R

d. (3)

Herepj are a priori probabilities of the observed object belonging to classesKj , i.e.,pj =
P{ν = j} andθ = (pj , Mj , Rj , j = 1, q) is the parameters vector of the multivariate
model, whereMj andRj denotes a mean and the covariance matrix corresponding to the
normal densityϕj .

It follows from (3) and the Law of total probability that for everyj = 1, ..., q, x ∈ R
d

P{ν = j|X = x} =
pjϕj(x)
f(x, θ)

def
= πθ(j, x). (4)

In this case the “plug-in” approach could be applied in clustering:

π̂(·) = π
θ̂
(·), (5)

whereθ̂ is a statistical estimate of multivariate parameterθ. It is natural to use the maxi-
mum likelihood approach to estimate this parameter

θ̂ML = arg max
θ

n∑
k=1

log f(X(k), θ). (6)

But if the data dimensiond is high, the calculation of estimate (6) is a complicated task in
practice. Usually a recurrent EM algorithm is used to solve this problem. This algorithm
recalculates estimateŝπ andθ̂ using expression (5) and the formulas

p̂j =
∑
x∈X

π̂(j, x)
n

,

M̂j =
∑
x∈X

π̂(j, x)
p̂jn

x, (7)

R̂j =
∑
x∈X

π̂(j, x)
p̂jn

xx′ − M̂jM̂
′
j .

But the EM algorithm estimator converges to statistic (6) only if the initial value of es-
timateθ is close toθ̂ML. So, we have to get a precise enough value of initialθ or π(·)
using some other method. This problem is partly solved in the univariate case. For exam-
ple, in (Rudzkis and Radavicius, 1995) the recurrent components allocation procedure is
proposed. This procedure combines the EM algorithm and non-parametric estimation of
densityf and it is effective enough. The usage of this procedure in a multivariate case
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is rather complicated, especially if the dimension of data is high. Dimension can be re-
duced by using the projection pursuit technique, see (Rudzkis and Radavicius, 1999) and
(Rudzkis and Radavicius, 2003), however a part of information on the data clusters is lost
after passing on to lower dimensional space in general case. If we do not restrict us to
one projection, but will project a lot of times to various subspaces of lower dimension,
the loss of information would be avoided. We are going to discuss a multivariate cluster-
ing method, based on the analysis of univariate data projections – a kind of tomography
approach.

2. Employing the Inversion Formula

The probability functionf can be obtained from the characteristic function using the
inversion formula

f(x) =
1

(2π)d

∫
Rd

e−it′xf∗(t) dt, (8)

wheref∗(t) = Eeit′X denotes the characteristic function of random vectorX.
For eachτ ∈ R

d the scalar productτ ′X is a univariate random value. We denote
the distribution density of this value byfτ . Let definef∗ andf∗

τ as the characteristic
functions off andfτ respectively. Since there is a one-to-one correspondence between
densities and characteristic functions and

f∗(t) = Eeit′X = Eei|t|τ ′X = f∗
τ (|t|), whereτ = t/|t|, (9)

the distribution densityf is uniquely defined by set of densities{fτ , τ ∈ B} of univariate
projections of the random vectorX, whereB denotes the unit sphere in spaceR

d. Making
use of the inversion formula (8) and replacing variables by a spherical coordinate system,
we obtain an equality

f(x) =
1

(2π)d

∫
B

ds

∞∫
0

e−iuτ ′xf∗
τ (u)ud−1 du, (10)

where
∫
B

ds denotes the surface integral overτ ∈ B. >From the parametric estimation of

univariate projected densitiesfτ , we also obtain the estimates of characteristic functions
f∗

τ . Putting these estimates on the right side of expression (10) and replacing the surface
integral by a sum we obtain the formula for calculating estimatef̂

f̂(x) =
c(d)
|T |

∑
τ∈T

∞∫
0

e−iuτ ′xf̂∗
τ (u)ud−1 du. (11)
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HereT is a finite set of points, uniformly distributed on the sphereB, c(d) = π
d
2

d Γ( d
2 +1) ,

whereΓ denotes the Gamma function. >From equality (3) it follows, that densitiesfτ are
mixtures of the univariate Gaussian densities. Letϕj,τ denote the density of the univariate
Gaussian distributionN(mj(τ), σ2

j (τ)), wheremj(τ) = τ ′Mj , σ2
j (τ) = τ ′Rjτ . Then

fτ (u) =
q∑

j=1

pjϕj,τ (u)
def
= fτ

(
u, θ(τ)

)
, (12)

whereθ(τ) = (pj , mj(τ), σ2
j (τ), j = 1, ..., q). After estimatingθ(τ), τ ∈ T by some

univariate Gaussian mixture analysis method (e.g., the method proposed in (Rudzkis and
Radavicius, 1995)), from (12), and replacing the distribution functions by characteristic
functions, we obtain estimateŝf∗

τ and it remains only to make use of (11). Unfortunately,
the estimate of distribution densityf(x) calculated this way is non-parametric and it can
be used in data clustering only indirectly, together with other methods. We need to have
estimates not only of the densityf(x), but also of its componentsϕj for data cluster-
ing. The components can be also defined by expression (11) by replacingf̂ andf̂∗

τ with
ϕ̂j andϕ̂∗

j,τ respectively, however, the numbering compatibility problem of components
ϕj,τ among various projection directionsτ ∈ T can arise in practice. The mentioned
procedure of consecutive component isolation (see (Rudzkis and Radavicius, 1995)) ap-
plied in the univariate projectionτ ′X analysis assigns the first number to the component
whose mean is closest to the mode offτ . In the general case, while projecting in var-
ious directions, Gaussian distributions corresponding to different clusters can have this
property. Just like in the case of using the EM algorithm for clustering multivariate data,
the problem disappears if we succeed in obtaining precise enough data clustering which
allows a compatible grouping of data projectionsτ ′X(t), t = 1, n. Later these clusters
of univariate data can be improved using the EM algorithm and the inversion formula is
applied in the above described way. So, the core problem is obtaining of the initial esti-
mateπ(·). The authors suggests using the geometric clustering approach for this task. The
pseudo-distances matrices are based on the clustering results of univariate projections.

3. Geometric Clustering Procedure

Let us describe the proposed hard data clustering procedure. Letρ(x, y) be a non-negative
pseudo-distance function defined for allx, y ∈ R

d. In the general case, this function does
not satisfy the triangular inequality. Let us divide the set of observation numbersN into
non-intersecting subsetŝK1, ..., K̂q so as to minimize value of the functional

Q(K1, ..., Kq) =
q∑

j=1

1
‖Kj‖

∑
s,r∈Kj

ρ
(
X(s), X(r)

)
. (13)

The minimization algorithms are widely analysed and we will not detail in this paper.
The main task is selection of the distance functionρ. Let us consider the observations
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x, y ∈ X to be closer to one another, the more similar are the estimates of a posteriori
classification probabilities of their projections. Soρ(x, y) = max

τ∈T
ρτ (x, y), where

ρτ (x, y) =
q∑

j=1

|π̂τ (j, x) − π̂τ (j, y)|, (14)

andπ̂τ (j, x) denotes the estimate of probability

πτ (j, x) = P{ν = j|τ ′X = τ ′x}.

Thus, preliminary hard clustering of a sample consists of the following stages

• selection of a projection directions setT ⊂ B;
• calculation of the maximum likelihood estimates

θ̂(τ) = arg max
θ(τ)

n∑
s=1

log fτ (τ ′X(s), θ(τ)) (15)

or their approximation for eachτ ∈ T ;
• estimation of a posteriori probabilities by means of the “plug-in” technique

π̂τ (j, x) =
p̂j(τ)ϕ̂j,τ (τ ′x)

fτ (τ ′x, θ̂(τ))
, τ ∈ T ;

• calculation of a set of clusters

(K̂1, ..., K̂q) = arg min
K1,...,Kq

Q(K1, ..., Kq)

Next, analogously as having the training samples, it is possible to calculate the initial
multivariate estimatẽθ of parameterθ defined by the equalities

p̃j =
‖Kj‖

n
,

M̃j =
1

‖Kj‖
∑

s∈Kj

X(s), (16)

R̃j =
1

‖Kj‖
∑

s∈Kj

X(s)X ′(s) − M̃jM̃
′
j ,

wherej = 1, q. SubstitutingX(s) for their projectionsτ ′X(s) in (16), we define the
preliminary compatible estimates̃θ(τ), τ ∈ T .

Using the “plug-in” approach (5), from̃θ we obtain a preliminary estimate of soft
clusteringπ̃. This estimate can be improved by a recurrent EM algorithm until a new
estimate becomes stable. Let us denote this new estimate byπ̂EM .
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Applying the inversion formula in clustering, we first must fix the estimatesp̃j and im-
prove other elements of̃θ(τ) by the EM algorithm. We calculate the statisticsϕ̂j placing
f̂∗

τ by the estimates of characteristic functions corresponding to the obtained estimates of
θ̃(τ) in formula (11). These statistics define the estimate ofπ by equalities

π̂I(j, x) =
p̃jϕ̂j(x)
q∑

i=1

p̃iϕ̂i(x)
, j = 1, q. (17)

4. Simulation Results

It is not difficult to make analysis of precision of the proposed estimates by means of
simulation. We assume the mean error of soft classification

∆π(π̂) = E

q∑
i=1

∣∣π̂(j, X) − π(j, X)
∣∣. (18)

as a precision measure of estimation of a posteriori probabilities. Having selected the
parameter of the modelθ and sample sizen, we generate independent random samples
X

(s) = (X(s)(1), ..., X(s)(n)), s = 1, . . . , r, and obtain realizationŝπ(1), ..., π̂(r) of the
estimates analysed. The empirical analogue of functional (18) is the statistics

δπ(π̂) =
1
rn

∑ ∣∣π̂(s)(j, X(s)(t)) − π(j, X(s)(t))
∣∣, (19)

where the sum is taken overj = 1, q, t = 1, n, s = 1, r. We usedr = 10 in all the
experiments of this study.

In practice we can meet not only the clustering problem, but also the problem of es-
timation of a Gaussian distribution mixture parameters or distribution density. Using (7),
from the classification probabilitieŝπ we can obtain the estimate of the mixture parameter
θ̂. The error

∆θ(θ̂) = E

∫
Rd

(
f

θ̂
(x) − fθ(x)

)2 dx, (20)

will be regarded as the precision measure for this parameter as well as for the parametric
density estimate and its with empirical analogue would be

δθ(θ̂) =
1
r

∑
s

∫
Rd

(
f

θ̂(s)(x) − fθ(x)
)2 dx, (21)

which is not so difficult to calculate, because the integral can be expressed analytically.
The main purpose of this research is to compare the precision of estimatesπ̃, π̂EM and
π̂ML. The latter estimate is obtained by applying the “plug-in” approach to the maximum
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Table 1

Error dependence on the sample size2.

Sample Error π̂ML π̃ π̂EM π̃∗ π̂∗
EM

n = 50 δπ 0.01987 0.06111 0.07903 0.10053 0.11879

δθ × 100 0.41735 0.46795 0.47304 0.46489 0.48914

n = 100 δπ 0.01478 0.02578 0.01504 0.02773 0.01504

δθ × 100 0.26139 0.20742 0.23366 0.21509 0.23366

n = 200 δπ 0.01397 0.01814 0.01397 0.02315 0.01397

δθ × 100 0.14650 0.13488 0.14650 0.13682 0.14650

n = 500 δπ 0.00959 0.01748 0.00959 0.01753 0.00959

δθ × 100 0.07321 0.08112 0.07321 0.08265 0.07321

likelihood estimate (6), i.e.̂πML(·) = π
θ̂ML

(·). When simulating, we calculated this
estimate by means of the EM algorithm with the true value ofθ as an initial value.

In some cases, at small sample values, not only the above mentioned estimates, but
also the value of statistic (17) were calculated. The maximum likelihood estimator is
asymptotically efficient, but for a small sample size its errors can be on the average greater
than those of other estimators includingπ̂I .

In the study of precision the maximum likelihood estimates of the parameters of a
univariate Gaussian mixtures were used. The EM algorithm with the initial value equal to
the true value ofθ(τ) was used to obtain estimatesθ̂(τ). Unfortunately, it is impossible
to do in a real application, that’s why we also used the software1 for estimatingθ(τ)
based on the mentioned technique described in (Rudzkis and Radavicius, 1995). The
latter cases are denoted by “*”. Table 1 presents errors of the methods based on the
maximum likelihood estimates pseudoestimates and the real estimates.

In the simulation process, it has been noticed that clustering probability estimates
obtained by geometric clustering procedure are more stable if the maximum in for-
mula (14) is calculated rejecting a part of directionsτ , with the highest value of sum∑n

t,k=1 ρτ (X(t), X(k)). The number of rejected directions can be selected using maxi-
mum likelihood criterion. This modification of the method is natural, because without it
even one direction with very inaccurate estimates of classification probabilitiesπ̂τ (·, ·)
can determine the value of distance functionρ.

The proposed methods were analysed by a variety of mixtures having different prop-
erties: non-overlapping, partly overlapping or highly overlapping clusters; similar or sig-
nificantly different cluster probabilities; small or large sample size; various structure of

1Software for estimation the parameter of Gaussian mixture developed in Institute of Mathematics and
Informatics, Lithuania

2The parameters of the mixture ared = 5, q = 4, p1 = p2 = p3 = p4 = 0.25, M1 = (8, 8, 0, 0, 0)′,
M2 = (−8, 8, 0, 0, 0)′, M3 = (−8,−8, 0, 0, 0)′, M4 = (8,−8, 0, 0, 0)′, R1 = diag (16, 1, 1, 9, 4),
R2 = diag (9, 16, 4, 1, 4), R3 = diag (25, 16, 4, 9, 1) andR4 = diag (25, 4, 9, 1, 9).
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Fig. 1. Error plot of the maximum likelihood and geometric clustering procedures.

covariance matrices. Let us take one typical case of mixture with partly overlapping clus-
ters and analyse the dependence of the method precision on the sample sizen. The results
of this research are given in the table. The parameters of the Gaussian mixture used are
d = 5 andq = 4, i.e.,dim θ = 83. With such a dimension ofθ, we consider the sam-
ple wheren = 100 to be very small,n = 200 – small, andn = 500 of medium size.
The results for an extremely small sizen = 50 will also be presented for comparison.
The Monte-Carlo simulation study has shown that it is enough to use 200–500 univariate
projections for geometric clustering of 5-dimensional data. Therefore we used a set of
uniformly distributed directionsT containing 500 directions in further research.

The comparison error plot of the maximum likelihood method and the proposed geo-
metric clustering method̃π∗ is presented in Fig. 1. The plot shows, that geometric cluster-
ing method has largerδπ error than maximum likelihood estimator, but it is more precise
by means ofδθ criterion.

The conclusions follow from the given error table and error plot:

• the maximum likelihood method is the best method to estimate classification prob-
abilities;

• in the case of a small and medium sample, the proposed geometric clustering
method, improved by the EM algorithm yields the same errors as the maximum
likelihood estimator (pseudo-estimator, to be precise, because it is calculated using
the true values of parameterθ). This conclusion is also valid for the estimatorπ̂EM

which has been calculated relying on the assumption that the MLE could be found
for univariate data, as well as for the estimatorπ̂∗

EM which is the sample function.
Therefore the authors of the paper suggest using exactly this statistic combining
the univariate data clustering method (Rudzkis and Radavicius, 1995), geometric
clustering and the EM algorithm for the multivariate data;

• the clustering method for univariate data described in (Rudzkis and Radavicius,
1995) is precise enough and it can be used to calculate pseudo-distances in the
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Fig. 2. Comparison plot of the EM algorithm initialized using random start procedure and the EM algorithm
initialized using the proposed geometric clustering. The values of classification errorδπ are presented in the
plot. The random start initialization failed to calculate the MLE estimate of parameter if sample size is small
and the probabilities of the clusters are significantly different. The classification error are significantly greater in
these cases. In the other cases, the EM algorithm converges to the same value using both initialization methods.3

geometric clustering procedure because the errors of estimatorsπ̃ andπ̃∗ differ but
slightly;

• though the maximum likelihood estimatorπ̂ML is the best one to estimate classi-
fication probabilities, it is not best to estimate the distribution density. Statisticπ̃

andπ̃∗ often yields lower errorsδθ thanπ̂ML.

The simulation results have also indicated that the geometric clustering algorithm
works properly even without the EM algorithm improvement when there exist direction
in which the clusters of projected data are well separated.

The proposed methods were compared with the maximum likelihood estimator and
with a popular in a statistical software the random start EM procedure also. Random start
procedure uses the random partitioning of observations for an initial parameter of the
EM algorithm. For large data samples the subsampling of data were used as suggested in
(McLachlan et al, 1999). This is to limit the effect of the centre limit theorem witch would
have the randomly selected starts being similar for each component in large samples. In
many cases the random start method should be repeated 20–200 times to calculate the
MLE of parameter. But if a prior probabilities of the clusters are significantly different,
the random start procedure does not find a cluster with a small a prior probability value
even after a large number of start points (our analysis is based on 4000 start points). The
simulation results are displayed in Fig. 2. If sample size is small and the probabilities of
the clusters are significantly different the proposed EM algorithm initialization method
is better than the random start method. Using the proposed procedure improved by EM
algorithm the MLE estimate is calculated.

3The parameters of the mixtures are given in appendix.
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We will briefly review the results analysis based on the Inversion formula method.
After the first experiments it has already been observed that the distribution density es-
timate defined by formula (11) is not smooth and additional smoothing is needed. The
authors of the paper propose to introduce an additional multipliere−hu under the inte-
gral sign, whereh is a small value, a so-called smoothing bandwidth. Such an expression
of the smoothing multiplier is especially convenient in the case of Gaussian distribution
mixtures, because we can still find the exact value of the integral (11). In practice, intro-
duction of such a multiplier simply increases the estimates of cluster variance by the value
2h. The simulation analysis indicated that it is optimal to select the smoothing bandwidth
value dependent on scale parameter of the data. The reasonable choice isc · λmax, where
λmax is the maximum eigenvalue of the data covariance matrix. The parameterc can be
selected using the maximum likelihood criterion. The Monte-Carlo research has also in-
dicated that the same smoothing bandwidth value cannot be used for estimating density
values of separate components of the mixture. It should be chosen adaptively, depending
on the properties of the component. The smoothing bandwidth selection problem requires
more comprehensive study.

5. Appendix

This appendix contains the parameters of analysed mixtures.

Mixture 1

d = 5, q = 2, n = 250, p1 = 0.92, p2 = 0.08,

M1 = (0, 0, 0, 0, 0)′, M2 = (5, 0, 0, 0, 0)′,

R1 =




1 0 0 0 0.07
0 4 −0.5 0 0
0 −0.5 7 0 0.4
0 0 0 4 0

0.07 0 0.4 0 3


 ,

R2 =




6 0 0 0 0
0 4.6994 0.7182 −2.8503 −0.6473
0 0.7182 4.6341 −1.9133 −0.2569
0 −2.8503 −1.9133 5.6764 −1.3610
0 −0.6473 −0.2569 −1.3610 2.9899




Mixture 2

d = 5, q = 4, n = 400, p1 = p3 = 0.2, p2 = p4 = 0.3,

M1 = M2 = M3 = M4 = (0, 0, 0, 0, 0)′, R1 = diag (1, 1, 1, 1, 1),
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R2 =




16 0 0 0 8
0 25 −5 0 0
0 −5 25 4 0
0 0 4 25 0
8 0 0 0 36


 ,

R3 =




36 20 0 0 0
20 65 −5 0 0
0 −5 4 1 0
0 0 1 16 0
0 0 0 0 1


 ,

R4 =




25 0 10 0 8
0 4 −2 0 0

10 −2 49 4 12
0 0 4 16 0
8 0 12 0 16


 .

Mixture 3

d = 5, q = 3, n = 200, p1 = 0.35, p2 = 0.3, p3 = 0.35,

M1 = (−5, 0, 0, 0, 0)′, M2 = (0, 0, 0, 0, 0)′, M3 = (5, 0, 0, 0, 0)′,

R1 = diag (1, 1, 1, 1, 1), R2 = diag (9, 1, 4, 1, 4)′, R3 = diag (2, 16, 4, 25, 1).

Mixture 4

d = 5, q = 3, n = 220, p1 = 0.05, p2 = 0.9, p3 = 0.05,

M1 = (−5, 0, 0, 0, 0)′, M2 = (0, 0, 0, 0, 0)′, M3 = (5, 0, 0, 0, 0)′,

R1 = diag (1, 1, 1, 1, 1), R2 = diag (9, 1, 4, 1, 4)′, R3 = diag (2, 16, 4, 25, 1).

Mixture 5

d = 5, q = 4, n = 200, p1 = p2 = p3 = p4 = 0.25,

M1 = (−5, 0, 0, 0, 0)′, M2 = (5, 0, 0, 0, 0)′, M3 = (−5, 0, 0, 0, 0)′, M4 = (5, 20, 0, 0, 0)′,

R1 = diag (4, 9, 1, 4, 9), R2 = diag (6, 4, 25, 1, 9), R3 = diag (1, 16, 4, 64, 1),

R4 = diag (1, 25, 36, 4, 6).

Mixture 6

d = 5, q = 2, n = 200, p1 = 0.9, p2 = 0.1,

M1 = (0, 0, 0, 0, 0)′, M2 = (15, 0, 0, 0, 0)′,

R1 = diag (25, 1, 1, 1, 1), R2 = diag (1, 1, 1, 1, 1)
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Daugiamǎci ↪u duomen ↪u klasterizavimas Gauso skirstinio mišinio
modelyje

Mindaugas KAVALIAUSKAS, Rimantas RUDZKIS

Straipsnyje nagriṅejamas didelio matavimo nepriklausom↪u atsitiktini ↪u dydži ↪u, tenkinaňci ↪u Gauso
skirstini ↪u mišinio model↪i, imties negriežto klasterizavimo (klasifikavimo be apmokymo) uždavinys.
Pagrindinis ḋemesys skiriamas algoritmams, kurie remiasi duomen↪u projektavimu ↪i mažesnio
matavimo erdves. Pasiūlyta nauja keli↪u etap↪u klasterizavimo proced̄ura, apimanti steḃejim ↪u vie-
namǎci ↪u projekcij ↪u pasiskirstymo statistin↪e analiz↪e, daugiamatės imties klasterizavim↪a geometri-
niais metodais ir EM algoritmo taikym↪a. Darbe pateikiami nagrinėjam↪u metod↪u tikslumo analiżes
rezultatai, gauti Monte-Karlo b̄udu.


