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Abstract. In!'this paper, we discuss computational aspects of an interior-
point algorithm [lj for indefinite quadratic programming problems with box
constraints. The algorithm finds a local minimizer by successively solving indef-
inite quadratic problems with an ellipsoid constraint. In addition, we present a
sufficient condition' for a local minimizer to be global, and we use this result to
generate test problems with a known global solution. The proposed algorithm
has been implemented on an IBM 3090 computer and tested on a variety of dense
test problems, including problems with a known global optimizer.
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1. Introduction. In this paper, we discuss computational
aspects of an interior-point algorithm (IPA) proposed in [1] for
indefinite quadratic programming (IQP) problems with box con-
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straints:
min f(z) = %zTQz +cTz, (1.1)

st. zeP={zeR" I z<u}

where Q € R"*" is an indefinite symmetric matrix and z,¢,l,u €
R". Such problems arise quite naturally in a number of different
applications. For example, every linear complementarity problem
can be written in the above form [8].

Although polynomial time algorithmeexist for the solution of
convex quadratic programming (see [12]), the problem of minimiz-
ing a nonconvex quadratic function is computationally very diffi-
cult. It is well known that, from the complexity point of view,
problem (1.1) belongs to the class of NP-complete problems ([17},
[19], [21]). Even the problem of checking local optimality for a fea-
sible point of a general quadratic problem is NP-hard ([15],[18]).
There is a large literature for global optimization algorithms and
heuristics for nonconvex quadratic problems [17]. Many of the pro-
posed methods are based on local search techniques.

One of the first algorithms to compute local minima is the
Frank and Wolfe algorithm ([6], [13]). However, this algorithm has
a very slow rate of convergence. Forsgren et al. [5] used an inertia-
controlling quadratic programming method for computing a local
minimizer of nonconvex quadratic programs; see [7] for some major
references. Coleman and Hulbert [1] proposed a direct active set
method for solving definite and indefinite quadratic programs with
box constraints. Other algorithms are described in [2] and [4]. Kar-
markar [11] used an interior-point approach to solve approximately
concave quadratic problems. .

In this paper, we discuss computational aspects of an interior-
point algorithm [1] for indefinite quadratic programming problems
with box constraints. The algorithm also finds a local minimizer by
successively solving indefinite quadratic problems with an ellipsoid
constraint. In addition, we present a sufficient condition for a local
minimizer to be global, and we use this result to generate test
problems with a known global solution.
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The paper is organized as follows. In Section 2, we describe
_ the IPA algorithm that uses a procedure IQE to solve an indefinite
quadratic problem with an ellipsoid constraint. The algorithm finds
a point satisfying the first and second order optimality conditions
under some nondegeneracy assumptions [1}. In Section 3 a sufficient
condition for a local minimizer to be global is discussed. Using this
sufficient condition, in Section.4, we propose a method to generate
test problems with known global optimal solutions. In Section 5, we
present preliminary computational results of our implementation of
the IPA algorithm using these test problems and other random test
problems.

2. A interior-point algorithm (IPA). In this section, we
review the IPA algorithm that solves an indefinite quadratic prob-
lem subject to box constraints. For simplicity of analysis, let us
transform (1.1) to ' '

min f(z) = %zTQ:c +cTz, (2.1)
st. z€S={r€R*0<z<e},
where ¢ is a ve{;tor of all 1’s. Note that this transformatlon is
unnecessary in actual computation.

In the IPA algonthm we solve a quadratic problem subject to
an ellipsoid constraint at each step. It is known that the general
quadratic problem with an ellipsoid constraint can be solved in
polynomial time (e.g., [1]). First, we describe the main algorithm,
IPA, and then present the procedure, IQE.

Initially, we have a starting point z° that is interior to the
feasible region. We consider an ellipsoid E; with center z0 that
is inscribed in the feasible region. Then, we solve the quadratic
probiem with an ellipsoid E; constraint using the procedure IQE.
Let ! be a solution of the problem. Again we consider an ellipsoid
E, with center z! that is inscribed in the fedsible region. By re-
peating this process, we compute a sequence of intericr points z°
z!, 22, .... After sufficiently many steps, we obtain an approﬁﬁnate
local minimizer of problem (2.1). The following summarizes the
algorithm IPA.
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", Algorithm IPA. _ »
1. k=1; 2° = 1/2¢; Dy = diag(},...,1).
2. Consider an ellipsoid E; C [0,1]" with center zF~! and radius
~ r<1such that

Ey ={z||| Dy '(z - ") || < 7},

where ||.|| represents the /; norm throughout this paper.

3. Solve the following indefinite quadratic problems with an
ellipsoid constraint using the procedure IQE (that will be
discussed later): '

min f(:c) = -;—:::TQ:: +cTz, (2.2)

st. z € Ee.

Let z* be a global minimizer of (2.2).

4. If z* does not satisfy the stopping criterion (that will also
be discussed later), then compute Di4+1, where
Diy1 = diag(dy,...,dn) and d; =min{zf,1-2f},i=1,...n,
k=k+1; goto Step 2;
Stop.

Now we describe the details of the procedure IQE for solving
the problem (2.2), i.e., the indefinite quadratic problem with an
ellipsoid constraint: '

min f(z) = %xTQx +Tz, (2.3)

st. || DMz -2 I,

where D = D;, and Problem (2.3) has a global optimizer z* iff (e.g.,
(14], [20]) ‘
(Q+pD Az = ~(Qa* "1 ), (2.4)

| D 'Az|l=r, p>0 (2.5)

. and Q4+ uD~? is positive semidefinite, (2.6) -
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where Az = zF — z¥~! and p is the multiplier of the ellipsoid con-
straint in (2.3). The equation (2.4) can be rewritten as '

(DQD + p)D~'Az = ~D(Qz*"! +¢). (2.7
Let
Q=DQD, Az=D"'Az, ard &= D(Qz*'+0).

Then, equations (2.4) —'(2.6) can be rewritten as

(c'é + u)AE = =G, (2.8)
| Az |=r, (2.9)
u 2 AQ), (2.10)

where A(Q) denotes the minimum eigenvalue of Q. Since DQD is
a congruent transformation and Q is an indefinite matrix, A(Q) is
negative. Note that for any symmetric matrix Q, there exists an

orthogonal and nonsingular matrix U € R**” such that
{A M - ) ' \
UTQU=A and UUT =1,

where A = diag();), i = 1,...,n, and \;s are the eigenvalues of
Q. -Also note that the columns of U are eigenvectors of Q. Since
Q@ = UAU7, from (2.8)

UT(UAUT + uhAz = -U7G. (2.11)

Then, system (2.8) - (2.10) can be written as

(A+pDUTAz = -UT¢, (2.12)
| UTAz =1, ‘ (213)
12 1MA)] = 1AQ)I. (2.14)

Let AZ = UTAZ and ¢ = UTé Then we have ~

(A + p)AZ = ¢, (2.15)
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| Az ||=r, (2:16)
2 3 1AA)). (2.17)

If we solve the system (2.15) - (2.17) and get AZ, then from
the relations Az = DAZ = DU A%, we obtain z* = zF=14+ Az thatis a
global solution of (2.2) or (2.3). It seems that the system (2.15) -
(2.17),is simpler than the system (2.4) - (2.6) since we have only a
diagonal matrix A in (2.15) - (2.17). »

We now discuss how to solve the system (2.15) - (2 17). As-
sume the entries of A and Z are permuted so that }; is the smallest
eigenvalue of Q (denoted as A(Q) above). We assume further that
all other eigenvalues are strictly greater than \; (this assumption
can be removed at the expense ofa slightly more complicated pro-
cedure). Note that with these assumptions, the matrix A + || is
singular and positive semidefinite, having as its range exactly the
set of vectors whose first component is zero. Thus, consider the
following two cases.

Case 1: ¢; # 0 (Z is not in the range of A + |A;|I). In this case
we search for a u that satisfies

n ’g’ 2
% () =7
£ B+ A

i=1

5 ) /n . &
by using a binary search for || + E,%-l <p< M+ \,_n_rr%xdﬂ

Case 2: & = 0 (Z is in the range of A + |\ |I). In this case
we set p = || and compute s = I, (A%;)?, where A% is_the

minimum-norm solution of (2.15), i.e., AZ; = 0 and AZ; = ﬁqc_i-;;,

fori=2,..,m. If s < r?, reset A, = Vr? — 5; otherwise (s > r?) find
a new u that satisfies

n é; 2
=& _ 2
z(#"r%’) =T

=2

using a bmary search for |A1| < p <A+ M, and then
reset AZ; = ;TJ_X.' feri=2,...,m.
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Now from AZz, we obtain Az = D UAZ. Thus z* = z8~! + Az
.is a global minimizer of (2.2) and

F(&*1) - fh) = %mﬂ + éAz-T(Q +pD;%)Az > 0.

One can verify that the above procedure is a polynomial-time al-
gorithm. In practice, the radius r can be flexibly chosen as long as
z* = z¥-! 4 Az is an interior feasible point. This will result in a
larger step to obtain z*.

The algorithm IPA has been implemented and tested on a vari-
ety of test problems (Section 5). The purpose of these preliminary
tests is to observe the convergence behavior and the iteration per-
formance of the algorithm IPA as a whole. Our procedure IQE used
in each iteration needs to compute all the eigenvalues and eigen-
vectors of a symmetric matrix — which may not be very practical
for large scale problems. Some practically efficient procedures have
been discussed in [14], which can be used to replace the procedure
IQE in the algorithm IPA for solving large scale problems. |

3. A sufficient condition of global minimum. When the
matrix Q is indefinite, problem (1.1) may have many local minima
which differ from the global solution. However, every global (local)
minimizer of (1.1) occurs at a boundary point of P, not necessarily
a vertex [17]. More generally [9], the following result characterizes
the optimal solution z* of (1.1): if Q has k negative eigenvalues
counting multiplicities, then the dimension of the space spanned
by the gradients to the active constraints is at least k. Hence, at
least k of the constraints are active at z*. Note that, if Q is negative
definite, then every global (local) minimizer is a vertex of P.

From the complexity point of view, the problem of checking if a
given feasible point is optimal is NP-complete ([15],[18]). However,
complexity results of this nature characterize worst-case problem
instances. '

Next, we provide a sufficient condition (initially proposed by
Nenmaier [16] for general quadratic problems) for checking if a lacal
minimizer is global. This sufficient condition is used (Section 4) to
construct test problems with a known global solution.
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"+ Let z be a local minin_izer of (11) "Thé first order necessz;,ry
conditions are given by

Qi +c+p—A=0, @)
pi(Zi —u;) =0 and MG-3)=0, i=1,...,n, (32
f-u<9 and l—igﬂ (3.3)
430 and 230 (39

From (3.2), (3 3), and (3.4), we have
N = )l = 2) = —pi(ls — 2) 20, (3.5)

(N = p)(us = &) = Ny — 2:) 20,7 (3.6)

fori=1,...,n. Let )\ - pi=y fori=1, ...,n. From (3.2), (3.5),
and (3.6)

Cinf {k - &), pi(w — 3)} =0, i=1,...,n. ‘_
The equation (3.1) can be rewritten as
Qz+c=y. (3.7)

We make the {ollowing nondegeneracy assumption:
I & = u; or # =1, then y; #0, i=1,...,n. Hence

<z <uy&y=0 for i=1,...,n

Let m'be the number of indices ¢ for which y; # 0. Without loss.of
generality, we may assume that

=y or L, i=1,. ,m,
I"<i|'<ui, l—m+1 an,
where 1 < m < n. _

We are going to prove that the matrix M = Q+ ( 16") H(I, 0)

is positive semidefinite for some matrix H € R™*™, First,if m=n
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(i.e., the objective is concave), then by choosing an H such that
Q+His dxa.gonally dominant, we can easily prove that M is a
positive semidefinite matrix. For the second case (if m < n), we
need the following derivation.

Let
| a=(3 %),

where Q4 € R™*™ Qp € R™X(»=m) and Q¢ € R»=-mx(n-m), We
make the assumption that the submatrix Q¢ is positive definite.
Define Z € R**("~™) and V.€ R"*™ such that

7= (aln) = v=(5);

where I is an identity matrix. Note that the columns of Z form
a basis of the null space of V7. From the second order optimality
conditions, :

27QZ = Qc,

which is a positive semidefinite matrix. Hence, we can find L €
R(r=m)x(n=m) gy -tithat -

Qc = LI7. ‘
In addition, deﬁn?e matrices E € R™*(®-m) and F € R™*™ such that

E=WVTQ2)L T = QsL~T and

F=VTQV-EE” =Qa-QsQc™'Qs".
Note that F is the Schur complement of Q¢ in the matrix

(Qc Qg) )
@s Qa
Next, construct a matrix H = diag(k;), h; 2 0, i = 1,...,m so that

F + H is positive semidefinite. Let F+ H = NNT. Usmg the above
information, we are going to show that the following matrix

(Y™ &)
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‘is, positive semldeﬁmte Note that

Z VY @+ (%) #tm o3z ¥)

(58 £+ ()wom
(ZTQZ zTQv )
)

vViQz VTQV +H

- LLTV
=(Eir perbent
(L 0 LT ET
“\E N

- =BBT.

Hence the matrix
@ vy @+ (') Bun N2 V)

is positive semideﬁnite and since (Z V) is nonsingular, the matrix

o () mowo= (5" &)

is positive semidefinite.
Using the following theorem, we can check if a nondegenerate
local minimizer of (1.1) is a global minimizer.

Theorem 8.1, Let  be a nondegenerate local minimizer of
(1. 1) and S A
Hyi
ai=+—, i=1...,m, (3.8)
2yl :

where H and y are defined as above. Then for all 2 € P,
Qz+c)(z-2)20 . (3.9)

and

f(z) - f(=)>(Qz+c) (=~ z)(l-—Za,(z.-—z.)) (3.10)

i=1
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If ”
a=Y alm=-k) <1,

[E
then % is a global minimizer of (1.1 ).
If '

a= E Jai(us = ) i< 1,

i=l
then  is the unique global minimizer of (1.1).

Proof. Note that for any =z ¢ P,
fe) = f&)+ Q2+ (e = 8)+ 3 -8 Q-3)  (3.11)

and from (3.7),

Qz+0) (z-2) =y (2 - 2). - (3.12)
If ‘
Y= dlag(‘yt)y i=1l,...,m, e= (17 tRK] 1)1 € Rm’ and
" s=Y(In 0)(z-Z) € R™, : (3.13)
then ' : '
Q%+ ¢)T(z-2) =eTs. - (3.14)
Note that
s = yi(zi — ;) 2 inf{yi(l; ~ Z;), pi(wi = )} =0, i=1...,m
and-

$;=0 iff z;-2;,=0,i=1,...,m.

Hence, from (3.14),
(Qz+¢) (2~ £) 20 withequality iff z;=2;, i=1,...,m.

Since H and

Q +.( ) Hm )
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are positive semidefinite, we have
1l (I _
0< 3= @+( 7 ) HIm 0}z -2)

= %z?Qz +'-21-fTQz + %(z ",4»1—3)1' (I(,),,) H(Im 0)(2 - 3)
= (&) = 1(2) - (@2 + )T (z = ) + 5TV HY s
< f(a) = F(2) - (@2 + T (2 = ) + ()07 9),

where . ‘
v;:(Y’lHY'l)i,-=2;-’-, i=1,...,m.
.U '

Since

. m
visi = 2ai(zi = %), i=1,...,m and Ts= 2Za¢(z; - %),

i=1
@~ 1@ - @+ @-2)+ 50T
= f(z) = f(@) - Q2 + )" (z = 5)(1 ~ 3 _ail=: — &)

’Therefore,
f@) = f(4) > (Qz + cj?’"(z -5 - i;ai(z; — &) ' (3.15)
. Note that .
max{i}a,-(;.—;— )| Li<zi<uw, i= 1,...,m} < i} | as(us = 1) |-
It follows that if |
a= i lai(u; =) |€ 1, ‘aen f(z)— f(8)>0.
R |

Therefore Z is a global minimizer of (1.1). -
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" Assume that o < 1 and 2’ # % is another global minimizer of
(1.1). From (3.10), (Qz +¢)"(z' — ) = 0. Since (3.9) holds with
.equ'a.lity only when z/; = z;, i = 1,...,m, if m = n, then 2’ = z.
Otherwise we can set z/ — # = Zb for some nonzero vector b € R".
We know that b7 ZTQZb is positive since ZTQZ is positive definite.
But this is a contradiction to 7 Z7Q2Zb = 0 in (3.11). Therefore, if
a < 1, then # is unique. ' Q.E.D.

4. Test problem generation. In this section, we describe
a method to generate indefinite quadratic problems with box con- -
straints (1.1) and a known global solution, using the sufficient con-
dition discussed in Section 3. Initially, we choose a point z* and
a matrix Q. By making ¢ satisfy the sufficient condition, we can
generate an instance of problem (2.1) that has the optimum solu-
tion z*. '

We can construct the test problems according to the following
steps:

1. Choose an z* = (23},...,2m, 2541, - -, 25) Such that
¢ gt l; or u;, i=1,...,m,
fTeT i<zi<wu, i=m+1l,...,n,

where 1 < m<n.
" 2. Generate g matrix Q € R"*" such that

Q= WwAwT,
. Ul A nXn
whereW__( 0 Uz) € R™*",
A= diag(-—Al,...,—,\m,/\m.,.l,‘..,/\,,),

Uy € R™xm [, € R(n—m)x(n=m) ape orthogonal matrices,
A € R™*x(n=m)  can be any matrix, and \; > 0 forl € i < n.
Partition Q as _, ,

_{ Qs Qs , ',
Q—(QBT Qc)’ ) _—

where Q4 € R™*™, Qp € R™*(»~™)_ and Q¢ € R(»=m)x(n-m),
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" 3. Let r
: F=Qa-QsQc™'Qs
= (F+H)- H, |
~ where H = diag(h;), b >0, i = 1,....mand F+H is a
positive semidefinite matrix. -
4. The sufficient condition for z* to be a global minimizer of
(1. 1) is given by

max{(a,O)T(z -z')jiz € P} <1 | (4.1)
with a € R™. By consxdenng the box constra.mts, we choose

a such that
a; = t;, -if 2 = In
ST -t ow. (2= w),

where t;, i = 1,...,m, is randomly chosen from (0 u; ) ).
5. Compute y € R" as follows:
. by . ,
%:{ﬁ’., 1.-111”"m’
0, i=m+41,.

6. From Qz* +c¢ = y, compute ¢ € R". Now z* is a globa,l
- minimizer of (1.1).

The following simple exa.mple illustrates the steps to generate
he test problems.

0. n=3, m=2, §;=0, =1, fori=1,23.
1. z* =(1,0,1/4)".
2.

-8 4 0 . '
e={1 2 =8, qu=(7 3) @a=(5) ac=00).
0 -8 16
Note that Q has eigenvalues A = (-9.73,0, 19.73)T.-

F=Qa-Q8Q:'QF

_(-8 4
=(7 &)

3.
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Let h = (12,6)7 so that F+H is PSD. - '
4. a=(-1/4, 1/4)’ B , '
5. y=(-24,12,0)". T
6. ¢ = y— Qz*=(-16,10,-4)7. Then z isa globa.l mxmmxzer of

\._“', g)i
’ ST TSt e e
mm 54; Qz+c z,
t ,os.m‘<1

5 Computatlonal results.’ We nnplemented the algorithm
IPA on an IBM 3090-600S computer with vector facilities using
the VS Fortran compiler .and double precision accuracy for real
variables. :The ESSL subroutines were used for matrix and vec-
tor opera.tlons, random number generatlon, and the eigensystem
solving. The condition || z* — z%¥-1|| < 10~* was used for stopping
criterion of the main a,lgonthm IPA. Since a fractional number of
components of a local mlmmwer hit the upper bound 1, llz¥|| > 1.
in all our numerical examples Thus, this- (absolute) convergence:
condition is'actually harder to meet than the relative convergence
criterion. We used binary search for the parameter pin IQE and the
binary search wa,‘s terminated when “upper-bound - lower_bound”.
< 10~® was satisfied. From the preliminary computatlonal results,
we found that when the parameter r is close to 1, the number of
iterations needed to find a stationary point becomes small. There-
fore, we set r = 0.99 in our implementation. All averages were
obtained from 5 problems and CPU times are given in seconds. .

We have two parameters for generating the test problems: the
nunber of active constraints (nac) at the optimum solution and the
number of negative eigenvalues (neg) of matrix Q Note that neg <
nac. Two types-of dense test problems are solved: test problems
with a known solution (type I) and random problems (type IT). For
generating type I test problems we have the followmg '

1. The optimum solution z* is chosen randomly such that z} G
(0,1), for i = 1,...,n. Half bf the-m active constraints are active
at the upper bound.
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~ 2. The orthogonal matrices, U; and Us, are Householder matrices
of random vectors v € R™*™ and w € R(AP—m)X(7=m)  respec-
tively. Each element of v and w are chosen randomly from

(0,1).

3. The eigenvalues \;,i = 1,...,n, of A are chosen randomly so
that 1< X <2, i=1,...,n. _

4. The submatrix 4 € R™*("~m) of W has elementsa;;, i=1,...,m,
j=1,...,n—m, chosen randomly from (0,1).

3. Choose the diagonal matrix H such that F + H is diagonally
dominant.

Table 1 shows the computational results obtained by solving
the test problems generated by the method discussed in Section 4.
From Table 1, it is observed that IPA takes more steps to converge
to a stationary point as the number of active constraints increases.

Table 1. IPA on varying nac (n = 100, negq = nac)

nac | Avg. Itr. | Avg. CPU time
10 40.8 104
30 68.8 15.2
30 96.4 19.1
70 100.4 20.7
90 118.8 28.9

The relationship between the number of negative eigenvalues
of matrix Q and the complexity of the test problems with a known
solution is shown in Table 2. This shows that the number of iter-
ations is not dependent on the parameter neg. It is interesting to
note that the algorithm always finds a global minimizer for these
type of test problems (although many local minima exist).

Next, we solve randomly generated indefinite quadratic prob-
lems (type II). The matrix Q is generated by Q= UTAU, where U
is an orthogonal matrix (Householder matrix of a random vector
v, where 0 < v; < 1, i = 1,...,n) and i is a diagonal matrix whose
diagonal elements are chosen randomly from

—2< i< -1, i=1,...,neg,
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1<A<?2, i=neg+1,...,n

‘The components of ¢ are randomly chosen from (0,1).

Table 2. IPA on varying neg (n = 100, nac = 60)

neg | Avg. Itr. Avg. CPU time
10 - 94.6 19.1
20 95.0 ‘ 19.1
30 105.8 21.1
40 97.4 19.4
30 94.4 19.1
60 104.4 20.9

Table 3 shows the computational results for type II test prob-
lems. Note that all test problems we solve are dense.

Table 3. IPA for randomly gen'era,ted problems
(n =100, neg = nac)

| ndc Avg. Itr. CPU time

10 88.6 19.3

| 30 94.4 20.7
o 50 972 22.1
700 | 914 © 224

90 86.8 22.0

In addition, we implement the Frank-Wolfe method for solviz,ig '
(2.1). At step k of the Frank-Wolfe method, we solve a linear
programming problem of the form

min Vf(z")Tz,

st. 0<z< e

’

Note that the linear programming problem can be easily solved. Let
z4ir be the solution of the linear programming problem. Using a line
search method in (z*, z4;,], we find z¥+! that minimizes f(z). From
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‘oyr computational experience, we also find that the Frank-Wolfe
method does not generate a sequence of solutions that satisfies the
stopping criterion || 2¥ — z¥-1 || < 10-4. Hence, we compdre the
objective function values of the same problem at each optimum
solution obtained by the Frank-Wolfe method and Algorithm IPA.
Let 2}, and z%g be the final solutions of Algorithm IPA and
the Frank-Wolfe method, respectively. The Frank-Wolfe method
terminates when f(z}p,) > f(z}p) or the number of iterations is
greater than 5000. ' '

Tables 4 and 5 show the computational results for the type
I and type II test problems, respectively. For each instance, we
solved one type I test problem and one type II test problem (n =
100). From Table 4, we can observe that when the number of
active constraints at the optimum solution is small, algorithm IPA
converges faster than Frank-Wolfe method. Note that the Frank-
Wolfe method is very efficient when the solution is a vertex (or close
to a vertex) of the feasible domain. Table 5 shows that in 6 out
of 10 cases, the Frank-Wolfe method fails to find a better solution
than Algorithm IPA does. '

Table 4. IPA and Frank-Wolfe method (type I, neq = nac)

nac | IPA (CPU/Itr.) | Frank-Wolfe (CPU/Itr.)
10 10.3/40 T 45.1/5000 ‘
20 13.9/58 42.0/4757

30 15.8/71 36.3/4223

40 18.3/89 30.6/3661

50 19.0/96 20.5/2570

60 21.6/105 6.9/853

70 23.9/114 2.2/291

80 22.7/123 0.7/101

90 21.0/84 0.03/6

Table 6 shows the computstional results for the randomly
generated problems with various problem sizes. For this table,
~we used two stopping criteria: || z¥ — z¥-1 || < 10~* or |f(z*) -
f(F"1)/1£(z*)| < 10~° since the former (absolute) convergence eri-
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terion becomes difficult to satisfy as n increases due to the reason
mentioned at the begining of this section.

Table 5. IPA and Frank-Wolfe method (type II, neq = nac)

nac | IPA (CPU/Itr.) | Frank-Wolfe (CPU/Itr.)
10 20.9/94 20.3/2472

20 - 22.6/99 41.0/5000

30 19.3/84 7.3/932

40 19.5/82 40.8/5000

50 23.9/102 9.0/1179

60 23.6/102 40.5/5000

70 22.6/93 38.4/5000

80 21.4/85 38.1/5000

90 21.7/84 36.8/5000

Table 8. IPA on randomly generated problems (neg = nac = n/2)

no b Avg. Itr. Avg. CPU time
100 [' 94.6 219
200 136.8 , 196.8
300 ¢ 166.2 745.0

Table 7 shows the improvement from the function value at the
starting point to the final local minimizer for the set of 5 problems
of dimension n = 300.

Table 7. Initial and function values for randomly generated
problems (n = 300)

Problem }Initial Fun. Value!Obtained Fun. Value

1 -27.2 ° —-149.7
2 —43.5 -189.1
3 ~45.4 ~196.9
4
5

-31.8 -156.8
-53.7 -233.1
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+ 6. Concluding remarks. In this paper, we discussed com-
putational aspects of an interior-point algorithm that finds a local
minimizer of indefinite quadratic problems with box constraints, by
successively solving indefinite quadratic problems over an ellipsoid.
The preliminary computational results (with dense problems) show
that the difficulty of the problem is not dependent on the number
of negative eigenvalnes of Q. However, the algorithm needs more
steps to converge as the number of active constraints increases. Al-
though the aigorithm is not guaranteed to find a global solution of
the problem, it was observed that the algorithm found the global
minimizer in many cases. Further research is needed to apply the
algorithm to solve large sparse problems.

Using a local search technique, it is an interesting problem to
check the “quality” of the local minimizer computed. Suppose that
with different starting points, we compute vy, ..., vn local minimiz-
-ers (or stationary points) and take f(v) = min{f(v;)]1 € i < N} as
an approximation of the global optimizer of f(z) over P. Space
covering techniques can be used to calculate the “quality” of f(v).
Let L be the Lipschitz constant of f(z). Consider the spheres S;
with center v; and radius r; = (f(v;) - f(v))/L, i = 1,...,N. If
UYL,S; 2 P, then f(v) is the global minimizer. If not let rf =
(f(vi) = f(v) +€)/L,e > 0, and let Sf be the corresponding spheres.
If UX,S¢ D P, then f(v) — f(v*) € ¢, where f(v*) is the global mini-
mum. Such techniques are discussed in detail in [3].
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