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Abstract. Inithis paper, we discuss computational aspeets of an interior­
point algorithm [1) for indefinite quadratic programming problems with b<»; 

constraints. The algorithm finds a local minimizer by successively solving indef­
inite quadratic prol.>lems with an ellipsoid constraint. In addition, we present a. 
sufficient condition' for a local minimizer to be global, and we use this resUlt to 
generate test problems with a. kno,wn global solution. The proposed algorithm 
has been implemented on an IBM 3090 computer and tested on a variety of den$e 
test problems, including problems with a known global optimizer. 
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1. Introd llction. In this paper, we discuss computational 
aspects of an interior-point algorithm (IPA) proposed in (lJ for 
indefinite quadratic programming (IQP) problems with box con-

1 Research supported in part by NSF Grant DDM-8922636 and the Iowa.Bu:~ 
School Summer Grat. 
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straints: 

min /(:c) = ~:cTQ:c + eT:c, (1.1) 

s.t. :c€p={:cERnll~:c~u}, 

where Q E El!'xn is an indefinite'symmetric matrix and :1:, c, 1, u E 
El!'. S~ch problems arise quite naturally in a number of different 
applications. For example, every linear complementarity problem 
can be written in the above form [8]. 

Although polynomial time algorithm~"exist for the solution of 
convex quadratic programming (see [12]), the problem of minimiz­
ing a nonconvex quadratic function is computationally very diffi­
cult. It is well known that, from the complexity point of view, 
problem (1.1) belongs to the class of NP-compJete problems ([17], 
[19J, [21]). Even the problem of checking local optimality for a fea­
sible point of a general quadratic problem is NP-hard ([15]'[18]). 
Th.ere is a large literature for global optimization algorithm., and 
heuristics for nonconvex quadratic problems [17]. Maay of the pro­
posed methods are based on local search techniques. 

One of the first algorithms to compute local minima is the 
Frank and Wolfe algorithm ([6], [13]). However, this algorithm has 
a very slow rate of convergence. Forsgren et a1. [5] used an inertia­
controlling quadratic programming method for computing a local 
minimizer of nonconvex quadratic programs; see [7} for some major 
references. Coleman and Hulbert [1} proposed a direct active set 
method fesr solving definite and indefinite quadratic programs with 
box constraints. Other algorithms are described in [2] and [4]. Kar­
markar [11] used an interior-point approach to solve approximately 
concave quadratic problems. 

In this paper,we discuss computational aspects of an interior­
point algorithm [1} for indefinite quadratic programming problems 
with box constraints. The algorithm also finds a local minimizer by 
successively solving indefinite quadratic problems with an ellipsoid 
constraint. In addition, we present a sufficient condition for a local 
minimizer to be global, and we use this result to generate test 
problems with a known global solution. 
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The paper is organized as follows. In Section 2, we describe 
. the IPA algorithm that uses a procedure IQE to solve an indefinite 

quadratic problem with an ellipsoid constraint. The algorithm finds 
a point satisfying the first and second order optimality conditions 
under some nondegeneracy assumptions (l}. In Section 3 a. sufficient 
condition for a local minimizer to be global is discussed. Using this 
sufficient condition, in Section. 4, we propose a method to generate 
test problems with known global optimal solutions. In Section 5, we 
present preliminary computational results of our implementation of. 
the IPA algorithm using these test problems and other random test 
problems. 

2. All interior-point algorithm (IPA). In this section, we 
review the IPA algorithm that solves an indefinite quadratic prob­
lem subject to box constraints. For simplicity of analysis, let us 
transform (1.1) to 

min J(z:) = ~z:T Qz + eT z:, (2.1) 

s.t. z: E S = {z: E Rnl O( x ( el, 
where e is a vettor of all 1 'so Note that this transformation is 

I . . 

unnecessary in q;.ctual computation. 
In the IPA ~lgorithm, we solve a quadratic problem subject t~ 

an ellipsoid con.straint at each step. It is known that the general 
quadratic problem with an ellipsoid constraint can be solved in 
polynomial time (e.g., [1». First, we describe the main algorithm, 
IPA, and then present the procedure, IQE. 

Initially, we have a starting point xO that is interior to the 
feasible region. We consider an ellipsoid El with center xO that 
is inscribed in the feasible region. Then, we solve the quadratic 
problem with an ellipsoid El constraint using the procedure IQE. 
L~t z:1 be a solution of the problem. Again we consider an ellipsoid 
E2 with center xl that is inscribed in the feasible region. By re­
peating this process, we compute a sequence of interior poil}ts xO, 

xl, x 2 , .... After sufficiently many steps, we"obtain an approJffinate 
local minimizer of problem (2.1). The following summarizes the 
algorithm IPA. 
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, Algorithm JP A. 

1. k = 1; ~o = 1/2e; Dl = diag(!, ... , !). 
2. COl'l:sider an ellipsoid E1c ~ [0, It with center x,k-l and radius 

r < 1 such that 

where 11.11 represents ~he 12 norm throughout this paper. 
3. Solve the following indefinite quadratic problems with an 

ellipsoid constraint using the procedure IQE (that will be 
discussed later): 

(2.2) 

s.t. ~E E,.. 

Let xk be a global minimizer of (2.2). 
4. If xk does not satisfy the stopping criterion (that will also 

be discussed later), then compute Dk+l, where 
Dk+l = diag (d l , ... , dn ) and di == min {xf, 1-xf}, i = 1, ... , n, 
k = k + 1; goto Step 2; 
Stop. 

Now we describe the details of the procedure IQE for solving 
the problem (2.2), i.e., the indefinite quadratic problem with an 
ellipsoid cO.nstraint: 

(2.3) 

s.t. 11 D-l(x - xk- 1) II~ r, 

where D = DI,,' and Problem (2.3) has a global optimizer xk iff (e.g., 
[14], [20]) 

(Q + p,D-2)D.x = _(QXIr:-l + c), 

11 D- l D.x 1\= r, J.' > 0 

(2.4) 

(2.5) 

and Q + p,D- 2 is positive semidefinite, (2.6) 
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where 6.x = xl; - x k - 1 and p. is the multiplier of the ellipsoid con­
.straint in (2.3). The equation (2.4) can be rewritten as 

(DQD+pI)D-l~ = _D(Qzk-l +c). (2.7) 

Let 

Then, equations (2.4) - (2.6) can be rewritten as 

(0 + pI)Ai = -c, 

l16.i 11= r, 

p) Id(O)!' 

(2.8) 

(2.9) 

(2.10) 

where ~(O) denotes the minimum eigenvalue of Q. Since DQD is 
a congruent transformation and Q is an indefinite matrix, ~(Q) is 
negative. Note that for any symmetric matrix Q, th~re exists an 
orthogonal and.nonsingular matrix U e ~xn such that 

- . 

where A = diag(~i)' i = 1, ... , n, and ).is are the eigenvalues of 
O. 'Also note that the columns of U are eigenvectors of Q. Since 
Q = U AUT, from '(2.8) 

UT (U AuT + pI)Ai = _UT c. 

The!!, system (2.8) - (2.10) can be written as 

(A + pI)UT A.i = -UTc, 

11 UT Ai 11= r, 

p ) I~(A)I = Id(O)I· 

Let A.z = UT Ai and c = UTc. Then we have" 

(A + pI)6.! = -c, 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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lI~zll=r, 

Jl ;;. I.!(A)I· 
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(2:16) 

(2.17) 

If we solve the system (2.15) - (2.17) and get ~z, then' from 
the relations ~z ::; D~i = DU ~z, we obtain zk = zk.,.1 +~z that is a 
global solution of (2;2) or (2.3). It seems that the system (2.15) -
(2.17))s simpler than the system (2.4)'- (2.6) since we have only a 
diagonal matrix A in (2.15) - (2.17). 

We now discuss how to solve th0 system (2.15) - (2.17). As­
sume the entries of A and c are permuted '~o that A1 is the smallest 
eigenvalue of Q (denoted as .!(Q) above). We assume further that 
all other eigenvalues are strictly greater than A1 (this assumption 
can be removed at the expense 'of a slightly more complicated pro­
cedure). Note that with these assumptions, the matrix A + IAdI is 
singular and positive semidefinite, having as its range exactly the 
set of vectors whose first component is zero. Thus, considf>r the 
following two cases. 

Case,1: c'i ::f: 0 (c is not in the range of A + IAdI). In this case 
we search for a #l that satisfies 

n ( .)2 E -Ci 2 

i:1 J.I. + Ai = r 

It I . rn max·le·1 
by using a binary search for IA11 + ~ < J.I. ~ IA11 + '\i r'·· 

Case 2: Cl = 0 (c is in the range of A + IAd1). In this case 
we set J.I. = lAd and compute s = 2:::2 (~li)2, where ~z is_the 

minimum-norm solution of (2.15), i.e., ~11 = 0 and ~li =J.I. 2 Xi' 
for i = 2, ... , m. If S ~ r2, reset ~Zl = ../r2.- Si otherwise (s >r2) find 
a new J.I. that satisfies 

n ( =)2 '" -Ci 2 
~ -- =r 
;=2 J.I. + Ai 

. ","max·le·, 
using a bina.ry search for IA1/ < J.I. ~ /A11 + ri', and then 

reset Ai. = J.I. ~ Xi ' fer i = 2, ... , m. . 
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Now from Az, we obtain A:e = DltU A~. Thus xlt = xk - 1 + Ax 
. is a global minimizer of (2.2) and 

f(:e 1t - 1 ) _ f(:e k ) =~#r2 +~A:eT(Q + #D;2)Ax > O. 

One can verify that the above procedure is a polynomial-time al­
gorithm. In practice, the radiusr can befiexibly chosen as long as 
xlt = X k - 1 + A:e is an interior feasible point. This will result in a 
larger step to obtain:ek • 

The algorithm IPA has been implemented and tested on a vari­
ety of test problems (Secti~n 5). The purpose of these preliminary 
tests is to observe the convergence behavior and the iteration per­
formance of the algorithm IPA as a whole. Our procedure IQE used 
in each iteration needs to compute all the eigenvalues and eigen­
vectors of a symmetric matrix - which may not be very practical 
for large scale problems. Some practically efficient procedures have 
been discussed in [14J, which can be used to replace the procedure 
IQE in the algorithm IPA for solving large scale problems. 

3. A suflici~nt condition of global minimum. When the 
matrix Q is indefinite, problem (1.1) may have many. local minima 
which differ from the global solution. However, every global (local) 
minimizer of (1.1) occurs at a boundary point of P, not necessarily 
a vertex [17). More generally [9J. the following result characterizes 
the optimal solution :e" of (1.1): if Q has k negative eigenvalues 
counting multiplicities, then the dimension of the space spanned 
by the gradients to the active constraints is at least k. Hence, at 
least k of the constraints al,'e active at :e*. Note that, if Q is negative 
definite, then every global (local) minimizer is a vertex of P. 

From the com plexity poin t of view, the problem of checking if a 
given feasible point is optimal is NP-complete ([1.5],[18]). However, 
complexity results of this nature characterize worst-case problem 
instances. 

Next, we provide a sufficient condition (initially proposed by 
Nenmaier [16] for general quadratic problems) for checking if a l()cal 
minimizer is global. This sufficient condition is used (Section 4) to 
construct test problems with a known global solution. 
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• Let i be a local minin-izer of (1.1). The first order necessary 
conditions are given by 

Qi + c + #l - A = 0, 

i-u~1) and l-i~,O, 

,P;>O 'and ,A),O. 

From (3.2), (3.3), and (3.4), we have 

, " (3.1) 

(3.3) 

(3.4) 

(3.5) 

(Ai - #li)(Uj - ii) P Ai(ui - ij) ) 0,' (3.6) 

for i = 1, ... ,n. Let Ai - Pi == Yj for i = 1, ... , n. From (3.2), (3.5), 
and (3.6) 

The equation (3.1) can be rewritten as 

Qi+c= y. (3.7) 

We make the f()llowing nondegeneracy assumption: 
If ii =:: Uj or ii == li' then Yi::f; 0, i = 1, ... , n., Hence 

li < ii < Ui <=>Yi = ° for i = 1, ... , n. 

Let m'be the number of indices i for which Yi::f; O. Without loss.of 
generalit.y, we may assume that 

ij = Ui or li, i = 1, ... , m, 

Ij < ii < Ui, i = m + 1, ... , n, ' 
where 1 ~ m ~ n. 

We are going to pr~ve that the matrix M = Q + ( IQ ) H(1m 0) 

is positive semidefinite for some ma.trix HE Rmxm ., First, if m = n 
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(Le., the objective is concave), then by choosing an H such that 
Cl + H is diagonally dominant, we can easily prove tha.t M is .. 
positive semideftnite matrix. For the second case (if m < n), we 
need the following derivation. 

Let 

Q= (~TBA QB) 
'Of Qc' 

where QA e Rmxm, QB e R"'x(fI.-m),a.nd Qc e R<fI.-m)x(ra-m). We 
make the assumption that the submatrix Qc is positive definite. 
Define Z e R"'x(ra-m) and Vie Rflxm such tha.t 

where I is an identity matrix. Note that the columns of Z form 
a basis of the null space of VT. From the second order optimality 
conditions, 

ZTQZ=Qc, 

which is a positive semidefinite ma.trix. Hence, we can find L e 
R(n-m)x(fI.-m) s~:-J..'that 

I 

In addition, defin~ matrices E e R"')«ra-~) and F e R"'xm such that 

E = (VTQZ)L-T = Q,BL-T and 

F = VTQV - EET = QA - QBQC-1QBT. 

Note that F is the Schur complement of Qc in the matrix 

( Qc Q~) 
QB QA . 

Next, construct a matrix H = diag(hs), hs ~ 0, i = 1, ... ,m so that 
F' + H is positive semi definite. Let F + H = N ~VT. Using the above 
information, we are going to show that the f~llowing matrix 
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·is.positive semidefinite. Note that 

Hence the matrix 

is positive semidefinite and since (Z V) is nonsingular, the matrix 

is positive semidefinite. 
Using the following theorem, we can check if a nondegenerate 

local minimizer of (1.1) is.a global minimizer. ' 

Theorem 3.1. Let z be a nondegenerate local minimizer of 
(1.1) and 

Hii . 1 (38) ai = -2 ' l = , ... , rn, : 
1Ii 

where Hand y are defined as above. Then for all z E P, 

(3.9) 

and 
m 

fez) - fez) ~ (Qz + c)T (z - i)(1 - 2:a;(z; - ii». (3.10) 
i=l 
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If 
m 

Q = E I Gi(Ui -Id le; 1, 
i=l 

tben I is a global minimizer of (1.1 ). 
If 

m 

Q = E I tlI(UI -I.) \< 1, 
i.1 

tben i is tbe unique global minimizer of (1.1). 

Proof. Note that for a.ny x E P, 

I(z) = 1(1) + (QI + cl(z - i) + i(z -i)T Q(z - i) (3.11) 

and from (3.7), 

If 
Y=diag(Yi), i=l, ... ,m, e=(I,~~.,l)TeRm, and 

! 
's = Y(1m O)(z - i) eR"', 

then 

Note that 

and-' 
Si = 0 itr Zl - £i = 0, i = 1, ... , m. 

Hence, from (3.14), 

(3.12) 

(3.13) 

(3.14) 

(Qi + c)T (z - i) ~ 0 with equality itr Zi = ii, i = 1, ... , m. 

Since H and 

Q + ( I; ) H(1m 0) 
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are positivesemidefinite, we have 
• 

o ~ ~(~ ~ f)T(Q + (10 ) H(Im O»(x - f) 

fT ' , 1 -T 1 _ T (1 ') _ = 2x . Qx +2x Qx + 2(x -x) 0 H(Im 0)(% - x) 

.:= f(x) .:... f(x)- (Qx + C)T (x - f) + ~STy-l Hy-ls 
. 1 

~ f(x) -/(x) - (Qi + c)T (x - x) + 2(eT s)(vr s), 

where 
(y-1Hl,-1) 2a, Vi = .. = -, 

. SI • Yj 
i= 1, ... ,m. 

, 
Since 

m 

:'VjS, ::;: 2ai(~i - x,),i = 1, ... , m and vT S = 2 L: ai(xi - Xi), 
,=1 

f(x) - f{x) - (Qf + c)T (x - x) + ~(eT s)(vT s) . . 
m 

~ f(x) - f(x) - (Qx + cl (x - x)(l ..,. L:aj(x, - f,». 
,==1 

Therefore, 

m 
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f(x) - /(.i.») (Qx + cl (x - x)(l- L:ai(X, -i,». (3.15) 
,=1 

. Note that 

m 

max { 2: a,(xi - x,) 11, ~ x, ~ Us, 
,=1 ' " . 

m 

i = 1, ... , m} ~ 2: I ai( Ui - li) I : 
i=1 

It follows that if 

m 

a = 2: I ai(Uj -li) I~ 1, ,len f(x) - f(x») O. 
,=1 

'Therefore x is a global minimizer of (1.1) . . 
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Assume that a < 1 and z' ::f:. i is another global minimizer of 
(1.1). From (3.10), (Qz + c)T (x' - i) = O. Since (3.9) holds with 
equality only when X'i = Xi, i = 1, ... , m, if m ::: n, then x' = z. 
Otherwise we can set x' - i = Zb for some non zero vector b E JrI. 
We know that bT ZT QZb is positive since zT QZ is positive definite. 
But this is a contradiction to bTZTQZb = 0 in (3.11). Therefore, if 
a < 1, then i is unique. Q.E.D. 

4. Test problem generation. In this section, we describe 
a method to generate indefinite quadratic problems with box con­
straints (1.1) and a known'global solution, using the sufficient con­
dition discussed in Section 3. Initially, we choose a point x" a.nd 
a matrix Q. By making c satisfy the sufficient condition, we can 
generate an instance of problem (2.1) that has the optimum solu­
tion xOo. 

We can construct the test problems according to the following 
steps: 

1. Choose an x" = (xi, .. ~,x~,x~+l'."'x:) such tha.t 
.-

I *, 1_ { li or Ui, 
I Xi - 1 * 

. i < Xi < Ui, 

i= l, ... ,m, 
i = m + 1, ... ,1), 

< , 
where I ( m < n. 

, 2. Generate fl> matrix Q E R nxn such that 

Q=WAWT, 

... where W=. (~l ~) E Rnxn, 

A = diag( -Al,' .. , -Am, Am+l, ... , An), 
U1 E Rmxm, U2 E R(n-m)x(n-m) are orthogonal matrices, 
A E ~x(n-m) can be any matrix, and Ai > 0 forI lit i , n. 
Partition Q as 

~~), .. . . 
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F = QA - QBQC-1QBT 

= (F+H)-H, 
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:. where H = diag(hi), hi > 0, ·i = 'I, ... ,m andF + H is a 
positive semidfdinite matrix ...... 

4. The sufficient condition for z· to be a: global minimizer of 
(1:1) is given by 

.max{(a:O)T(z-z*)lz E.f} <; 1(4.1) 

with (I Er. By considering the ~x con.traints; we choose 
o such that .. _ {ti ., . if z; = li, 

0, - .' . -ti O.W. (zi = Ui), . 

where ti, i = 1, ... , m, is random, Iy chosen from (0, (1 l)}' mu,;-i 
5. Compute '11 E El" as follows: " " . 

Yi= ~, a;::l, ... ,m, 
. {h, . " , 

0, ; = m + 1, ... , n. 

6. From Qz· + c = 71, compu~ c ER!'. Nowz· is a global· 
minimizer of (1.1). 

The following simple exa.mpl~ illus~rateS th.e steps to generate 
;he test problems. 

O. n::=3, m=2, 'i=O, ui=l~ .. for i = J,2.3. 
1. z· = (r,O, 1/4)7'. 
2. 

( -8 4 0) ( 8 4 \ ( 0 ) . , 
Q = ~ :8 1: ' QA = '~ 2} , Qs = -8 ,Qc = (16). 

I 

Note that Q has eigenvalues l= (-9.73,0,19.73)7', 
3. 
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Let h = (12,6)T so that F:+ His PSD. 
T " 4. a = (-1/4,1/4) . 

5. y = (-24,12, O)T. 
6. c~ Y'''''':Qz*=( -16,10, _4)T. Then z* 'is a. global minimizer of 

s .. t. '. 0 ~~.~ I, 

, , , :, .,' '. . ,." ," , ,~ '. i . ~ 

5. Computational results. j We implemented the algorithm 
IPA on an IBM 3090-600~ c9mputer with vector faCilities' using 
the VS Fortran compiler .. atld double preCisi()n accuracy for real 
variables. The ESSL subroutines were used for matrix and vec­
tor op~rations: ran'da'm n~inber"gEme:ration; and the eigensystem 
solving. The condition 11 zk _,xk- 1 11 <: 10";4 was used fot stopping 
criterion of the main algqrithm IPA. Since a fractional number of 
components of a local m~n~~i'zer"hit the:,upper bound 1, IIzkll > 1. 
in all our numerical examples: Thus, this (absolute) convergence' 
condition is'aettiaUyharderto meet than the relative convergence 
criterion. We use~ binary search for the parameter JJ in IQE and the 
binary sear~h w~; termin~ted whep. ":U,pper_bo.l\~d - lower_bo~nd". 
< 10-8 was satisfied. From the preliminary computatio.~~l ~esults, 
we found that wpen the paral1).eter r is close to 1, the number of ' 
iterations needed to find a stationary point becomes small. There­
fore, we set r = 0.99 in our implementation.. All averages were 
obtained from 5 problems an~ CPU times a.re given in seconds. 

We have two parameters for generating the test problems: the 
number of active, constraints (nat;) at the optimuI]l solution and the 
number of negative eigenvaIues (neg) of matrix q.Note that 'ne~ ~ 
nac. l'wo types' of dense test problems are solved: test problems 
with a known solution (type 1) ~nd ra~.dpm pr~h.lems (type II): For 
generating type I test problems we have the following: 

1. The optimum solution z-is chosen randomly such that xi E 
(0,1), for i = 1, ... , n. HaIf bf the-m active constraints are active 
at the upper bound. .. 
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2. The orthogonal matrices, U1 and U2, are Householder matrices 
of random vectors v E Rmxm and w E R(n-m)x(n-m), respec-
tively. Each element of v and ware chosen randomly from 
(0,1). 

3. The eigenvahies ~i' i = 1, ... , n, of A are chosen randomly so 
that 1 < lAd < 2, i = 1, ... , n. 

4. The submatrix A E Rmx(n-m) of W has elements aij, i = 1, ... , rn, 
j = 1, ... , n - rn, chosen. randomly from (0,1). 

5. Choose the diagonal matrix H such that F + H is diagonally 
dominant. 

Table 1 shows the computational results obtained by solving 
the test problems generated by the method discussed in Section 4. 
From Table 1, it is observed that IPA takes more steps to converge 
to a stationary point as the number of active constraints increases. 

Table 1. IPA on varying nac (n = 100, neq = nac) 

nac Avg. Itr. A vg. CPU time 

10 40.8 10.4 
30 68.8 15.2 
30 96.4 19.1 
70 100.4 20.7 
90 118.8 28.9 

The relationship between the number of negative eigenvalues 
of matrix Q and the complexity of the test problems with a known 
solution is shown in Table 2. This shows that the number of iter­
ations is not dependent on the parameter neg. It is interesting to 
note that the algorithm always finds a global minimizer for these 
type of test problems (although many local minima exist). 

Next, we solve randomly generated indefinite quadratic prob­
lems (type II). The matrix Q is generated by Q= UT AU, where U 
is an orthogonal matrix (Householder matrix of a random vector 
v, where 0 < Vi < 1, i = 1, ... , n) and ~:. is a diagonal matrix whose 
diagonal elements are chosen randomly from 

-2<.>.,<-1, i=l, ... ,neg, 
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1 < Ai < 2, i = neg + 1, ... , n .. 

·The components of c are randomly chosen from (0,1) . 

. 
Table 2. IPA on varying neg (n = 100, nac = 60) 

neg Avg. Itr. Avg. CPU time 

10 94.6 19.1 
20 95.0 19.1 
30 105.8 21.1 
40 97.4 19.4 
50 94.4 19.1 
60 104.4 20.9 

Table 3 shows the computational results for type II test prob­
lems. Note that all test problems we solve are dense. 

Table 3. IPA for randomly gen"erated problems 
(n = 100, neg = nac) 
~. 

i 
I Avg. Itr. CPU time nqc 

10 88.6 19.3 
30 94.4 20.7 
~ 97.2. 22.1 
70 . 91.4 22.4 
90 86.8 22.0 

In addition, we implement the Frank-Wolfe method for solving 
(2.1). At step k of the Frank-Wolfe method, we solve a linear 
programming problem of the form 

min Vf(z"{ z, 

s.t. 0 ~ z ~ e. 

Note that the linear programming problem can be easily solved. ~et 
Zdi,. be the solution ofthe linear programming problem. Using a iine 
search method in (Z",·Zdi,.], we find zHl that minimizes I(z). From 
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. oyr computational experience, we also find that the Frank-Wolfe 
method does not generate. a sequence of solutions that satisfies the 
stopping criterion 11 zlo - zk-1 11 < 10-4 , Hence, we compare the 
objective function values of the same problem at each optimum 
solution obtained 'by the Frank-Wolfe method and Algorithm IPA. 
Let ziPA and. zFR be the final solutions of Algorithm IPA and 
the Fr-ank-Wolfe method, respectively. The Frank-Wolfe method 
terminates when l(ziPA) > l(zFR) or the number of iterations is 
greater than .5000..' ." 

Tables 4 and 5 show the computational results for the type 
I and type II test problems, respectively. For each instance, we 
solved one type I test problem .and one type II test problem (n = 
100). From Table 4, we can .observe that when the number of 
active constraints at the optimum solution is small, algorithm IPA 
converges faster than Frank-Wolfe method. Note that the Frank­
Wolfe method is very efficient when the solution is a vertex (or dose 
to a vertex) of the feasible domain. Table 5 shows that in 6 out 
of 10 cases, the Frank-Wolfe method fails to find a better solution 
than Algorithm IPA does. 

Table 4. IPA and Frank-Wolfe method (type I, neq = nac) 

nac IPA (CPU /Itr.) Frank-Wolfe (CPU /Itr.) 

10 10.3/40 45.1/5000 
20 13.9/58 42.0/4757 
30 15.8/71 36.3/4223 
40 18.3/89 30.6/3661 
50 19.0/96 20.5/2570 
60 21.6/105 6.9/853 
70 23.9/114 2.2/291 
80 22.7/123 0.7/101 
90 21.0/84 0.03/6 

Table 6 shows the comput!:l.tional results for the randomly 
generated problems with various problem sizes. For this table, 
we used two stopping criteria: 11 zk - zk-1 11 < 10-4 or I/(zk)­
l(zk-l)lIl/(zk)1 < 10-6 since the former (absolute) convergence eri-
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terion becomes difficult to satisfy as n increases due to the reason 
mentioned at the begining of this section. 

Table 5. IPA and Frank-Wolfe method (type II, 1beq = nac) 

nac IPA (CPU/Itr.) Fr an k-Wolfe (CPU /Itr.) 

10 20.9/94 20.3/2472 
20 22.6/99 41.0/5000 
30 19.3/84 7.3/932 
40 19.5/82 40.8/.5000 
50 23.9/102 9.0/1179 
60 23.6/102 40.5/5000 
70 22.6/93 38.4/5000 
80 21.4/85 38.1/5000 
90 21.7/84 36.8/5000 

Table 6. IPA on randomly generated problems (neq = nac = n/2) 
." 

n Avg. Itr. A vg. CPU time 

100 I 94.6 21.9 
200 I 136.8 196.8 i 
300 I 166.2 745.0 

i 
Table 7 shows the improvement from the function value at the 

starting point to the final local minimizer for the set of 5 problems 
of dimension n = 300. 

Table 1. Initial and function values for randomly generated 
problems (n = 300) 

Problem Initial Fun. Value Obtained Fun. Value 

1 -27.2 . -1'49.7 
2 -43.5 -189.1 
3 -45.4 -196.9 
4 -31.g -156.8 
5 -53.7 -233.1 
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• 6. Concluding remarks. In ihis paper, we discussed com­
putational aspects of an interior-point algorithm that finds a local 
minimizer ofindeflnite quadratic problems with box constraints, by 
successivE>ly solving indefinite quadratic problems over an ellipsoid. 
The preliminary coinputationalr~ults (with dense problems) show 
that the difficulty of the problem is not dependent on the number 
of negative eigenvalues of Q. However, the algorithm needs more 
steps to converge as the number of active constraints increases. Al­
though the algorithm is not guaranteed to find a global solution of 
the problem, it was observed that the algorithm found the global 
minimizer in many cases. Further research is needed to apply the 
algorithm to solve large sparse problems. 

Using a local search technique, it is an interesting problem to 
check the "quality" of the local minimizer computed. Suppose that 
with different starting points, we compute Vt. ..• , VN local minimiz­

·ers (or stationary points) and take f(v) = min{f(vi)!l ~ i ~ N} as 
an approximation of the global optimizer of f(z) over P. Space 
covering techniqu~s.can be used to calculate the "quality" of f(v) .. 

Let L be the Lipschitz constant of f(z). Consider the spheres Si 
with center Vi and radius ri = (f(vi)-f(v»/L, i = 1, ... ,N. If 
Uf".:i.Si :2 P, then f(v) is the global minimizer. If not let rf = 
(f( Vi) - f( V) + l) I L, E > 0, and let SI be the corresponding spheres. 
If uf..1S[ :2 P, then f(v) - f(v·) , E, where f(v·) is the global mini­
mum. Such techniques are discussed in detail in [3]. 
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