
INFORMATICA, 2005, Vol. 16, No. 1, 19–36 19
 2005Institute of Mathematics and Informatics, Vilnius

The Realization-Independent Testing Based on the
Black Box Fault Models

Eduardas BAREIŠA, Vacius JUSAS, K¸estutis MOTIEJ̄UNAS,
Rimantas ŠEINAUSKAS
Software Engineering Department, Kaunas University of Technology
Student↪u 50–406, LT-51368 Kaunas, Lithuania
e-mail: kestas@soften.ktu.lt

Received: June 2004

Abstract. The design complexity of systems on a chip drives the need to reuse legacy or intellectual
property cores, whose gate-level implementation details are unavailable. In this paper we consider
the realization-independent testing and the impact of circuit realization on the fault coverage. We
investigated two fault models (input-output pin pair fault and input-input-output pin triplet fault)
that are used by test generation for circuits described at system description level. The test genera-
tion on the system-level model is preferable if the efforts and the duration of the test supplement
activities are less than the efforts and the duration of the test generation on gate-level model. The
test set for the black-box model is larger as compared to the test set for the particular realization of
the circuit. However, large test sets for the black-box model can be compacted by analysis not only
according to the stuck-at faults, but also according to various defects for the particular realization.

Key words: digital circuits, realization-independent testing, fault models.

1. Introduction

As a result of modern technologies both the digital device density and the device com-
plexity have steadily increased. In this turn, the reliability of electronic systems has be-
come of increasing interest to manifold applications, such as computers, telecommuni-
cations, military, aerospace, banking industry, etc. One of the key requirements in order
to obtain a necessary level of the reliability of devices is to perform an adequate testing.
Due to the complexity of contemporary electronic devices, the task of testing has become
hard and demands the evolution of new, more efficient test methods continuously. Fur-
thermore, due to System on a Chip (SoC) and Deep Submicron the cost to manufacture
a gate keeps dropping. On the other hand, the cost to test a gate stays the same. The test
cost is becoming the largest portion of the total manufacturing cost.

Therefore complex, high-quality electronic products need a cost effective design and
test flow. The design complexity drives the need to reuse legacy or intellectual property
cores in SoC. High Level modules of SoC are often specified only in terms of their be-
havior. SoC designs rely heavily on reusable and pre-designed cores or intellectual prop-
erty modules, whose gate-level implementation details are unavailable. System designers



20 E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas

become system architects reusing more and more proven components and their test pro-
cesses. A test reuse must follow the same path. Conventional single stuck–at fault models
associated with internal logical gates or their inter connections are not applicable for a
test reuse. The structural defect-based testing involves no test reuse as tests are usually
generated after the structural synthesis. The implementation depends on SoC manufactur-
ing technologies and is permanently changing in a SoC lifecycle. How core vendors can
provide reusable tests for new implementations? In this case the fault model of the SoC
module should be realization-independent. However, can a test based on functional fault
model be effective in uncovering physical defects? How is its effectiveness dependent on
the synthesized structure? These are important questions, not only for the test reuse, but
also due to the fact that soft cores can be synthesized by different electronic design au-
tomation systems and mapped in different cell libraries and manufacturing technologies.

Ideally, what is needed is a design, a test methodology and fault models that may
enable a high-level design validation, the testability enhancement and the test generation
in such a way that a high Defects Coverage (DC) is achieved. Of course, reaching this
goal independently from the structural synthesis and from the manufacturing technology
is impossible, as the test quality will always depend on the final physical realization.
However, significant steps in this direction can be made.

The types of physical defects depend on the technology. Across various technologies,
the most common types of defects during manufacturing are short-circuits, open bonds,
open interconnections, bulk shorts, shorts due to scratches, shorts through dielectric, pin
shorts, cracks and missing transistors. The first step in a test generation process is the
choice of a suitable fault model. Ideally, the fault model should model all possible physi-
cal defects in the Circuit Under Test (CUT).

The defect-oriented testing relies on the layout-based test generation and the current–
based (IDDQ) testing quite effectively used in submicron and deep submicron design.
The defect-oriented test generation starts when the layout design is finished (Fig. 1).

The abstraction of the real defects is the main feature of the stuck-at fault model,
which has been found effective to test chips in a non-deep submicron process. Testing
techniques based on the stuck-at fault model are very popular and most effective for the
post-silicon testing. The test generation for stuck-at faults starts before the layout design
(Fig. 1). Tests for stuck-at faults cover real defects of the layout only for primitive (not
complex) gates. In this case we are speaking about the layout-independent test generation.
In general, the test generation task on gate level does not consider defects. However, some
bridging or stuck-open fault models are used on the gate level as well.

Several approaches to the test pattern generation at the Register Transfer Level (RTL)
have already been proposed. Most of them are usually able to generate test patterns of
good quality, sometimes comparable to the gate-level Automated Test Pattern Genera-
tion (ATPG) tools. In case of the test pattern generation at the Register Transfer Level
the test set is generated for all possible implementations and we are speaking about the
realization-independent test generation. The test generation task can be done in parallel
with the synthesis of the circuit on the gate level (Fig. 1).

The test generation for algorithms on the system-level relies on black-box fault mod-
els. In this case not only the implementation, but as well the synthesizable description of



The Realization-Independent Testing Based on the Black Box Fault Models 21

Fig. 1. The starting points of the test generation in the design process.

the behaviour is unknown. The test generation task is much more complicated, but it can
be done in parallel with the design of the synthesizable description and with the synthesis
of the circuit on the gate level (Fig. 1).

In this paper we consider the realization-independent testing, investigate the impact of
the circuit realization on the fault coverage of the test set, the suitability of black-box fault
model for the testing of different realizations and the capabilities of the test generation
for the black-box model.

2. The Realization-Independent Testing

One of the concepts of the realization-independent testing is based on universal test set
(Akers, 1973; Betancourt, 1971). It exploits the unateness property of a module’s vari-
ables, and is composed of functionally defined minimal true and maximal false tests. A
universal test set can detect both single and multiple stuck-at faults in realizations with
restrictions on their structure. The size of the universal test sets is small for functions
that are fully or partially unate, but it becomes exhaustive for binate functions. Expanded
vectors consist of all input literals appearing in a function’s minimal expression (Akers,
1973).

The universal test set of a function consists of all minimal true expanded vectors and
all maximal false expanded vectors. An input vectorti is greater than or equal to another
vectortk, denotedti � tk, if ti has 1 in every bit position wheretk does. The minimal
true vector{ti} of z are input vectors such thatz(tk) = 1 for all tk � ti, butz(tk) = 0 for
all tk < ti. The maximal false vectors{ti} of z are input vectors such thatz(tk) = 0 for
all tk � ti, butz(tk) = 1 for all tk > ti. For example, Fig. 2 shows the realization of the



22 E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas

Table 1

The true table of the functionF and its universal test set

Input
vectors
abcd

Expanded
vectors
ab b̄c c̄d

Output
Vectors

of universal
test set

Test type

0000 001010 0

0001 001011 0 Test vector Max. false

0010 001100 0

0011 001101 0 Test vector Max. false

0100 010010 0

0101 010011 0 Test vector Max. false

0110 010100 0

0111 010101 1 Test vector Min. true

1000 101010 1 Test vector Min. true

1001 101011 1

1010 101100 1 Test vector Min. true

1011 101101 1

1100 110010 1 Test vector Min. true

1101 110011 1

1110 110100 0 Test vector Max. false

1111 110101 1

function of Table 1. Vectors of the universal test set for a functionF (a, b, c, d) are derived
from its true table. It has been proved that the universal test set detects all multiple stuck-at
faults in a realizationR under the following restriction: every path between two points in
R has the same inversion parity. These realizations are called an unate gate network. The
unate gate network restriction is rigorous and practically it is often replaced by a relaxed
condition. The realizationR of the function is a balanced inversion parity ( BIP) network,
if paths from unate variables have the same inversion parity. BIP realizations allow paths
with different inversion parities between any binate variable and the outputs of a network,
and so the restrictions are valid to any practical realization. It has been shown recently
that in the worst case unate-gate networks are at most twice larger than the minimal
implementation. BIP realizations, on the other hand, tend to be minimal or near-minimal.
Any BIP realization can be obtained from an unate-gate network by applying a set of the
resubstitution and De Morgan transformation. Therefore, the universal test set detects all
detectable multiple stuck-at faults in BIP realization. The size of the universal test set
for an unate function is relatively small, but for a binate function equals the size of the
exhaustive test. The exhaustive test (2n) includes all possible test vectors ofn inputs.

In general case it is impossible to get a complete test set less than the exhaustive test
without the information about the particular realization of the module. The complete test
detects all single stuck-at faults of the module described in terms of primitive gates. It
has been proved that each input vector of the true table is necessary for testing at least
one realization of the function (Šeinauskas, 2003). Fig. 2 shows the realization of the



The Realization-Independent Testing Based on the Black Box Fault Models 23

Fig. 2. The realization of the functionF of Table 1.

Fig. 3. The realization of the functionF1.

Fig. 4. A new realization of the functionF .

function of Table 1. The universal test set does not include the input vectorabcd = 0000.
We can create a new realization, which requires this input vector as a test vector. Let’s say,
that the output of the functionF1 differs from the output of the functionF on the input
vectorabcd = 0000 andF (0000) = 0, F1(0000) = 1. Fig. 3 shows the realization of
the functionF1. The OR gate in Fig. 4 corrects the reactions of the block of the function
F1 and we get a new realization of the functionF . The test set of this realization requires
input vectorabcd = 0000. Therefore the universal test set doesn’t detect all stuck-at
faults, notwithstanding all of them are detectable in this realization. It should be noted,
that this new realization does not meet the BIP networks restriction. The input variables



24 E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas

a and d of the functionF are unate and the variables b and c are binate. Only the input
variable a is unate for the functionF1. Therefore, the realization of the functionF in
Fig. 4 contains paths with a different parity from the input of the variable d and does not
fill the restriction to BIP gate networks.

A cell fault proposed in (Psarakiset al., 1998) implicitly models all defects that alter
a module’s truth table and so provides a high degree of the realization independence.
However, this model can be applied only to very small modules, because it often requires
an exhaustive test set comprising all possible input vectors. The input pattern fault model
(Blanton and Hayes, 1997) uses a true table of the function as well. Each input pattern
fault defines an input and output pattern pair and corresponds the faulty behaviour of the
module. The number of faults for even small modules is large.

Coupling faults can alter output values in response to changes occurring on one or
more inputs of a function (Yi and Hayes, 2001). The simplest case is a single coupling
fault, which is defined in terms of a single input/output signal pair. All test vectors for
coupling faults are called as a coupling test set. The coupling test sets share some proper-
ties with universal test sets, but they are not necessarily exhaustive for binate functions.
The coupling test sets are very large even for small functions.

Higher-level fault models have been proposed for the realization-independent func-
tional testing of combinational circuits. RTL fault models and quality metrics have been
considered in (Santoset al., 2000). Logic/arithmetic operations, constant/ variable switch,
null statements, if/else, case, for instructions has been considered as RTL fault models.
In some cases, their effectiveness in covering stuck-at faults on the circuit’s structural
description has been ascertained. However, this does not guarantee their effectiveness to
uncover physical defects or stuck-at faults.

The high-level fault models taken from the software testing have three main advan-
tages: they are well known and quite standardized; they require little calculations, apart
from the complete fault-free simulation; and they are already embedded in some com-
mercial tools. However, while such metrics may be useful to validate the correctness of
a design, they are usually inadequate to foresee the gate-level fault coverage with a high
degree of accuracy. One of the most used fault models is the observability enhanced state-
ment coverage metric proposed in (Devadaset al., 1996) and (Fallahet al., 1998). This
fault model requires that all statements in the VHDL description are executed at least
once, and that their effects are propagated to at least one primary output.

Some approaches rely on a direct examination of the HDL description (Ferrandiet al.,
1998) or exploit the knowledge of the gate-level implementation (Rudnicket al., 1998).
Some extract of the corresponding control machine (Cheng and Khrishnakumar, 1996;
Moundanoset al., 1996) from a behavioural description is used. The listed approaches
are of limited generality and the adequacy of testing defects or of the coverage stuck-at
faults on the gate level are not proved.

The behavioral view (Bareišaet al., 2001; Bareišaet al., 2003) or the “black-box”
represents the system by defining the behavior of its outputs according to the values ap-
plied on its inputs without the knowledge of its internal organization. In this case only
the input-output connectivity can be fixed (Šeinauskas and Bareiša, 1996). The connec-
tivity fault models are rough enough compared to the stuck-at fault model. However,



The Realization-Independent Testing Based on the Black Box Fault Models 25

the experimental investigation fault models based on input-output paths testing demon-
strated a high defect and stuck-at fault coverage on the benchmark circuits (Šeinauskas
and Bareiša, 1996; Jusaset al., 2001; Jusas and Šeinauskas, 2002).

A n-detection test set is the one where each modeled fault is detected either byn

different tests, or by the maximum number of different tests that can detect the fault if
this number is smaller thann. In various types of experiments reported in (Pomeranz and
Reddy, 1999a; Takahashiet al., 2002),n detection test sets were shown to be useful in
achieving high defect coverage for all types of circuits and for different fault models.

3. The Input-Output Pin Pair Fault Model

The different fault models based on input-output paths testing were suggested in (Šei-
nauskas and Bareiša, 1996; Jusaset al., 2001). We provide the other presentation of the
main concepts. Let the circuit have a set of inputsX = {x1, x2, . . . , xi, . . . , xn} and a
set of outputsZ = {z1, z2, . . . , zj , . . . , zm}. The pin fault model considers the stuck-at-
0/1 faults occurring at the module boundary, and has a week correlation with the circuit’s
physical faults. We writex1

i andx0
i for the input stuck-at-1/0 faults, andz1

j andz0
j for

the output stuck-at-1/0 faults. There are2n + 2m possible pin faults. Input-output pin
stuck-at fault pairs(xt

i, z
k
j ), t = 0, 1, k = 0, 1 are called pin pair faults (PP). The number

of possible pin pair faults of the circuit is at most4 ∗ n ∗ m. We denote the set of the pin
pair faults by

P1 =
{
(xt

i, z
k
j ) | i = 1, . . . , n, j = 1, . . . , m, t = 0, 1, k = 0, 1

}
.

The test vector detects the pin pair fault(xt
i, z

k
j ) of the module if the test vector detects

both the pin faultsxt
i, andzk

j of the pair on the outputzj of the module. It may appear
that there exist no electric connections between the input and the output, and the pin pair
fault defined by these inputs and outputs can’t be detected. These faults are not testable.
The PP fault(xt

i, z
k
j ) of a module is testable if a conventional deterministic (Breuer and

Friedman, 1976) test generator for a realization of the module finds a test vector, which
detects a pin faultxt

i on an outputzj while the inputxi and the outputzj are set up to the
t̄ andk̄. The number of testable PP faults equals to4 ∗ n ∗ m minus the number of not
testable PP faults. The connectivity rate demonstrates the relation between the number of
testable PP faults and the total number of possible PP faults and is computed as follows:

Connectivity rate= No. of testable PP faults/4 ∗ n ∗ m

Note that in general it is not possible relate the PP fault with the defects of the
module unambiguously, because the PP fault doesn’t fix exactly the signal propagation
path in the circuit. The set of the PP faults of the functionF (see Table 1) includes the
faultsP1 = {(a1, y1), (a0, y0), (d0, y0), (d1, y1), (b1, y1), (b1, y0), (b0, y1), (b0, y0),
(c1, y1), (c1, y0), (c0, y1), (c0, y0)}. The six test vectors 1010, 1110, 0011, 0111, 1100,
0101 detect all the PP faults. The test vector 1010 detects the PP faults(b1, y0), (a0, y0),



26 E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas

the test vector 1110 detects the PP faults(b0, y1), (c0, y1), the test vector 0011 detects
the PP fault(b1, y1) and so on. The six test vectors detect all the stuck-at faults for the
realization of the functionF in Fig. 2.

The core can be synthesized by different electronic design automation systems, and
mapped into different cell libraries and manufacturing technologies. An important issue
is how the test set of the core covers the faults of new implementations, which are done by
the same synthesizer. The ISCAS’85 benchmarks (Brglez and Fujiwara, 1985) have been
selected for experiments. The original ISCAS’85 circuits have been re-synthesized with
the Synopsys Design Compiler program by the default mode and by using the AND-NOT
cell library of two inputs. The three realizations have been analyzed:

R1 – the non-redundant ISCAS’85 benchmark circuit
R2 – Synopsys Design Optimization, the target library – class.db (the default mode)
R3 – Synopsys Design Optimization, the target library – and_or.db
The number of stuck-at faults for each realization we can see in Table 2.
The original benchmark realizations have more stuck-at faults in total. It means that

re-synthesized circuits were more optimized. The percent of the difference between max-
imum and minimum numbers to the maximum number of stuck-at faults varies from 9
to 53. It demonstrates the impact of the target library by the design synthesis and the
diversity of realizations.

The defining of the set of PP faults for the black-box model is complicated. However,
if we know the structure of the considered circuit, the deterministic test generator for
stuck-at faults can be used for defining the set of testable PP faults – the PP fault(xt

i, z
k
j )

Table 2

The number of stuck-at faults in three different realizations of the ISCAS’85 benchmarks

Circuit R1 R2 R3 D %

C432 507 420 460 87 16

C499 750 978 1246 496 40

C880 942 854 928 88 9

C1355 1566 1316 1406 250 16

C1908 1862 875 1224 987 53

C2670 1990 1498 1658 492 25

C3540 3126 2451 2520 675 21

C5315 5248 3875 4130 1373 26

C6288 7638 6680 7498 958 13

C7552 7039 4573 4798 2466 35

Total 30668 23520 25868

R1 – the non-redundant ISCAS’85 benchmark circuits,
R2 – Synopsys Design Optimization, the target library – class.db,
R3 – Synopsys Design Optimization, the target library – and_or.db,
D – the difference between maximum and minimum numbers,
% – the percent of the difference to the maximum number.



The Realization-Independent Testing Based on the Black Box Fault Models 27

is detectable, if stuck-at-t fault of the inputxi is detectable on outputzj by output re-
sponsek. The comparison of the testable PP fault set size with the stuck-at fault set size
of the original ISCAS’85 benchmark circuit realization and the comparison of the length
of the test sets are given in Table 3. Note that the numbers of the stuck-at faults and the
numbers of the PP faults are of the same rate. The test sets for the PP faults are in all
cases larger than the test sets for the stuck-at faults significantly. The test set for PP faults
has been got using the random search procedure (Breuer and Friedman, 1976). The test
sets for stuck-at faults have been generated using the deterministic SYNOPSYS ATPG
generator (Breuer and Friedman, 1976; Synopsys, 2000).

The numbers of undetected stuck-at faults of three realizations for the test sets of
the PP faults for the benchmark circuits are given in Table 4. The average percent of
undetected faults doesn’t exceed 0.5%, but the maximum percent of undetected faults
reaches 3.4%. The detecting of the PP faults by the tests generated for the stuck-at faults
is presented in Table 5. The test sets have been generated for the original realization R1 by
a deterministic algorithm (D) and by a random & deterministic algorithm (R&D) (Breuer
and Friedman, 1976; Synopsys, 2000). The deterministic algorithm has been used if the
random search did not reach a 100% fault coverage. As we see, the test sets, which detect
100% stuck-at faults of the benchmark circuits, detect on average about 60% of the PP
faults. The experimental results show that the test sets, which are generated according to
the PP fault model, obtain high fault coverage of gate stuck-at faults. However, the PP
fault coverage of the test sets targeted for the stuck-at fault is very low. This implies that a
test set based on the PP fault model covers far much more than the single stuck-at faults.
It is very likely the test vectors based on the PP fault model can cover other kinds of
the faults such as bridging faults, multiple stuck-at faults and stuck-at faults of different
circuit realizations.

Table 3

The number of stuck-at and PP faults and its test sets sizes of of the original ISCAS’85
benchmark circuit realization

Test generation
for stuck-at faults

Test generation
for PP faults

Circuit
Stuck-at
Faults

Test size
Testable
PP Faults

Test size

C432 507 63 540 117

C499 750 63 5184 1077

C880 942 54 1326 381

C1355 1566 92 5184 1011

C1908 1862 123 3004 620

C2670 1990 113 3320 448

C3540 3126 172 2588 515

C5315 5248 130 10540 1169

C6288 7638 34 3068 268

C7552 7039 209 12188 2115



28 E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas

Table 4

The number of undetected stuck-at faults of the test sets for PP faults

Circuit Undetected of R1 Undetected of R2 Undetected of R3

C432 11 (2.2%) 6 (1.4)% 3 (0.7%)

C499 0 0 0

C880 0 0 0

C1355 0 0 1

C1908 64 (3.4%) 9 (1.0%) 9 (0.7%)

C2670 8 (0.4%) 7 (0.5%) 6 (0.4%)

C3540 35 (1.1%) 25 (1.0%) 30 (1.2%)

C5315 0 0 0

C6288 0 0 0

C7552 25 (0.4%) 8 (0.2%) 4 (0.1%)

Total 143 (0.5%) 55 (0.2%) 53 (0.2%)

R1 – the non-redundant ISCAS’85 benchmark circuit,
R2 – Synopsys Design Optimization, the target library – class.db,
R3 – Synopsys Design Optimization, the target library – and_or.db.

Table 5

The number of detected PP faults of the test sets for stuck-at faults

PP D R&D
Circuit

faults Detected % Detected %

C432 540 406 75.13 467 86.48

C499 5184 1510 29.13 1434 27.66

C880 1326 837 63.12 862 65.01

C1355 5184 2718 52.43 2638 50.89

C1908 3004 1521 50.63 1740 57.92

C2670 3320 2204 66.38 2142 64.51

C3540 2588 2051 79.31 2036 78.73

C5315 10540 7148 67.88 7305 69.30

C6288 3068 2353 76.74 2393 77.99

Total 34754 20748 59.69 21017 60.47

D – synopsys deterministic test patterns for the realization R1,
R&D – synopsys random and deterministic test patterns for the realization R1.

A pin pair fault can concern few physical signal propagation paths between an input
and an output. The testing of pin pair faults cannot guarantee the detection of all stuck-
at faults of the module. Then-detection of PP fault makes sense. The change of the
input value of the test pattern, which detects the PP fault(xt

i, z
k
j ), generates the adjacent

test pattern (Pomeranz and Reddy, 1999b; Bareišaet al., 2004), which detects the PP
fault (xt̄

i, z
k̄
j ). The test size of the test sets supplemented with the adjacent test vectors



The Realization-Independent Testing Based on the Black Box Fault Models 29

is given in Table 6. The number of the undetected stuck-at faults of three realizations
for the supplemented test sets of the benchmark circuits is given in Table 6 as well.
The supplemented test sets of the PP faults detect almost all stuck-at faults in all three
realizations. The average percent of the undetected faults doesn’t exceed 0.016%, and the
maximum percent of the undetected faults reaches 0.23% only.

We see that the test sets for the PP faults and for the supplemented test sets detect
less stuck-at faults for the original realization R1. It may be explained in such a way: the
original circuits were synthesized early and re-synthesized by Synopsys the benchmark
circuits are more optimized and have less stuck-at faults. It means that the fault coverage
of the test sets generated for the black box model depends on the optimization level during
the synthesis of the circuits.

In order to present the percent of the undetected faults in a uniform way for the PP
faults and for the test reuse of the other realizations, the average and the maximum percent
of the undetected faults for each realization pair was computed and given in Table 7. The
test sets generated for the PP faults are comparable according to the average and the
maximum of the undetected faults with the test reuse of the double-detection test sets for
the stuck-at faults. Note that the PP test sets are generated for the black-box model of the
circuits and the gate level implementation details are unavailable. The black-box model
represents the system by defining the behavior of its outputs according to the values
applied to its inputs without the knowledge of its internal organization. The black box
models in the programming language C for ISCAS’85 benchmark circuits were used by
the test generation for the PP faults.

Table 6

The number of undetected stuck-at faults of the supplemented test sets for PP faults

Circuit Test size Undetected of R1 Undetected of R2 Undetected of R3

C432 1086 0 0 0

C499 38161 0 0 0

C880 14672 0 0 0

C1355 35945 0 0 0

C1908 16563 4(0.21%) 2(0.23%) 0

C2670 28422 0 0 0

C3540 15055 0 0 0

C5315 108202 0 0 0

C6288 8875 0 0 0

C7552 178713 1(0.01%) 1(0.02%) 0

Total 445694 5(0.016%) 3(0.013%) 0

R1 – the non-redundant ISCAS’85 benchmark circuit,
R2 – Synopsys Design Optimization, the target library – class.db,
R3 – Synopsys Design Optimization, the target library – and_or.db



30 E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas

Table 7

The maximum and the average percent of the undetected faults of one and double detection test sets

P_R2+R3 P_R1+R3 P_R1+R2
The test sets

Average Maximum Average Maximum Average Maximum

One-detection
stuck-at fault test
sets

0.75 5.50 1.27 6.66 1.34 4.92

Double detection
stuck-at fault test
sets

0.19 2.20 0.65 4.21 0.59 2.92

One-detection PP
fault test sets

0.21 0.78 0.49 2.69 0.46 2.25

Double detection
PP fault test sets

0.09 0.28 0.20 0.63 0.21 0.66

P_Ri+Rj – the percent of the undetected faults of two realizations Ri and Rj.

4. The Input-Input-Output Pin Triplet Fault Model

The PP fault model requires the path sensitisation between an input and an output at least
one time. The sensitisation of the paths pair would increase the rate of the separate paths
sensitisation. The pin triplets contain such a property.

The input-input-output pin stuck-at fault triplets(xt
i, y

p
h, zk

j ), t = 0, 1, k = 0, 1,
p = 0, 1 are called the pin triplets faults (PT). The number of possible pin triplets faults
of the circuit is at most4 ∗ n ∗ n ∗ m. We denote the set of the pin triplet’s faults by

P1 =
{
(xt

i, y
p
h, zk

j )|
i = 1, . . . , n, h = 1, . . . , n, j = 1, . . . , m, t = 0, 1, k = 0, 1, p = 0, 1

}
.

The test vector detects the pin triplet fault(xt
i, y

p
h, zk

j ) of the module if the test vector
detects the pin faultsxt

i, yp
h andzk

j of the triplet on the outputzj of the module. The pin
triplet fault requires the sensitisation of two paths from inputs to the output on the same
test vector. All possible pairs of the sensitisation paths will be considered.

The PT fault covers the PP fault ifxi andyh is the same input. The pin stuck-at fault
triplet (xi, xi, zj) corresponds to the pin stuck-at fault pair(xi, zj). The test sets for the
PT faults were computed using the black-box model and the random search. The test size
and the undetected stuck-at faults for three realizations are given in Table 8. The number
of the detected PT faults is provided as well.

We see that the test sets for the input-input-output pin stuck-at fault triplets almost
covers stuck-at faults for all realizations. The generated test sets are suitable for all real-
izations and the size of the test sets is huge. The necessary test pattern for each realization
can be selected from the generated test sets by a fault simulation and the number of the
selected test pattern is given in Table 8 as well.



The Realization-Independent Testing Based on the Black Box Fault Models 31

Table 8

The number of undetected stuck-at faults of the test sets for PT faults

Circuit Test size PT faults UnR1 NTR1 UnR2 NTR2 UnR3 NTR3

C432 1123 15254 0 77 0 67 0 69

C499 3410 412736 0 65 0 91 0 103

C880 4954 55280 0 73 0 49 0 53

C1355 3356 412736 0 105 0 109 0 109

C1908 2505 154284 7 (0.38%) 163 3 (0.34%) 94 3 (0.25%) 124

C2670 3259 187270 0 173 0 161 0 165

C3540 7022 123332 0 188 0 144 1 (0.04%) 149

C5315 4679 269726 0 207 0 175 0 174

C6288 2178 152802 0 59 0 73 0 72

C7552 14310 805932 6 (0.09%) 346 1 (0.02%) 266 0 238

Total 46796 2589352 13 1456 4 1229 4 1256

NTRi – the number of the test patterns selected by a fault simulation for the realization Ri,

UnRi – the number of the undetected stuck-at faults for the realization Ri.

Table 9

The sizes of test sets generated for stuck-at faults and sets selected from PT fault test

Test sets generated
for stuck-at faults

Test sets selected
from PT fault test

Circuit
R1 R2 R3 R1 R2 R3

C432 57 46 45 77 67 69

C499 54 74 80 65 91 103

C880 62 49 50 73 49 53

C1355 86 83 80 105 109 109

C1908 118 57 75 163 94 124

C2670 105 120 116 173 161 165

C3540 167 143 147 188 144 149

C5315 130 99 89 207 175 174

C6288 43 47 34 59 73 72

C7552 211 146 138 346 266 238

Total 1033 864 854 1456 1229 1256

The sizes of the tests, generated deterministic and selected by a fault simulation from
the test sets, which detect the PT faults is given in Table 9 for the comparison. We see
that the test sets generated for the black box is only about one and a half times longer.

We will demonstrate by a simple example why a test set for PP and PT faults doesn’t
guaranty the detecting of stuck-at faults. The circuit of the example is given in Fig. 5.
The circuit has one fan-out with branchesb1 andb2. All possible input vectors are listed



32 E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas

Fig. 5. The example circuit.

Table 10

The true table of the example circuit and on the input vector detectable faults

No. a b c d PP faults Fan-out faults PT faults

0 0 0 0 0

1 0 0 1 0 (b1, d1) b12 (b1, b1, d1)

2 0 1 0 0 (c1, d1), (a1, d1) (a1, c1, d1)

3 0 1 1 1 (b0, d0), (c0, d0) b02 (b0, c0, d0)

4 1 0 0 0 (b1, d1) b11 (b1, b1, d1)

5 1 0 1 0 (b1, d1) b11 b12 (b1, b1, d1)

6 1 1 0 1 (b0, d0), (a0, d0) b01 (a0, b0, d0)

7 1 1 1 1 (b0, d0)

in Table 10, the PP faults, the fan-out stuck-at faults and the PT faults detectable on the
input vector.

The input vectors 2, 3 and 6 will be always selected by detecting PP or PT faults.
The (b1, d1) PP fault can be detected by one of the three vectors 1 or 4 or 5. In case of
a selection of the input vector 5 all fan-out stuck-at faults will be detected. In case of
selecting of the input vector 1 or 4 some stuck-at fault of the fan-out remains undetected.
Only both vectors 1 and 4 can guaranty the detection of all stuck-at faults of the fan-out.
The PP fault model and the PT fault model can never secure the selection of both vectors
1 and 4 or the selection of the vector 5.

Despite the drawback of the fault models demonstrated above, the test sets generated
according to the mentioned models for whole benchmark circuits detect stuck-at faults of
any realization unexpected well. We see a few reasons why the results are surprisingly
good. First of all, functions of the different outputs depend on the same inputs. One
stuck-at fault can be detected on several outputs. The test pattern for one input can detect
stuck-at faults for other outputs. Actually, each test pattern can detect several PP faults
and as result each PP fault may be tested more than once.

We analyzed the parameters of the circuits in order to highlight what has the impact on
the stuck-at faults coverage of the black-box test sets. The connectivity and output/input
rate, the number of all circuit paths (Pomeranz and Reddy, 1996) and the summary num-



The Realization-Independent Testing Based on the Black Box Fault Models 33

Table 11

The parameters of the circuits

Circuit
Inputs

n

Outputs
m

4 ∗ n ∗ m
Testable
PP faults

Connectivity
=testable

connection/
4 ∗ n ∗ m

(O/I)*100
rate%

Number
of the paths

Undetected
stuck-at faults

C432 36 7 1008 540 50% 19.4 – 20

C499 41 32 5248 5184 99% 78.0 – 0

C880 60 26 6240 1326 21% 43.3 17264 0

C1355 41 32 5248 5184 99% 78.0 8346432 1

C1908 33 25 3300 3004 91% 75.8 1458114 88

C2670 157 64 40192 3320 8.3% 40.8 1359768 21

C3540 50 22 4400 2588 59% 44.0 57353342 90

C5315 178 123 87576 10540 12% 69.1 2682610 0

C6288 32 32 4096 3068 75% 100 ∼ 1020 0

C7552 206 107 88168 12188 12% 50 1452986 39

ber of the undetected stuck-at faults (all realizations) of the test sets for the PP faults and
of the supplemented test sets are given in Table 11.

In Table 11 we don’t see the definite impact of the circuit parameters on the number
of the undetected faults for the test sets generated for the black box model. We see only
the correlation of the connectivity rate and the output/input rate of the circuits. It is likely
that the complexity of the implemented functions is playing the fundamental role for the
number of the undetected faults.

5. Conclusions

The design for the test and the test generation on system-level model reduces time-to-
market. The test generation on the system-level model can not guarantee complete fault
coverage on the gate-level model for each possible implementation. The test generation
on the system-level model is preferable if the efforts and the duration of the test supple-
ment activities are less than the efforts and the duration of the test generation on gate-level
model. The experiments show that the test sets generated for black-box faults at system
level detect in average more than 99 percent of the stuck-at faults of the three different
circuit realizations at gate level. The test sets supplemented with the adjacent test vectors
declined both the maximum and the average percent of undetected faults more than twice.

In general, the test generation task for the black-box model is more complicated,
because possible realizations of the design must be taken into account. Therefore, the
test set for the black-box model is larger as compared to the test set for the particular
realization of the circuit. However, the time for the test generation of the black box model
is not so critical, because the test generation can be done in parallel with the circuit
synthesis process without a prolongation of Time-to-Market. Large test sets for the black-



34 E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas

box model can be compacted by analysis not only according to the stuck-at faults, but also
according to various defects for the particular realization.

The test generation approach consisting of the test generation for the black-box model
and of the test set compaction according to the defects of the particular realization can be
used. We are aware that 100% stuck-at fault tests cannot achieve a 100% defect coverage.
The test generation for the defects is very time consuming task. We believe that the test
sets generated for the black-box model detect more defects than the pure stuck-at fault
test sets. As we have said above, the test sets for the black-box model can be generated
with different level of accuracy. The impact of test generation methods for the black-
box model and the coverage of various types of defects for different realizations can be
investigated in near future.

References

Akers, S.B. (1973). Universal test sets for logic networks.IEEE Trans. Computers, C-22, 835–839.
Bareiša, E., K. Motiej̄unas, R. Šeinauskas (2001). A method for exact identifying of undetectable faults in

synchronous sequential circuits.Information Technology and Control, 2(19), 7–20.
Bareiša, E., K. Motiej̄unas, R. Šeinauskas (2003). Identifying legal and illegal states in synchronous sequential

circuits using test generation.Informatica, 14(2), 135–154.
Bareiša, E., V. Jusas, K. Motiejūnas, R. Šeinauskas (2004). The influence of circuit re-synthesizing on the fault

coverage.Information Technology and Control, 2(31).
Betancourt, R. (1971). Derivation of minimum test sets for unate logic circuits.IEEE Trans. Computers, C-20,

1264–1269.
Blanton, R.D., J.P. Hayes (1997). Properties of the input pattern fault model. InProc. of 1997 International

Conference on Computer Design. pp. 372–380.
Breuer, M.A., A.D. Friedman (1976).Diagnosis & Reliable Design of Digital Systems. Computer Science Press.
Brglez, F., and H. Fujiwara (1985). A neutral netlist of 10 combinational benchmark circuits and a target trans-

lator in Fortran. InIEEE Int’l Symp. on Circuits and Systems, Vol. 3. pp. 663–698.
Cheng, K.-T., A.S. Khrishnakumar (1996). Automatic generation of functional vectors using the extended finite

state machine model.ACM Trans. on Design Automation of Electronic Systems, 1(1), 57–79.
Devadas, S., A. Ghosh, K. Keutzer (1996). An observability-based code coverage metric for function simulation.

In Proceedings/ACM international Conference on Computer Aided Design. pp. 418–424.
Fallah, F., S. Devadas, K. Keutzer (1998). OCCOM: efficient computation of observability-based code coverage

for functional verification. InProceedings 35th Design Automation Conference. pp. 152–157.
Ferrandi, F., F. Fummi, D. Sciuto (1998). Implicit test generation for behavioral VHDL models. InProceedings

IEEE International Test Conference. pp. 587–596.
Jusas, V., K. Paulikas, R. Šeinauskas (2001). Procedures for selection of validation vectors on the algorithm

level. In2nd IEEE Latin-American Test Workshop. Cancun, Mexico. pp. 90–95.
Jusas, V., R. Šeinauskas (2002). Automatic test patterns generation for simulation-based validation. InProc. of

the 8-th Biennal Baltic Electronics Conference. Tallinn Technical University, Tallinn. pp. 295–299.
Moundanos, D., J.A. Abraham, Y.V. Hoskote (1996). A unified framework for design validation and manufac-

turing test. InProceedings IEEE International Test Conference. pp. 875–884.
Pomeranz, I., and S.M. Reddy (1996). On the number of tests to detect all path delay faults in combinational

logic circuits. InIEEE Transaction on Computers, 45(1), 50–62.
Pomeranz, I., and S.M. Reddy (1999a). Onn-detection test sets and variablen-detection test sets for transition

faults. InProc. 17th VLSI Test Symp.pp. 173–179.
Pomeranz, I., and S.M. Reddy (1999b). Pattern sensitivity: a property to guide test generation for combinational

circuits. InProc. 8th Asian Test Symposium. pp. 75–80.
Psarakis, M., D. Gizopoulos and A. Paschalis (1998). Test generation and fault simulation for cell fault model

using stuck-at fault model based test tools.Journal of Electronic Testing, 13, 315–319.



The Realization-Independent Testing Based on the Black Box Fault Models 35

Rudnick, E.M., R. Vietti, A. Ellis, F. Corno, P. Prinetto, M. Sonza Reorda (1998). Fast sequential circuit test
generation using high-level and gate-level techniques. InProceedings IEEE European Design Automation
and Test Conference. pp. 570–576.

Santos, M.B., F.M. Goncalves, I.C. Teixera and J.P. Teixera (2000). RTL-function test generation for high
defects coverage in digital SOCs. InProc. of the IEEE European Test Workshop, ETW’00. pp. 99–104.

Synopsys. Inc., 700 East Middlefield Rd., Mountain View, CA 94043. TetraMAX ATPG User Guide, v2000.11
edition. November 2000. Document Order Number: 370043-000 TBD.

Šeinauskas, R., E. Bareiša (1996). Test selection based on the evaluation of input stuck-at faults transmissions
to output.Information Technology and Control, 2(3), 15–18.

Šeinauskas, R. (2003). ASIC design flow and test generation.Radioelectronics and Informatics, 3(24), 74–76.
Takahashi, H., K.K. Saluja, Y. Takamatsu (2002). An alternative method of generating tests for path delay

faults using ni-detection test sets. InProc. of the 2002 Pacific Rim International Symposium on Dependable
Computing(PRDC’02). pp. 275–282.

Yi, J., and J.P. Hayes (2001). A fault model for function and delay testing. InProc. of the IEEE European Test
Workshop, ETW’01. pp. 27–34.

E. Bareišagraduated from Kaunas Polytechnic Institute in 1987. Currently he is in posi-
tion of assoc. professor at Software Engineering Department, Kaunas University of Tech-
nology, Lithuania. His research interests include high-level synthesis and VLSI test gen-
eration.

V. Jusasgraduated from Kaunas Polytechnic Institute in 1982. Currently he is in position
of assoc. professor at Software Engineering Department, Kaunas University of Technol-
ogy, Lithuania. His research interests include VLSI test generation at various levels of
abstraction.

K. Motiej ūnasgraduated from Kaunas Polytechnic Institute in 1981. Currently he is in
position of assoc. professor at Software Engineering Department, Kaunas University of
Technology, Lithuania. His research interest is test generation for digital circuits.

R. Šeinauskasgraduated from Kaunas Polytechnic Institute in 1972. He got his Doctor
habilitus from Leningrad Energetics Institute in 1982. Currently he is in position of pro-
fessor at Software Engineering Department, Kaunas University of Technology, Lithuania.
His research interest is VLSI test generation.



36 E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas

Nepriklausomas nuo realizacijos testavimas, besiremiantis juodos
dėž̇es gedim↪u modeliais

Eduardas BAREIŠA, Vacius JUSAS, K↪estutis MOTIEJ̄UNAS, Rimantas ŠEINAUSKAS

Straipsnyje analizuojamas nepriklausomas nuo realizacijos skaitmenini↪u schem↪u testavimas.
Autoriai pasīulė du naujus gedim↪u modelius, skirtus test↪u generavimui schemoms, kurios yra
aprašytos sisteminiame lygmenyje. Eksperimentai parodė, kad testiniai rinkiniai, sudaryti remiantis
juodos ḋež̇es gedim↪u modeliais aptinka vidutiniškai daugiau nei 99 procentus skirting↪u realizacij↪u
schemos konstantini↪u gedim↪u.


