
INFORMATICA, 2005, Vol. 16, No. 1, 145–154 145
 2005Institute of Mathematics and Informatics, Vilnius

Comparison of Packages for Interval Arithmetic

Julius ŽILINSKAS

Institute of Mathematics and Informatics
Akademijos 4, 08663, Vilnius, Lithuania
e-mail: julius.zilinskas@mii.lt

Received: January 2004

Abstract. In this paper public available C and C++ packages for interval arithmetic are investigated
and experimentally compared. The results of comparison give suggestions which packages and
when are preferable.

Key words: interval arithmetic, packages for interval arithmetic, interval global optimization.

1. Introduction

Many problems in engineering, physics, economic may be formulated as global optimiza-
tion problems. Mathematically the problem is formulated as optimization of a nonlinear
objective function of continuous variables over a multidimensional feasible region. In-
terval global optimization methods are based on interval arithmetic proposed in (Moore,
1966). The lower and upper bounds for the function values in the sub-region are esti-
mated applying the interval operations with intervals instead of the real operations with
real variables in the algorithm of calculation the function values. The bounds are useful
to detect the sub-regions of the feasible region not containing a global minimizer.

Because of necessary outward rounding in interval arithmetic, the implementation
of interval arithmetic is not straightforward. There are several packages implementing
interval arithmetic, but there is no experimental comparison of them. Only some com-
pletely different implementations (one in Matlab, one in C++, and one in Fortran-90) are
compared in (Kearfottet al., 2004). However it is not clear which package for interval
arithmetic is preferable when a researcher implements his interval method. For exam-
ple, to make experiments with balanced random interval arithmetic (Žilinskas and Bogle,
2003; Žilinskas and Bogle, 2004) the author has tried to implement his own interval
library, to use fi_lib (Hofschuster and Krämer, 1997) and filib++ (Lerchet al., 2001), be-
cause there was no available experimental comparison of packages for interval arithmetic
published in scientific literature. In this paper public available C and C++ packages for
interval arithmetic are investigated and compared experimentally.



146 J. Žilinskas

2. Interval Arithmetic

Interval arithmetic has been proposed in (Moore, 1966). Interval arithmetic operates with
real intervalsx = [x, x] = {x ∈ �|x � x � x}, defined by two real numbersx ∈ �
andx ∈ �, x � x. For any real arithmetic operationx ◦ y the corresponding interval
arithmetic operationx ◦ y is defined whose result is an interval containing every possible
number produced by real operation with real numbers from each interval:

x ◦ y =
{
x ◦ y |x ∈ x, y ∈ y

}
.

Basic interval arithmetic operations are defined as:

x + y =
[
x + y, x + y

]
,

x − y =
[
x − y, x − y

]
,

x × y =




[
xy, xy

]
, x > 0, y > 0,[

xy, xy
]
, x > 0, y � 0,[

xy, xy
]
, x > 0, y < 0,

[xy, xy] , x � 0, y > 0,[
min(xy, xy), max(xy, xy)

]
, x � 0, y � 0,[

xy, xy
]
, x � 0, y < 0,[

xy, xy
]
, x < 0, y > 0,[

xy, xy
]
, x < 0, y � 0,[

xy, xy
]
, x < 0, y < 0,

x/y =




[
x/y, x/y

]
, x > 0, y > 0,[

x/y, x/y
]
, x > 0, y < 0,[

x/y, x/y
]
, x � 0, y > 0,

[x/y, x/y] , x � 0, y < 0,[
x/y, x/y

]
, x < 0, y > 0,[

x/y, x/y
]
, x < 0, y < 0.

The guaranteed lower and upper bounds for the function values in the region defined
by intervals of variables can be estimated applying interval operations with intervals in-
stead of real operations in the algorithm to calculate the function values. The evaluated
bounds always enclose the full range of the function values in the defined region:

{
f(X) |X ∈ X, X ∈ �n, X ∈ �n

}
⊆ f(X),

wheref : �n → �, f : [�,�]n → [�,�].
The bounds may be used in global optimization to detect the sub-regions of the fea-

sible region not containing a global minimizer. Such sub-regions may be discarded from
the further search. If the objective function is differentiable it is possible to compute the
intervals of the derivatives and discard the sub-regions where the objective function is
monotone. If the objective function is twice continuously differentiable it is possible to



Comparison of Packages for Interval Arithmetic 147

compute the intervals of the second derivatives and discard the sub-regions where the
objective function is concave. If the objective function is twice differentiable the spe-
cial interval Newton method can be applied to reduce the sub-regions, and discard the
sub-regions where there are no stationary points (Hansen, 1992).

Computers with limited precision can not represent all real numbers exactly. To guar-
antee the interval enclosure outward rounding should be used: during interval computa-
tion the number representing the lower end of the resulting interval (x) should be rounded
toward−∞ and the number representing the upper end of the resulting interval (x) should
be rounded toward+∞. Interval arithmetic with outward rounding may be used to find
guaranteed interval enclosure of result of real operations, while real arithmetic may pro-
duce not correct results because of rounding errors in real computations. Although com-
puters with limited precision can not represent all real numbers exactly, they can represent
guaranteed enclosures using intervals, for exampleπ = [3.1415, 3.1416].

Division by interval containing 0 is not defined in standard interval arithmetic and is
forbidden. The same holds for logarithm of interval containing 0 and other mathematical
interval functions which are not defined over all space of real numbers. This is serious
drawback, because computer programs are terminated when an arithmetic error excep-
tion is generated. Extended interval arithmetic has been proposed to overcome problems
with partially defined interval operations and mathematical functions. In extended inter-
val arithmetic no arithmetic error exception is generated, but the resulting interval may
be extended towards negative or positive infinity. Special values to represent infinities
and NotaNumber defined in the IEEE floating-point standard 754 helps implementation
of the extended interval arithmetic.

3. Packages for Interval Arithmetic

3.1. Developments at Hamburg–Harburg Technical University

First public available C package for interval arithmetic was BIAS – Basic Interval Arith-
metic Subroutines (Knüppel, 1993a). BIAS development was guided by the idea of BLAS
(Basic Linear Algebra Subroutines) – to provide an interface for basic vector and matrix
operations with fast implementations on various computers. The idea of BIAS was to
provide such an interface for interval operations with the objectives: portability, indepen-
dence of a specific interval representation and very efficient use of hardware. To reach
portability subroutines have been implemented using ANSI C. The routines cover the
basic scalar, vector and matrix interval operations. Hardware specific subroutines for the
switching of rounding modes have been implemented. When the arithmetic exception is
generated (e.g., division by interval containing zero), if possible the result is silently set
(e.g., to[−∞, +∞]) without program termination.

The set of BIAS routines can be included in higher-level user-friendly programming
environment, what was done with a C++ class library PROFIL – Programmer’s Runtime
Optimized Fast Interval Library (Knüppel, 1993b; Knüppel, 1994), which provides a C++



148 J. Žilinskas

interface to BIAS with the advantage that it is independent from the internal representa-
tion and the implementation of interval types. PROFIL introduces data types: vectors,
matrices, intervals, interval vectors and matrices, integer vectors and matrices, and oper-
ations between them, as well as several commonly used routines as linear interval system
solver.

Several extensions to PROFIL including a set of test matrices, subroutines for local
optimization, general linear singly linked lists, automatic differentiation and sample pro-
grams have been added as a separate package – PROFIL/BIAS extensions (Knüppel and
Simenec, 1993).

A public available implementation of the global unconstrained minimization method
involving a combination of local search, branch-and-bound technique and interval arith-
metic (Jansson and Knüppel, 1995) has been written using PROFIL/BIAS together with
PROFIL extensions (Knüppel, 1995).

PROFIL, extensions and global optimization package have been implemented in C++.
As well as BIAS, all packages intended to be portable. However they have been imple-
mented before the standard for the C++ programming language (ISO/IEC, 1998) and are
not compilable with recent compilers as GCC later than 2.95. To meet a C++ standard
specification a new completely revised version of PROFIL/BIAS including extensions
and global optimization – PROFIL V 2.0 (Knüppel, 1999) package has been implemented
and is public available.

3.2. Developments at Wuppertal University

A fast interval library fi_lib (Hofschuster and Krämer, 1997) was originally developed
at Karlsruhe University and latter extended at Wuppertal University. The most important
aim of the library was the fast computation of guaranteed bounds for interval versions of
a comprehensive set of elementary function. Fast table look-up algorithms are used for
the basic functions like arctan, exp or log. All elementary function routines are supplied
with reliable relative error bounds of high quality. The error estimates cover rounding
errors, errors introduced by not exactly representable constants as well as approximation
errors (best approximations with reliable error bounds). All error estimates are reliable
worst-case estimates, which have been derived using interval methods. The routines do
not manipulate the rounding mode of basic operations, because setting the rounding mode
may be rather expensive. All computations are done using the IEEE-double format. To get
good portability all programs are written in ANSI-C. Source code and some applications
are public available.

A C++ class library for extended scientific computing: C-XSC (Hofschusteret al.,
2001) is a tool for the development of numerical algorithms delivering highly accurate
and automatically verified results. The library integrates fast interval library fi_lib and
provides a large number of predefined numerical data types implemented as C++ classes.
C-XSC allows high-level programming of numerical applications in C++. The source
codes of the C-XSC 2.0 are freely public available. C-XSC 2.0 conforms ISO/IEC C++
standard (ISO/IEC, 1998).



Comparison of Packages for Interval Arithmetic 149

C++ toolbox for verified computing – CToolbox (Hammeret al., 1995) is an addi-
tion to C-XSC library of problem-solving routines. It covers one-dimensional and multi-
dimensional problems: accurate evaluation of polynomials, automatic differentiation, lin-
ear and nonlinear systems of equations, linear optimization, global optimization, zeros of
complex polynomials. As well as C-XSC, the source codes of the toolbox are freely pub-
lic available and it conforms ISO/IEC C++ standard.

A C++ extension of the interval library fi_lib – filib++ (Lerchet al., 2001) extends it
in two aspects. First, it adds an extended interval mode, that extends the exception-free
computation mode using special values to represent infinities and NotaNumber known
from the IEEE floating-point standard 754 to intervals. Second, the new state of the art
design uses templates and traits classes in order to get an efficient, easily extendable and
potable library, fully according to the C++ standard (ISO/IEC, 1998).

3.3. SUN Forte Compilers with Interval Support

Differently from the public freely available packages discussed before, the SUN Forte
Compilers are commercial programs. SUN Forte C++ compiler integrates interval arith-
metic library. The goal of SUN interval support in C++ was to stimulate development of
commercial interval solver libraries and applications by providing program developers
with quality interval code, narrow-width interval results, rapidly executing interval code
and an easy-to-use software development environment (SUN Microsystems, 2001).

Interval template specializations for intervals using float, double, and long double
scalar types are provided in SUN Forte C++ compiler and functions for interval<double>
are tuned for speed. Extended interval arithmetic is supported – valid results are produced
for any possible operator-operand combination, including division by zero and other in-
determinate forms involving zero and infinities. Interval arithmetic operations and math-
ematical functions form a closed mathematical system.

4. Comparison of Packages for Interval Arithmetic

The criteria of packages for interval arithmetic are:

• guarantee of enclosure – the evaluated interval should enclose the full range of
the function values in the defined multidimensional interval of variables, interval
global optimization algorithm may miss a global minimum if it uses package of
interval arithmetic without guaranteed enclosure,

• realization of extended interval arithmetic,
• portability,
• available extensions,
• speed of interval arithmetic operations and mathematical functions, global opti-

mization algorithm takes less time if interval operations and mathematical func-
tions take less time,

• width of resulting intervals – the evaluated interval should be as narrow as possible
with guaranteed enclosure, global optimization algorithm is potentially faster if it
uses tighter ranges of objective function.



150 J. Žilinskas

All criteria will be used in our comparison.
The authors of all discussed packages and libraries for interval arithmetic state, that

the enclosure is guaranteed. PROFIL/BIAS, filib++ and SUN Forte C++ interval library
support extended interval arithmetic.

BIAS and fi_lib are implemented in ANSI C and seem to be most portable. They are
rarely used without their extensions, but recent version of the extensions PROFIL V 2.0
for BIAS and C-XSC 2.0 for fi_lib both conforms with ISO/IEC C++ standard and should
be portable.

SUN Forte C++ is commercial program and all other discussed packages are freely
public available.

C++ interval library filib++ and SUN Forte C++ interval library both support extended
interval arithmetic and both use templates. The definitions of these two C++ interval
libraries are very similar and they should be easily exchangeable. SUN Forte C++ interval
library may be used when the commercial SUN Forte compiler is available and easily
exchanged by filib++ otherwise.

However filib++ and SUN Forte C++ interval library have no extensions yet as BIAS
and fi_lib have. PROFIL V 2.0 (an extension of BIAS) provides subroutines for local
optimization, general linear singly linked lists, automatic differentiation and global op-
timization. C-XSC and CToolbox (extensions of fi_lib) provide subroutines for accu-
rate evaluation of polynomials, automatic differentiation, linear and nonlinear systems of
equations, linear optimization, global optimization, zeros of complex polynomials.

Speed and widths of resulting intervals of packages for interval arithmetic should
be measured experimentally. Speed is measured using time required to evaluate interval
arithmetic operation or mathematical function. The package is faster when it requires
less time. Time required to evaluate interval operations and mathematical functions may
depend on interval data therefore we use 1000 random intervals in our experiments. The
same set of 1000 random intervals is used to estimate speed of all packages. To measure
time the interval arithmetic operation or mathematical function is evaluated 10000 times
with each random interval. The measured time shows how long does it take to evaluate
the interval arithmetic operation or mathematical function ten million times.

The width of resulting interval shows overestimation. The package for interval arith-
metic evaluate intervals more exactly when resulting intervals are narrower. We make
relative measurements in our experiments – the mean ratios of widths of resulting inter-
vals of pairs of packages are estimated:

mr =
1
N

N−1∑
i=0

xi − xi

yi − yi
,

wherexi andyi are resulting intervals of two different packages. Widths of resulting
intervals are very similar, therefore the real numbers with values near 1.0 are summed
and differences may be lost. It is more accurate to sum numbers with values near 0.0.



Comparison of Packages for Interval Arithmetic 151

This is why we use relative criterion of widths defined bellow:

e = mr − 1.0 =
1
N

N−1∑
i=0

(xi − xi

yi − yi
− 1.0

)
=

1
N

N−1∑
i=0

(
xi − xi

)
−

(
yi − yi

)
yi − yi

, (1)

which shows only non integer part of the mean ratio.
Experiments on two different computer systems have been performed. One is SUN

UltraSPARC Station with Solaris 2.9 operating system, SUN Forte C++ compiler to com-
pile program with SUN Forte library for interval arithmetic and GCC 2.95 to compile
programs with other packages for interval arithmetic. Another system is ix86 Personal
Computer with Linux operating system and GCC 2.95 compiler.

The results of experiments are shown in Tables 1 and 2. In the tablest is time in
seconds required to evaluate the interval arithmetic operation or mathematical function
ten million times. The package is faster when it requires less time. In the tablese is
non integer part of the mean ratios of widths of resulting intervals of each package (x

in equation (1)) and SUN Forte C++ interval library (y in equation (1)). The package is
more accurate when the mean ratio is lower.

Because SUN Forte C++ interval library was used as the basis for evaluation of the
ratios of widths, its values ofe are always equal to 0, for the same interval data the result-
ing intervals are always the same. C++ interval library filib++ produces same resulting
intervals as SUN Forte C++ interval library for interval arithmetic operations and square
function. For other interval mathematical functions filib++ produced resulting intervals
are a little bit wider. Interval library fi_lib produces wider resulting intervals than filib++
for interval arithmetic operations and square function and very similar resulting intervals
as filib++ for other interval mathematical functions. PROFIL and PROFIL V 2.0 produce
resulting intervals with the same width. They produce narrower resulting intervals than

Table 1

Experimental comparison of packages for interval arithmetic on SUN SPARC Station

SUN Forte filib++ fi_lib PROFIL V 2.0

t e t e t e t e

add 2.42 0 2.46 0 5.02 6.18e−16 2.05 −7.64e−17

sub 2.35 0 2.45 0 4.93 3.10e−16 2.03 −7.91e−17

mul 2.80 0 2.82 0 5.39 2.91e−16 2.09 −7.99e−17

div 3.18 0 3.19 0 5.64 2.96e−16 2.55 −7.83e−17

sin 4.11 0 9.98 3.37e−14 15.67 3.38e−14 84.62 9.04e−15

cos 3.84 0 8.70 2.24e−13 15.84 2.24e−13 627.65 7.51e−14

tan 5.49 0 11.62 4.25e−14 19.58 4.26e−14 87.46 6.13e−15

sqr 2.78 0 2.70 0 5.32 6.03e−16 2.49 −7.78e−17

sqrt 3.87 0 4.99 2.40e−15 8.07 2.55e−15 76.49 1.54e−14

exp 3.79 0 8.15 2.47e−14 11.05 2.48e−14 79.62 1.47e−14

log 3.60 0 9.24 6.13e−15 12.35 6.26e−15 79.56 2.84e−15



152 J. Žilinskas

Table 2

Experimental comparison of packages for interval arithmetic on Personal Computer with Linux

filib++ fi_lib PROFIL PROFIL V 2.0

t e t e t e t e

add 1.93 0 1.89 6.18e−16 0.27 −1.94e−17 0.37 −1.94e−17

sub 1.89 0 1.96 3.10e−16 0.28 −2.75e−17 0.38 −2.75e−17

mul 2.12 0 2.05 2.91e−16 0.30 −4.85e−17 0.39 −4.85e−17

div 2.33 0 2.23 2.96e−16 0.56 −5.07e−17 0.58 −5.07e−17

sin 3.32 3.37e−14 4.79 3.38e−14 10.34 7.42e−15 10.35 7.42e−15

cos 3.13 2.24e−13 4.79 2.24e−13 95.93 7.42e−14 101.99 7.42e−14

tan 3.84 4.25e−14 6.60 4.26e−14 10.91 4.96e−15 10.96 4.96e−15

sqr 1.87 0 1.85 6.02e−16 0.51 −3.81e−17 0.63 −3.81e−17

sqrt 1.58 2.40e−15 2.77 2.55e−15 8.34 1.37e−14 8.32 1.37e−14

exp 3.24 2.47e−14 4.57 2.48e−14 10.72 1.19e−14 10.72 1.19e−14

log 4.61 6.13e−15 4.72 6.26e−15 10.33 2.43e−15 10.28 2.43e−15

SUN Forte C++ interval library for interval arithmetic operations and square function and
wider resulting intervals than SUN Forte C++ interval library for other interval mathe-
matical functions. The packages could be aligned by decreasing order of accuracy as:

• SUN Forte C++ interval library,
• PROFIL (both versions),
• C++ interval library filib++,
• interval library fi_lib.

However differences of widths of resulting intervals are very small and will not impact
to the speed of global optimization algorithms.

The speed of SUN Forte C++ interval library and the speed of C++ interval library
filib++ are very similar for interval arithmetic operations and square function. SUN Forte
C++ interval library is approximately two times faster than filib++ for other interval math-
ematical functions. C++ interval library filib++ is approximately two times faster than in-
terval library fi_lib on SUN SPARC Station, but their speed on Personal Computer with
Linux is similar, although filib++ is a little bit faster. Speed of PROFIL and PROFIL V 2.0
is very similar as well as their resulting intervals. On SUN SPARC Station, PROFIL is a
little bit faster than other packages for interval arithmetic operations and square function,
but it is much slower for other interval mathematical functions. On Personal Computer
with Linux, PROFIL is three to seven times faster than filib++ for interval arithmetic op-
erations and square function, but three to thirty times slower than filib++ for other interval
mathematical functions. The reason of fast interval arithmetic operations in PROFIL is
that it uses hardware efficiently. The mathematical functions are slow in PROFIL because
it does not use fast table look-up algorithms as other packages do. The packages could be
aligned by decreasing speed as:

• PROFIL, if no interval mathematical function other than square function is used,
• SUN Forte C++ interval library,



Comparison of Packages for Interval Arithmetic 153

• C++ interval library filib++,
• interval library fi_lib,
• PROFIL, if interval mathematical functions are used what is usually the case.

The experimental comparison of the packages for interval arithmetic suggests that
PROFIL should be used when no interval mathematical function other than square func-
tion is used. However it is rare case. Otherwise SUN Forte C++ interval library is most
accurate and fast one. If this library is not available because it is commercial and non
free, C++ interval library filib++ is most appropriate.

5. Conclusions

Public available C and C++ packages for interval arithmetic have been investigated and
experimentally compared. Investigation and experimental comparison of C and C++
packages for interval arithmetic suggest to use SUN Forte C++ interval library when
the commercial SUN Forte compiler is available and public freely available C++ inter-
val library filib++ otherwise. These packages are most fast and accurate, they implement
extended interval arithmetic. Interval algorithms should be implemented so that the used
interval library could be exchanged easily and similar definitions of these two libraries
are very helpful.

References

Hammer, R., M. Hocks, U. Kulish and D.Ratz (1995).C++ Toolbox for Verified Computing: Basic Numerical
Problems. Springer, Berlin.

Hansen, E. (1992).Global Optimization Using Interval Analysis. Marcel Dekker, New York.
Hofschuster, W., and W. Krämer (1997). A fast public domain interval library in ANSI C. In: A. Sydow (Ed.),

Proceedings of the 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathe-
matics, Vol. 2. Berlin. pp. 395–400.

Hofschuster, W., W. Krämer, S. Wedner and A. Wiethoff (2001).C-XSC 2.0 - A C++ Class Library for Extended
Scientific Computing. Preprint 2001/1, Universität Wuppertal.

ISO/IEC (1998).14882: Standard for the C++ Programming Language. ISO/IEC.
Jansson, C., and O. Knüppel (1995). A branch-and-bound algorithm for bound constrained optimization prob-

lems without derivatives.Journal of Global Optimization, 7(3), 297–331.
Kearfott, R.B., M. Neher, S. Oishi and F. Rico (2004). Libraries, tools, and interactive systems for verified

computations four case studies.Lecture Notes in Computer Science, 2991, 36–63.
Knüppel, O. (1993a).BIAS – Basic Interval Arithmetic Subroutines. Report 93.3, Technische Universität

Hamburg–Harburg.
Knüppel, O. (1993b).PROFIL – Programmer’s Runtime Optimized Fast Interval Library. Report 93.4, Tech-

nische Universität Hamburg–Harburg.
Knüppel, O. (1994). PROFIL/BIAS – A fast interval library.Computing, 53(3–4), 277–287.
Knüppel, O. (1995).A PROFIL/BIAS Implementation of a Global Minimization Algorithm. Report 95.4, Tech-

nische Universität Hamburg–Harburg.
Knüppel, O. (1999).PROFIL/BIAS V 2.0. Report 99.1, Technische Universität Hamburg–Harburg.
Knüppel, O., and T. Simenec (1993).PROFIL/BIAS Extensions. Report 93.5, Technische Universität Hamburg–

Harburg.
Lerch, M., G. Tischler, J. W. von Gudenberg, W. Hofschuster and W. Krämer (2001).The Interval Library

filib++ 2.0 – Design, Features and Sample Programs. Preprint 2001/4, Universität Wuppertal.



154 J. Žilinskas

Moore, R. E. (1966).Interval Analysis. Prentice-Hall.
SUN Microsystems (2001).C++ Interval Arithmetic Programming Reference. Forte Developer 6 update 2 (Sun

WorkShop 6 update 2). SUN Microsystems.
Žilinskas, J., and I.D.L. Bogle (2003). Evaluation ranges of functions using balanced random interval arithmetic.

Informatica, 14(3), 403–416.
Žilinskas, J., and I.D.L. Bogle (2004). Balanced random interval arithmetic.Computers and Chemical Engi-

neering, 28(5), 839–851.

J. Žilinskas is a researcher in Systems Analysis Department at the Institute of Mathe-
matics and Informatics, Lithuania. He studied informatics at Kaunas University of Tech-
nology receiving his PhD in 2002. His research interests include global optimization and
parallel computing.

Interval ↪u aritmetikos bibliotek ↪u palyginimas

Julius ŽILINSKAS

Straipsnyje išnagriṅetos ir eksperimentiškai palygintos viešai prieinamos C ir C++ interval↪u
aritmetikos bibliotekos. Palyginimo rezultatai siūlo, kada ir kokias interval↪u aritmetikos bibliotekas
naudoti.


