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Abstract. The aim of the given paper is the development of an approach for parametric identifica-
tion of Wiener systems with piecewise linear nonlinearities, i.e., when the linear part with unknown
parameters is followed by a saturation-like function with unknown slopes. It is shown here that by a
simple data reordering and by a following data partition the problem of identification of a nonlinear
Wiener system could be reduced to a linear parametric estimation problem. Afterwards, estimates
of the unknown parameters of linear regression models are calculated by processing respective
particles of input-output data. A technique based on ordinary least squares (LS) is proposed here
for the estimation of parameters of linear and nonlinear parts of the Wiener system, including the
unknown threshold of piecewise nonlinearity, too. The results of numerical simulation and iden-
tification obtained by processing observations of input-output signals of a discrete-time Wiener
system with a piecewise nonlinearity by computer are given.
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1. Introduction

A lot of physical systems are naturally described as Wiener systems, i.e., when the li-
near system is followed by a static nonlinearity (Billings and Fakhouri, 1977; Bloemenet
al., 2001; Glad and Ljung, 2000; Greblicki, 1994; Hagenblad, 1999; Hunter and Koren-
berg, 1986; Kalafatiset al., 1997; Ljung, 1999; Pupeikiset al., 2003; Roll, 2003; Wigren,
1993). A special class of such systems is piecewise affine (PWA) systems, consisting
of some subsystems, between which occasional switchings happen at different time mo-
ments (Hagenblad, 1999; Hansen and Seo, 2002; Roll, 2003). Assuming the nonlinearity
to be piecewise linear, one could let the nonlinear part of the Wiener system be repre-
sented by different regression functions with some parameters that are unknown before-
hand. In such a case, observations of an output of the Wiener system could be partitioned
into distinct data sets according to different descriptions. However the boundaries of sets
of observations depend on the value of the unknown thresholda – observations are di-
vided into regimes subject to whether the some observed threshold variable is smaller or
larger thana (Hagenblad, 1999; Hansen and Seo, 2002). Therefore the problem of iden-
tification of unknown parameters of nonlinear and linear blocks of the Wiener systems
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could be solved, if a simple way of partitioning the available data sets were found in
the case of unknowna. Thus, there arises a problem, first, to find a way to partition the
available data, second, to calculate the estimates of parameters of regression functions
by processing particles of observations to be determined, and, third, to get the unknown
threshold.

The next section introduces the statement of the problem to be solved. In Section 3,
we solve the problem using the data rearrangement by the following reconstruction of the
unknown intermediate signal. In Section 4, simulation results are presented. Section 5
contains conclusions.

2. Statement of the Problem

The Wiener system consists of a linear partG(q,Θ) followed by a static nonlinearity
f(·, η) with the vector of parametersη. The linear part of thePWA system is dynamic,
time invariant, causal, and stable. It can be represented by a time invariant dynamic sys-
tem (LTI) with the transfer functionG(q,Θ) as a rational function of the form

G(q,Θ) =
b1q

−1 + . . . + bmq−m

1 + a1q−1 + . . . + amq−m
=

B(q,b)
1 + A(q,a)

(1)

with a finite number of parameters

ΘT = (b1, . . . , bm, a1, . . . , am), bT = (b1, . . . , bm), aT = (a1, . . . , am), (2)

that are determined from the setΩ of permissible parameter valuesΘ. Hereq is a time-
shift operator (Ljung, 1999), the setΩ is restricted by conditions on the stability of the
respective difference equation. The unknown intermediate signal

x(k) =
B(q,b)

1 + A(q,a)
u(k) + v(k), (3)

generated by the linear part of thePWA system (1) as a response to the inputu(k) and
corrupted by the additive noisev(k), is acting on the static nonlinear partf(·, η) (Fig. 1),
i.e.,

Fig. 1. ThePWA system with the process noisev(k) and that of the measuremente(k). The linear dynamic
partG(q,Θ) of thePWA system is parametrised byΘ, while the static nonlinear partf(·, η) – byη. Signals:
u(k) is input,y(k) is output,x(k) is an unmeasurable intermediate signal.
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y(k) = f
(
x(k), η

)
+ e(k). (4)

Here the nonlinear partf(·, η) of the PWA system is a saturation-like function of the
form (Hagenblad, 1999; Hansen and Seo, 2002)

f(x(k), η) =




c0 + c1x(k) if x(k) � −a,
x(k) if −a < x(k) � a,
d0 + d1x(k) if x(k) > a,

(5)

that could be partitioned into three functions. These functions are:f{x(k;Θ), c, a} =
c0 + c1x(k), f{x(k;Θ), a} = x(k), andf{x(k;Θ),d, a} = d0 + d1x(k). The function
f{x(k;Θ), c, a} has only negative values, whenx(k) � −a, f{x(k;Θ), a} has arbitrary
positive, as well as negative values, when−a < x(k) � a, andf{x(k;Θ),d, a} has only
positive values, whenx(k) > a. Herex(k;Θ) ≡ x(k), cT = (c0, c1), c0 = −a(1− c1),
0 < c1 < a, dT = (d0, d1), d0 = a(1 − d1), 0 < d1 < a.

The process noisev(k) ≡ ξ(k) and the measurement noisee(k) ≡ ζ(k) are added
to an intermediate signalx(k) and the outputy(k), respectively,ξ(k), ζ(k) are mutu-
ally noncorrelated sequences of independent Gaussian variables withE{ξ(k)} = 0,
E{ζ(k)} = 0, E{ξ(k)ξ(k + τ)} = σ2

ξδ(τ), E{ζ(k)ζ(k + τ)} = σ2
ζδ(τ); E{·} is a

mean value,σ2
ζ , σ2

ξ are variances ofζ andξ, respectively,δ(τ) is the Kronecker delta
function.

The aim of the given paper is to estimate parameters (2) of the linear part (1) of the
PWA system, parametersη = (c0, c1, d0, d1)T of the nonlinear part (5), and the threshold
a of nonlinearity (5) by processingN pairs of observationsu(k) andy(k).

3. The Data Reordering

At first, let us rearrange the datay(k) ∀k ∈ 1, N in an ascending order of their values.
Thus, the observations of the reordered outputỹ(k) of thePWA system should be parti-
tioned into three data sets: left-hand side data set (N1 samples) with values lower than or
equal to negativea, middle data set (N2 samples) with values higher than negativea but
lower or equal toa, and right-hand side data set (N3 samples) with values higher thana.
HereN = N1 + N2 + N3. From the engineering point of view it is assumed that no less
than 50% observations are concentrated on the middle-set and approximately by 25% or
less on any side set. Hence, the observations with the highest and positive values will be
concentrated on the right-hand side set, while the observations with the lowest and nega-
tive values on the left-hand side one. The observations of the middle data set ofỹ(k) are
coincident with the respective observations of the intermediate signalx(k) in the absence
of the measurement noisee(k). In such a case, one could get these observations simply
by choosing the upper interval bound lower than the 75 percentage and the lower interval
bound higher than the 25 percentage of the sampled reordered observations ofỹ(k).

Next, let us reconstruct an unmeasurable intermediate signalx(k), using the middle
data set̃y(k) ∀k ∈ N1 + l1, N2 − l2 that is, really, reordered in an ascending order of



134 R. Pupeikis

their valuesy(k) with small portions of missing observations within it that belong to
the left-hand and right-hand side sets of the data. Here arbitrary integersl1, l2 > 0. To
calculate an auxiliary signal̂x(k) (the estimate of unmeasurablex(k)) ∀k ∈ 1, N one
could approximate the model of the linear part of thePWA system (1) by the finite
impulse response(FIR) system of the form

ỹ(k) = β0 + β1ũ(k) + β2ũ(k − 1) + · · · + βν ũ(k − ν + 1) + ẽ(k) (6)

∀k ∈ N1 + l1, N2 − l2, or the expression in a matrix form

Ỹ = Λβ; (7)

Ỹ =
(
ỹ(N1 + l1), ỹ(N1 + l1 + 1), . . . , ỹ(T)

)T
(8)

is the(L−ν)×1 vector of the middle data set ofỹ(k), L = N2−l2, T = N1+N2+l1−l2,

Λ =




1 ũ(N1 + l1) . . . ũ(N1 + l1 − ν + 2) ũ(N1 + l1 − ν + 1)
1 ũ(N1 + l1 + 1) . . . ũ(N1 + l1 − ν + 3) ũ(N1 + l1 − ν + 2)
...

...
...

...
...

1 ũ(T) . . . ũ(T − ν + 2) ũ(T − ν + 1)


 (9)

is the full rankL × (ν + 1) regression matrix, consisting only of observations of the
non-noisy input̃u(k);

βT = (β0, β1 . . . , βν) (10)

is a(ν + 1)× 1 vector of unknown parameters,ν is the order of theFIR filter that can be
arbitrarily large but fixed (Er-Wei Bai, 2002),̃u(k) are observations ofu(k) associated
with their ownỹ(k), ẽ(k) = v(k) + e(k).

The reasons for the use of theFIR model are as follows. In this case, the depen-
dence of some regressors on the process output will be facilitated, and the assumption
of the ordinaryLS that the regressors depend only on the non-noisy input signal, will be
satisfied (Eykhoff, 1974). This is the main consequence of replacing the initial transfer
functionG(q,Θ) of the linear part of the PWA system by the FIR filter (6). Besides, by
applying the FIR model one avoids the influence of some missing regressors, appearing
in the regression matrixΛ, if the infinite impulse response(IIR) system is used. Then,
the parametric estimation technique, based on ordinaryLS, could be applied in the esti-
mation of parameters (10) of the given FIR system (6), using the reordered observations
of the middle data-set̃y(k) ∀k ∈ N1 + l1, N2 − l2, because the rearrangement of obser-
vations does not influence the accuracy of LS estimates to be calculated. In (Pupeikiset
al., 2003) ARMA and FIR models have been analysed by numerical simulation provided
for distinct types of nonlinearities. Finally, the decision has been made: the parameter
estimation results, obtained for Wiener systems using the FIR model, are more accurate



On the Identification of Wiener Systems 135

than those based on the ARMA model. In (Bloemenet al., 2001), the FIR model is used
for the identification and predictive control of a distillation column.

To estimate the parametersβ, one can use the expression

β̂ = (ΛT Λ)−1ΛT Ỹ, (11)

where

β̂T = (β̂0, β̂1 . . . , β̂ν) (12)

is a(ν + 1) × 1 vector of the estimates of parameters (10).
It ought to be noted that all proofs based on the deterministic regression matrix are

valid here, too.
The estimatêx(k) of the intermediate signalx(k) could be determined using Eq. 6,

where, instead of the true values (10), their estimatesβ̂ are substituted, i.e.,

x̂(k) = β̂0 + β̂1u(k) + β̂2u(k − 1) + . . . + β̂νu(k − ν + 1) (13)

∀k ∈ ν, N . Thus, the result of this step is the auxiliary signalx̂(k) that is a reconstructed
version of the intermediate signalx(k). It will be used to calculate the estimates of pa-
rameters (2) at the next step.

Now, let us calculate the estimates of the parameters (2) of the transfer function
G(q,Θ) according to

Θ̂ = (XT X)−1XT U. (14)

Here

Θ̂T = (b̂, â)T , b̂T = (b̂1, . . . , b̂m), âT = (â1, . . . , âm) (15)

are2m × 1, m × 1, m × 1 vectors of the estimates of parameters, respectively,

X =




u(m + ν) . . . u(ν) −x̂(m + ν) . . . −x̂(ν)
u(m + ν + 1) . . . u(ν + 1) −x̂(m + ν + 1) . . . −x̂(ν + 1)

...
...

...
...

u(N − 1) . . . u(N − m) −x̂(N − 1) . . . −x̂(N − m)


 (16)

is the(N − m − ν − 1) × 2m matrix, consisting of observations of the inputu(k) and
the auxiliary signal̂x(k), andU = (x̂(m + ν + 1), x̂(m + ν + 2), . . . , x̂(N))T is the
(N − m − ν − 1) × 1 vector, consisting of the observations ofx̂(k).

Estimates of the parametersc0, d0 andc1, d1 are calculated by the ordinaryLS, too.
In such a case, the sums of the form

I(c0, c1) =
N1−l3∑

i=1

[
ỹ(i) − c0 − c1

˜̂x(i)
]2 = min!, (17)



136 R. Pupeikis

I(d0, d1) =
N∑

j=N2+l4

[
ỹ(j) − d0 − d1

˜̂x(j)
]2 = min!, (18)

are to be minimized in respect of the parametersc0, c1 andd0, d1, respectively, using
side-set data particles of̃y(k) and associated observations of the auxiliary signalx̂(k).
Here˜̂x(k) are the observations of the signalx̂(k) that are rearranged in accordance with
ỹ(k), arbitrary integersl3, l4 > 0.

The estimates of parametersc1, d1 andc0, d0 are calculated according to (Malinvaud,
1969)

ĉ1 =
∑N1−l3

i=1 ỹ(i)˜̂x(i)∑N1−l3
i=1

˜̂x
2
(i)

, d̂1 =

∑N3−l4
j=1 ỹ(j)˜̂x(j)∑N3−l4

j=1
˜̂x

2
(j)

, (19)

ĉ0 =
∑N1−l3

i=1 [ỹ(i) − ĉ1
˜̂x(i)]

N1 − l3
, d̂0 =

∑N3−l4
j=1 [ỹ(j) − d̂1

˜̂x(j)]
N3 − l4

, (20)

respectively, but using side-sets data particles ofỹ(k) and associated observations of the
auxiliary signalx̂(k), that are reordered in accordance withỹ(k).

At last, the estimates of the thresholda on the right-hand side and left-hand side sets
are found according to

â = d̂0/(1 − d̂1), â = ĉ0/(1 − ĉ1), (21)

respectively.
If N1 andN3 are unknown beforehand then an approach used in robust estimation

could be applied here, too (Er-Wei Bai, 2002). It could be assumed that instead of the
PWA system (1)–(5) one deals with the LTI system (3) (Fig. 1). In such a case, one can
suppose havingN measurements with some portions ofN1 andN3 outliers. The esti-
mates of respective parameters could be determined after rejecting theseN̂1 + N̂3 sam-
ples from the initial set of observations wherêN1, N̂3 are the estimates ofN1 andN3,
respectively. After checking allN !/(N − (N̂1 − N̂3))!(N̂1 + N̂3)! variants, the “best”
estimates have been found. A more efficient approach is worked out here for dynamic
systems observed in an noisy environment (Er-Wei Bai, 2002).

The same problem could be solved as the nonlinear filtering one, forming the like-
lihood function and taking the maximum likelihood estimator to estimate unknown pa-
rameters. However, it should be noted that the simple output and associated input data
reordering with a following reconstruction of an intermediate signal that is really un-
known, allow us to turn the nonlinear problem to a linear one where linear estimators
based on the ordinary LS, are efficient. The presented algorithm is not only adapted to
the specific nonlinearity considered with a limited general interest, – the procedure used
in data reordering could be applied to robust parametric identification ofLTI dynamic
systems, by processing input and noisy output observations in the presence of lonely or
patchy outliers of large magnitude.
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4. Numerical Simulation

The true intermediate signalx(k) k = 1, N, of thePWA system (Figs. 2b, 3b) is given
by (3). The true output signal (Figs. 2c, 3c) is described by

y(k) =




−0.9 + 0.1x(k) if x(k) � −1,

x(k) if −1 < x(k) � 1,
0.9 + 0.1x(k) if x(k) > 1

(22)

Fig. 2. The signals of the simulatedPWA system with a piecewise nonlinearity (22): inputu(k), calculated
by (23)(a), intermediate signalx(k) (b), outputy(k) (c), intermediate and output (dotted line) signals (d).

Fig. 3. The signals of the simulatedPWA system with a piecewise nonlinearity (22): inputu(k) is white
Gaussian noise (a), intermediate signalx(k) (b), outputy(k) (c), intermediate and output signals (d).
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with the sum of sinusoids (Fig. 2a)

u(k) =
1
20

20∑
i=1

sin(iπk/10 + φi) (23)

and white Gaussian noise with variance 4.5 (Fig. 3a) as inputs to the linear block

G(q,Θ) =
b1q

−1

1 + a1q−1
. (24)

Fig. 4. Samples ofy(k) (a) (see Fig. 2c) and its data sets: left (b), middle (c), right (d)(here the observations,
that belong to the other data set, are equal to zeros). Inputu(k) of the form (23) (see Fig. 2a).

Fig. 5. Samples of signaly(k) (a) (see Fig. 3c) and its data sets: left (b), middle (c), right (d). Inputu(k) is
white Gaussian noise (see Fig. 3a).
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Hereb1 = 0.3, a1 = −0.5; in (23) the stochastic variablesφk with a uniform distribution
on [0, 2π] were chosen. First of all,N = 100 data points have been generated without ad-
ditive process and measurement noises (Figs. 4, 5). Afterwards, theLS problem (11) was
solved, using 40 and 70 rearranged observations of the output, respectively (Figs. 6c, 7c),
excluding zeros. The whole number ofFIR filter parametersν = 14 was chosen based on
the estimation results (Tables 1, 2), obtained for differentν in the absence of process and
measurement noises. The estimatex̂(k) of the intermediate signalx(k) was reconstructed
according to (13), replacing unknown true values of parameters by their estimates. The
reconstructed versions of the intermediate signalx(k) are shown in Figs. 8a, 9a. The es-
timatesΘ̂T = (b1, a1) of parametersΘ of the transfer functionG(q,Θ) were calculated
by Eq. 14, using the observations of the auxiliary signalx̂(k). Afterwards, the estimate
x̂1(k) of the intermediate signalx(k) was recalculated by

x̂1(k) = b̂1 u(k − 1) + â1x̂1(k − 1), ∀k = 2, 100, (25)

Table 1

The dependence of estimates of the parametersb1, a1, c0, c1, d0, d1, and thresholdsa, −a on the number of
the FIR parametersν. Input: the periodical signal (23)

Estimates ν = 5 ν = 10 ν = 14

b̂1 0.28 0.29 0.3

â1 −0.49 −0.5 −0.5

ĉ0 −0.89 −0.89 −0.9

ĉ1 0.09 0.1 0.1

d̂0 0.89 0.9 0.9

d̂1 0.09 0.1 0.1

â 0.92 1 1

−â −0.95 −1 −1

Table 2

The values and notation are the same as in Table 1. Input: the Gaussian white noise

Estimates ν = 5 ν = 10 ν = 14

b̂1 0.29 0.3 0.3

â1 −0.49 −0.49 −0.5

ĉ0 −0.89 −0.89 −0.9

ĉ1 0.09 0.09 0.1

d̂0 0.89 0.9 0.9

d̂1 0.09 0.1 0.1

â 0.96 0.98 1

−â −0.97 −0.99 −1
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Fig. 6. The reordered in an ascending order of their values signaly(k) (a) (see Figs. 2c, 4a) and its rearranged
data sets: left (b), middle (c), right (d) (here the observations, that belong to the other data set, are equal to
zeros). Inputu(k) of the form (23) (see Fig. 2a).

Fig. 7. The reordered in an ascending order of their values signaly(k) (a) (see Figs. 3c, 5a) and its rearranged
data sets: left (b), middle (c), right (d). Inputu(k) is white Gaussian noise (see Fig. 3a).

using b̂1, â1 and x̂1(1) = 0. In such a case, the estimatesb̂1, â1 were equal to the true
parameters:b1 = 0.3, a1 = 0.5. The reconstructed versions of the intermediate signal
x(k), calculated by Eq. 25 are shown in Figs. 8b, 9b.

It ought to be noted that the accuracy of estimates of the intermediate signal, calcu-
lated by formulas (13) and (25), is more or less similar except for the first 15 observations,
when theFIR model (13) was used. If̂x(k) has been obtained, then it is simple to separate
different particles of observations that belong to the respective side-sets. The estimates of
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Fig. 8. The intermediate signalx(k) (continuous line), the output signaly(k) (dashed line), the reconstructed
versions ofx(k) (dotted line), calculated using Eq. 13 (a) and Eq. 25 (b).

Fig. 9. The intermediate signalx(k) (curve 1), the output signaly(k) (curve 3), the reconstructed versions of
x(k) (curves 2, 4), calculated using Eq. 13 (a) and Eq. 25 (b), respectively.

parametersc1, d1 andc0, d0 are calculated according to formulas (19) and (20), respec-
tively. In such a case, the rearranged observations ofx̂(k) andy(k) were substituted in
formulas (19) and the estimates ofc1 andd1 were determined:̂c1 = d̂1 = 0.1. Then, the
estimateŝc0 andd̂0 were calculated by (20). Their values are also coincidental with the
values of true coefficients:̂c0 = −0.9, while d̂0 = 0.9. It should be noted thatN1 = 31,
N3 = 29 for the periodical signal (23) (Fig. 2a) andN1 = 15, N3 = 12 for the Gaussian
white noise (Fig. 3a) were used to calculate the estimatesĉ0, ĉ1, d̂0, d̂1, respectively. The
estimates of the threshold were established by Eqs. 21. The values of estimatesâ were
equal to the true valuea = 1.
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Table 3

Averaged estimates of the parametersb1, a1, c0, c1, d0, d1, and thresholdsa, −a with their confidence
intervals. Input: the periodical signal (23).SNRv = 100

Estimates SNRe = 1 SNRe = 10 SNRe = 100

b̂1 0.28 ± 0.07 0.3 ± 0.00 0.3 ± 0.00

â1 −0.52 ± 0.06 −0.5 ± 0.00 −0.5 ± 0.00

ĉ0 −0.85 ± 0.31 −0.89 ± 0.04 −0.9 ± 0.00

ĉ1 0.16 ± 0.21 0.1 ± 0.02 0.1 ± 0.00

d̂0 1 ± 0.5 0.89 ± 0.04 0.9 ± 0.00

d̂1 0.04 ± 0.4 0.1 ± 0.02 0.1 ± 0.00

â 0.97 ± 0.25 1 ± 0.02 1 ± 0.00

−â −1 ± 0.22 −1 ± 0.02 −1 ± 0.00

Table 4

The values and notation are the same as in Table 1. Input – the Gaussian white noise

Estimates SNRe = 1 SNRe = 10 SNRe = 100

b̂1 0.31 ± 0.04 0.3 ± 0.00 0.3 ± 0.00

â1 −0.39 ± 0.08 −0.5 ± 0.01 −0.5 ± 0.00

ĉ0 −0.5 ± 0.86 −0.84 ± 0.06 −0.89 ± 0.00

ĉ1 0.42 ± 0.72 0.1 ± 0.05 0.1 ± 0.00

d̂0 1.07 ± 0.51 0.91 ± 0.06 0.9 ± 0.00

d̂1 0.04 ± 0.44 0.15 ± 0.05 0.1 ± 0.00

â 1.03 ± 0.4 0.99 ± 0.02 1 ± 0.00

−â −1.21 ± 0.19 −1 ± 0.02 −1 ± 0.00

In order to determine how realizations of different process- and measurement noises
affect the accuracy of estimation of unknown parameters, we have used the Monte Carlo
simulation with 10 data samples, each containing 100 pairs of input-output observations
(Hagenblad, 1999). 10 experiments with the same realization of the process noisev(k)
and different realizations of the measurement noisee(k) with different levels of its in-
tensity have been carried out. The intensity of noises was assured by choosing respective
signal-to-noise ratiosSNR (the square root of the ratio of signal and noise variances). For
the process noise,SNRv was equal to 100, and for the measurement noise,SNRe: 1, 10,
100. As inputs for all given nonlinearities the periodical signal (23) and white Gaussian
noise with variance 1 were chosen. In eachith experiment the estimates of parameters
were calculated. During the Monte Carlo simulation averaged values of estimates of the
parameters and of the threshold and their confidence intervals were calculated. In Ta-
bles 3 and 4, for each input the averaged estimates of parameters and the thresholda

of the simulatedPWA system (Fig. 1) with the linear part (24) (b1 = 0.3; a1 = −0.5)
and the piecewise nonlinearity (22) (c0 =−0.9, c1 = 0.1, d0 = 0.9, d1 = 0.1) with their
confidence intervals are presented. It ought to be noted that in each experiment here the
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value ofSNRv was fixed and was the same, while the values ofSNRe were varying due
to different realizations ofe(k). The Monte Carlo simulation (Tables 3, 4) implies that
the accuracy of parametric identification of thePWA system depends on the intensity of
measurement noise.

5. Conclusions

One of important types of hybrid systems met in practice is piecewise affine Wiener
systems. As a rule, piecewise nonlinearities include a saturation-like function. They can-
not be described by polynomials and are usually noninvertible. On the other hand, it
is known that thePWA system consists of some subsystems, among which switchings
occur at occasional time moments. They could be presented by different threshold re-
gression models, including the model of the linear part of thePWA system. Indeed, for
the parametric identification of such systems, the ordinaryLS can be applied, if it is
known how to recognize observations that belong to different subsystems. Really, ob-
servations do not possess distinct signs that could help us to attribute them to different
data sets. Therefore, frequently a problem of parametric identification of thePWA sys-
tem is solved as a problem of the Wiener system with a noninvertible nonlinearity with all
well-known consequences beforehand. Here the nonlinear filtering approach based on the
extended Kalman filter or mixed-integer programming method are used, too (Bloemenet
al., 2001; Hagenblad, 1999; Roll, 2003).

It is shown here that a problem of identification ofPWA systems could be essentially
reduced by a simple data rearrangement in an ascending order according to their values.
Thus, the available data are partitioned into three data sets that correspond to distinct
threshold regression models. Afterwards, the estimates of unknown parameters of linear
regression models can be calculated by processing respective sets of the rearranged out-
put and associated input observations. A technique, based on ordinaryLS, is proposed
here for estimating the parameters of linear and nonlinear parts of the Wiener system, in-
cluding the unknown threshold of the piecewise nonlinearity, too. During successive steps
the unknown intermediate signal is reconstructed and the missing values of observations
of respective data particles are replaced by their estimates. Various results of numerical
simulation (Figs. 2–9), including that of Monte Carlo (Tables 3, 4) prove the efficiency
of the proposed approach for the parametric identification ofPWA systems. The pro-
cedure could be applied in robust parametric identification ofLTI dynamic systems by
processing input and noisy output observations in the presence of outliers, too.
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Apie Vinerio sistem ↪u, turin či ↪u dalimis tiesišk ↪a netiesiškum↪a su
teigiamais nuožulnumais, identifikavim ↪a

Rimantas PUPEIKIS

Straipsnyje nagriṅejamas Vinerio sistem↪u laipsniškas tiesiṅes dalies, aprašomos skirtumine
lygtimi su nežinomais koeficientais ir dalimis tiesiško netiesiškumo su nežinomais nuožulnu-
mais bei nežinom↪u slenkšci ↪u, junginys. Parodyta, kad pertvarkius išėjimo signalo steḃejimus pagal
didėjaňcias j ↪u reikšmes, galima išskirti vidurin↪e steḃejim ↪u dal↪i, atitinkaňci ↪a nestebimo tarpinio sig-
nalo steḃejimus. Pasīulytas pilno tarpinio signalo atstatymo būdas pagal↪iėjimo signalo ir iṧejimo
signalo viduriṅes dalies steḃejimus. Nežinom↪u tiesiṅes Vinerio sistemos dalies koeficient↪u ir dali-
mis tiesiško netiesiškumo parametr↪u bei slenkšcio ↪iverčiai gaunami mažiausi↪uj ↪u kvadrat↪u metodo
algoritmais, apdorojant stebim↪u ↪iėjimo, pertvarkyto iṧejimo bei atkurto tarpinio signal↪u duomenis.
Pateikti modeliavimo rezultatai.


