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Abstract. The aim of the given paper is the development of an approach for parametric identifica-
tion of Wiener systems with piecewise linear nonlinearities, i.e., when the linear part with unknown
parameters is followed by a saturation-like function with unknown slopes. It is shown here that by a
simple data reordering and by a following data partition the problem of identification of a nonlinear
Wiener system could be reduced to a linear parametric estimation problem. Afterwards, estimates
of the unknown parameters of linear regression models are calculated by processing respective
particles of input-output data. A technique based on ordinary least squi&fes (proposed here

for the estimation of parameters of linear and nonlinear parts of the Wiener system, including the
unknown threshold of piecewise nonlinearity, too. The results of numerical simulation and iden-
tification obtained by processing observations of input-output signals of a discrete-time Wiener
system with a piecewise nonlinearity by computer are given.
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1. Introduction

A lot of physical systems are naturally described as Wiener systems, i.e., when the li-
near system is followed by a static nonlinearity (Billings and Fakhouri, 1977; Bloemen

al., 2001; Glad and Ljung, 2000; Greblicki, 1994; Hagenblad, 1999; Hunter and Koren-
berg, 1986; Kalafatist al., 1997; Ljung, 1999; Pupeikig al., 2003; Roll, 2003; Wigren,
1993). A special class of such systems is piecewise affi&X) systems, consisting

of some subsystems, between which occasional switchings happen at different time mo-
ments (Hagenblad, 1999; Hansen and Seo, 2002; Roll, 2003). Assuming the nonlinearity
to be piecewise linear, one could let the nonlinear part of the Wiener system be repre-
sented by different regression functions with some parameters that are unknown before-
hand. In such a case, observations of an output of the Wiener system could be partitioned
into distinct data sets according to different descriptions. However the boundaries of sets
of observations depend on the value of the unknown threshel@bservations are di-
vided into regimes subject to whether the some observed threshold variable is smaller or
larger thamu (Hagenblad, 1999; Hansen and Seo, 2002). Therefore the problem of iden-
tification of unknown parameters of nonlinear and linear blocks of the Wiener systems
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could be solved, if a simple way of partitioning the available data sets were found in
the case of unknown. Thus, there arises a problem, first, to find a way to partition the
available data, second, to calculate the estimates of parameters of regression functions
by processing particles of observations to be determined, and, third, to get the unknown
threshold.

The next section introduces the statement of the problem to be solved. In Section 3,
we solve the problem using the data rearrangement by the following reconstruction of the
unknown intermediate signal. In Section 4, simulation results are presented. Section 5
contains conclusions.

2. Statement of the Problem

The Wiener system consists of a linear p@fly, ®) followed by a static nonlinearity
f(-,n) with the vector of parameters The linear part of th@® WA system is dynamic,

time invariant, causal, and stable. It can be represented by a time invariant dynamic sys-
tem (LTT) with the transfer functio7(¢, ®) as a rational function of the form

blqil + ...+ bmqim B(q7 b)

G(qa@) = 1_’_a1q71+.”+amq*m - 1+A(q7a)

1)
with a finite number of parameters
OT = (by,...,bm,a1,...,am), bL =(by,....by), al =(a1,...,am), (2)

that are determined from the $@tof permissible parameter valués Hereq is a time-
shift operator (Ljung, 1999), the s&k is restricted by conditions on the stability of the
respective difference equation. The unknown intermediate signal

B(g,b)

v(k) = 17 A(q, a)

u(k) + v(k), 3)
generated by the linear part of tR8VA system (1) as a response to the inp(t) and
corrupted by the additive noisgk), is acting on the static nonlinear pdit, ) (Fig. 1),
ie.,

v(k)
u(k l z(k
SN A . LN 5

Fig. 1. ThePWA system with the process noisék) and that of the measuremer{tc). The linear dynamic
partG(q, ®) of thePWA system is parametrised I, while the static nonlinear paft(-, n) — by n. Signals:
u(k) is input,y (k) is output,z(k) is an unmeasurable intermediate signal.
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y(k) = f(x(k),n) + e(k). 4)

Here the nonlinear pauf(-,n) of the PWA system is a saturation-like function of the
form (Hagenblad, 1999; Hansen and Seo, 2002)

Fa(k),n) = { (k) if —a < (k) <a, 5)

co+ crx(k) if x(k) < —a,
{ do + dyz(k) if (k) > a,
that could be partitioned into three functions. These functions f&refk; ©),c,a} =
co + crz(k), f{z(k;©),a} = z(k), andf{z(k; ®),d,a} = do + dix(k). The function
f{z(k; ©), c,a} has only negative values, whe(k) < —a, f{z(k; ®), a} has arbitrary
positive, as well as negative values, when < z(k) < a, andf{z(k; ®),d, a} has only
positive values, when(k) > a. Herez(k; ©) = z(k), ¢’ = (co,c1), co = —a(l —c1),
0<ec <a, dT = (do,dl), do = a(l — dl), 0<d <a.

The process noise(k) = £(k) and the measurement noisg:) = ((k) are added
to an intermediate signal(k) and the outpuy(k), respectively£(k), ¢(k) are mutu-
ally noncorrelated sequences of independent Gaussian variableFWilt)} = 0,
E{C(k)} = 0, B{¢(b)E(k + 1)} = 028(7), E{C(K)C(k+ 1)} = 028(7); E{}isa
mean vaIueag, ag are variances of and¢, respectivelyp(r) is the Kronecker delta
function.

The aim of the given paper is to estimate parameters (2) of the linear part (1) of the
PWA system, parameters= (co, c1, do, d;)” of the nonlinear part (5), and the threshold
a of nonlinearity (5) by processingy pairs of observations(k) andy(k).

3. The Data Reordering

At first, let us rearrange the dagék) Vk € 1, N in an ascending order of their values.
Thus, the observations of the reordered ouffié) of the PWA system should be parti-
tioned into three data sets: left-hand side dataSetsamples) with values lower than or
equal to negative, middle data set/{, samples) with values higher than negativieut
lower or equal taz, and right-hand side data sé{{ samples) with values higher than
Here N = N; + Ny + N3. From the engineering point of view it is assumed that no less
than 50% observations are concentrated on the middle-set and approximately by 25% or
less on any side set. Hence, the observations with the highest and positive values will be
concentrated on the right-hand side set, while the observations with the lowest and nega-
tive values on the left-hand side one. The observations of the middle dataggé? afre
coincident with the respective observations of the intermediate sighain the absence
of the measurement noisék). In such a case, one could get these observations simply
by choosing the upper interval bound lower than the 75 percentage and the lower interval
bound higher than the 25 percentage of the sampled reordered observafjoh}s of

Next, let us reconstruct an unmeasurable intermediate sigkal using the middle
data setj(k) Vk € N1 + 11, No — 5 that is, really, reordered in an ascending order of
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their valuesy(k) with small portions of missing observations within it that belong to
the left-hand and right-hand side sets of the data. Here arbitrary intggérs> 0. To
calculate an auxiliary signak(k) (the estimate of unmeasurabiék)) Yk € 1, N one
could approximate the model of the linear part of (R&/A system (1) by the finite
impulse responsgrIR) system of the form

G(k) = Bo + Br(k) + Boii(k — 1) + -+ + Boa(k —v + 1) + é(k) (6)
Vk € Ny + 11, N5 — I, or the expression in a matrix form

Y = AB; (7

Y = (5N +4), G(Ni + 1+ 1), 5(T) " ®)
is the(L—v) x 1 vector of the middle data set §tk), L = No—Ils, T = N1+ No+11—lo,

1 fL(Nl—‘rll) ﬁ(N1+ll—U+2) ’l](Nl—f—ll—l/—‘rl)
1T a(Ny+0h+1) ... aN+h—v+3) a(Ni+1l —v+2)

A= 9)

1 a(T) (T 7.1/+2) (T Cvst 1)

is the full rankL x (v + 1) regression matrix, consisting only of observations of the
non-noisy inputi(k);

BT: (ﬁOaﬁl---7ﬁV) (10)

isa(v+ 1) x 1 vector of unknown parametersjs the order of th&'1R filter that can be
arbitrarily large but fixed (Er-Wei Bai, 2002j(k) are observations af(k) associated
with their owng(k), é(k) = v(k) + e(k).

The reasons for the use of tlR model are as follows. In this case, the depen-
dence of some regressors on the process output will be facilitated, and the assumption
of the ordinaryLS that the regressors depend only on the non-noisy input signal, will be
satisfied (Eykhoff, 1974). This is the main consequence of replacing the initial transfer
functionG(q, ©®) of the linear part of the PWA system by the FIR filter (6). Besides, by
applying the FIR model one avoids the influence of some missing regressors, appearing
in the regression matriA, if the infinite impulse respons@IR) system is used. Then,
the parametric estimation technique, based on ordih&rycould be applied in the esti-
mation of parameters (10) of the given FIR system (6), using the reordered observations
of the middle data-sejl(k) Vk € Ny + [1, N2 — I3, because the rearrangement of obser-
vations does not influence the accuracy of LS estimates to be calculated. In (Pepeikis
al., 2003) ARMA and FIR models have been analysed by numerical simulation provided
for distinct types of nonlinearities. Finally, the decision has been made: the parameter
estimation results, obtained for Wiener systems using the FIR model, are more accurate
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than those based on the ARMA model. In (Bloeneeal., 2001), the FIR model is used
for the identification and predictive control of a distillation column.
To estimate the parametefsone can use the expression

B=(ATA)TIATY, (11)
where
BT = (BO?BI"'7BV) (12)

isa(r + 1) x 1 vector of the estimates of parameters (10).

It ought to be noted that all proofs based on the deterministic regression matrix are
valid here, too.

The estimatet (k) of the intermediate signal(k) could be determined using Eg. 6,
where, instead of the true values (10), their estimatage substituted, i.e.,

#(k) = Bo + Bru(k) + Bou(k — 1) + ... + Byu(k — v + 1) (13)

Vk € v, N. Thus, the result of this step is the auxiliary sighét) that is a reconstructed
version of the intermediate signa(k). It will be used to calculate the estimates of pa-
rameters (2) at the next step.

Now, let us calculate the estimates of the parameters (2) of the transfer function
G(q,®) according to

e = (X"x)"'x"U. (14)
Here
07 = (b,a)7, BT = (by,....bm), &7 = (a1,...,am) (15)

are2m x 1, m x 1, m x 1 vectors of the estimates of parameters, respectively,

um+v) ... u() A—i‘(m +v) ... A—:ﬁ(u)
X u(m—l—:l/—l—l) u(uj—l) —x(m—l:—u—l—l) —x(u.—l—l) (16)
uN-1) ... u(N-m) —-z&N-1) ... —-&(N—-m)

isthe(N —m — v — 1) x 2m matrix, consisting of observations of the inpL(%) and
the auxiliary signak(k), andU = (2(m + v + 1),2(m + v + 2),...,2(N))7 is the
(N —m — v — 1) x 1 vector, consisting of the observationsidf).

Estimates of the parametefs, dy andcy, d; are calculated by the ordinaiys, too.
In such a case, the sums of the form

Ni—l3

I(Co, Cl) = Z [Q(Z) — Co — Cli‘(i)]z = min!, (17)

=1
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N

I(do,dy) = > [§(j) — do — dri(j)]” = min!, (18)

j=Na+l4

are to be minimized in respect of the parametgrs:; anddy, dy, respectively, using
side-set data particles gf{k) and associated observations of the auxiliary sigrial).
Herei (k) are the observations of the sigrdl) that are rearranged in accordance with
y(k), arbitrary integerss, i, > 0.

The estimates of parametefs d; andcy, dy are calculated according to (Malinvaud,
1969)

| ; (19)

B ST A I S E It
Ni~larai) — ¢, % . No—larz(5) — dia(j
. v ][Vyf ) - DR ][5“_) - a0 o0

respectively, but using side-sets data particleg(é) and associated observations of the
auxiliary signalz(k), that are reordered in accordance wjtlk).

At last, the estimates of the threshalan the right-hand side and left-hand side sets
are found according to

a=dy/(1—dy), a=2é/(1—¢é), (21)

respectively.

If N1 and N3 are unknown beforehand then an approach used in robust estimation
could be applied here, too (Er-Wei Bai, 2002). It could be assumed that instead of the
PWA system (1)—(5) one deals with the LTI system (3) (Fig. 1). In such a case, one can
suppose havingv measurements with some portions/éf and N3 outliers. The esti-
mates of respective parameters could be determmed after reJectlnngelsé\fg sam-
ples from the initial set of observations WheM;, N3 are the estimates d¥; and N,
respectively. After checking alN!/(N — (N; — N3))!(N; + N3)! variants, the “best”
estimates have been found. A more efficient approach is worked out here for dynamic
systems observed in an noisy environment (Er-Wei Bai, 2002).

The same problem could be solved as the nonlinear filtering one, forming the like-
lihood function and taking the maximum likelihood estimator to estimate unknown pa-
rameters. However, it should be noted that the simple output and associated input data
reordering with a following reconstruction of an intermediate signal that is really un-
known, allow us to turn the nonlinear problem to a linear one where linear estimators
based on the ordinary LS, are efficient. The presented algorithm is not only adapted to
the specific nonlinearity considered with a limited general interest, — the procedure used
in data reordering could be applied to robust parametric identificatidil'dfdynamic
systems, by processing input and noisy output observations in the presence of lonely or
patchy outliers of large magnitude.
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4. Numerical Simulation

The true intermediate signalk) k = 1, N, of the PWA system (Figs. 2b, 3b) is given
by (3). The true output signal (Figs. 2c, 3c) is described by

—0.940.1a(k) if x(k) < —1,

y(k) = ¢ z(k) if —1<a(k) <1, (22)
0.9+ 0.1z(k)  if z(k)>1
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Fig. 2. The signals of the simulatd®WA system with a piecewise nonlinearity (22): inputk), calculated
by (23)(a), intermediate signal k) (b), outputy(k) (c), intermediate and output (dotted line) signals (d).

6 2

4
,
2
0 0
-2
-1
-4
-6 -2
0 20 40 60 80 100 [+] 20 40 60 80 100
a b
1.5 2
1
\
0.5
0 V]
-0.5
-1
-1
. , bservations
o 20 40 60 80 100 0 20 40 60 80 100
c d

Fig. 3. The signals of the simulatddWA system with a piecewise nonlinearity (22): inputk) is white
Gaussian noise (a), intermediate signét) (b), outputy(k) (c), intermediate and output signals (d).
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with the sum of sinusoids (Fig. 2a)
1 20
u(k) = 20 ; sin(imk/10 4 ¢;) (23)

and white Gaussian noise with variance 4.5 (Fig. 3a) as inputs to the linear block

big!

G(q,0) = T+ag

(24)
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a b
1 14
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0 20 40 60 80 100 0 20 40 60 80 100
c d

Fig. 4. Samples of(k) (a) (see Fig. 2c) and its data sets: left (b), middle (c), right (d)(here the observations,
that belong to the other data set, are equal to zeros). in@ytof the form (23) (see Fig. 2a).
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Fig. 5. Samples of signaj(k) (a) (see Fig. 3c) and its data sets: left (b), middle (c), right (d). Ingé?) is
white Gaussian noise (see Fig. 3a).
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Hereb, = 0.3, a; = —0.5; in (23) the stochastic variablgg with a uniform distribution

on [0, 27| were chosen. First of ally = 100 data points have been generated without ad-
ditive process and measurement noises (Figs. 4, 5). AfterwardsStpeoblem (11) was
solved, using 40 and 70 rearranged observations of the output, respectively (Figs. 6c, 7c¢),
excluding zeros. The whole numbertoiR filter parameters = 14 was chosen based on

the estimation results (Tables 1, 2), obtained for differeimthe absence of process and
measurement noises. The estimie) of the intermediate signal(k) was reconstructed
according to (13), replacing unknown true values of parameters by their estimates. The
reconstructed versions of the intermediate sigri&l) are shown in Figs. 8a, 9a. The es-
timates®? = (b1, a1) of parameter® of the transfer functioii7 (¢, ®) were calculated

by Eqg. 14, using the observations of the auxiliary sigidl). Afterwards, the estimate

%1 (k) of the intermediate signal(k) was recalculated by

E1(k) = by u(k —1) +ay@1(k—1), Vk=2,100, (25)

Table 1

The dependence of estimates of the paraméters, , co, c1, do, d1, and thresholds, —a on the number of
the FIR parameters. Input: the periodical signal (23)

Estimates v=5 v=10 v=14

by 0.28 0.29 0.3
a -0.49 —0.5 —0.5
éo —0.89  —0.89 —-0.9
& 0.09 0.1 0.1
do 0.89 0.9 0.9
dy 0.09 0.1 0.1
a 0.92 1 1
—a —0.95 -1 -1
Table 2

The values and notation are the same as in Table 1. Input: the Gaussian white noise

Estimates v=5 v=10 v=14

by 0.29 0.3 0.3
a1 —0.49 —0.49  —0.5
éo —0.89 —0.89 —0.9
& 0.09 0.09 0.1
do 0.89 0.9 0.9
di 0.09 0.1 0.1
a 0.96 0.98 1
—a -0.97 -099 -1
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0 20 40 60 80 100 0 20 40 60

¢ d
Fig. 6. The reordered in an ascending order of their values sigigl(a) (see Figs. 2c, 4a) and its rearranged
data sets: left (b), middle (c), right (d) (here the observations, that belong to the other data set, are equal to

zeros). Inputu(k) of the form (23) (see Fig. 2a).

15

1

e Observations
0 20 40 60 80 100

Fig. 7. The reordered in an ascending order of their values sigial(a) (see Figs. 3c, 5a) and its rearranged
data sets: left (b), middle (c), right (d). Inputk) is white Gaussian noise (see Fig. 3a).

usinngl, a, andz1(1) = 0. In such a case, the estimaﬁasdl were equal to the true
parametersb; = 0.3, a; = 0.5. The reconstructed versions of the intermediate signal
z(k), calculated by Eg. 25 are shown in Figs. 8b, 9b.

It ought to be noted that the accuracy of estimates of the intermediate signal, calcu-
lated by formulas (13) and (25), is more or less similar except for the first 15 observations,
when thel'IR model (13) was used. #f(k) has been obtained, then it is simple to separate
different particles of observations that belong to the respective side-sets. The estimates of
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Fig. 8. The intermediate signalk) (continuous line), the output signg(k) (dashed line), the reconstructed
versions ofz (k) (dotted line), calculated using Eq. 13 (a) and Eq. 25 (b).

L ) ' L L )
1] 10 20 30 40 50 60 70 80 90 100

b

Fig. 9. The intermediate signalk) (curve 1), the output signal(k) (curve 3), the reconstructed versions of
z(k) (curves 2, 4), calculated using Eq. 13 (a) and Eqg. 25 (b), respectively.

parameterg;, d; andcy, dy are calculated according to formulas (19) and (20), respec-
tively. In such a case, the rearranged observatiorig of andy (k) were substituted in
formulas (19) and the estimatesqfandd; were determined?; = d; = 0.1. Then, the
estimates’, andd, were calculated by (20). Their values are also coincidental with the
values of true coefficientg, = —0.9, while dy = 0.9. It should be noted thav, = 31,

N3 = 29 for the periodical signal (23) (Fig. 2a) aid, = 15, N3 = 12 for the Gaussian
white noise (Fig. 3a) were used to calculate the estimates, do, ds, respectively. The
estimates of the threshold were established by Eqs. 21. The values of estimates
equal to the true value = 1.
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Table 3

Averaged estimates of the parametéisai, co,c1,do,d1, and thresholds:, —a with their confidence
intervals. Input: the periodical signal (2BNRY = 100

Estimates SNR® =1 SNR® =10 SNR® = 100

by 0.28 +0.07 0.3 +0.00 0.3 4+0.00
ay —0.52 + 0.06 —0.5£0.00 —0.5+0.00
éo —0.85+0.31 —0.89 +£0.04 —0.9 +£0.00
é1 0.16 +£0.21 0.14+0.02 0.14+0.00
do 1+0.5 0.89 + 0.04 0.9 +0.00
dy 0.04+04 0.14+0.02 0.140.00
a 0.97 £+ 0.25 14+0.02 1+0.00
—a —1+0.22 —1+0.02 —1+0.00
Table 4

The values and notation are the same as in Table 1. Input — the Gaussian white noise

Estimates SNR® = SNR® =10 SNR® = 100
by 0.31 £0.04 0.3+0.00 0.3 +£0.00
ay —0.39 £ 0.08 —0.5£0.01 —0.5£0.00
¢o —0.5+0.86 —0.84+£0.06 —0.89+0.00
¢1 0.42+£0.72 0.14+0.05 0.1+ 0.00
do 1.07 £0.51 0.91 £ 0.06 0.9 +0.00
dy 0.04 £0.44 0.15 £ 0.05 0.1+ 0.00
a 1.03+0.4 0.99 £ 0.02 1+0.00

—a —1.214+0.19 —1£0.02 —1£0.00

In order to determine how realizations of different process- and measurement noises
affect the accuracy of estimation of unknown parameters, we have used the Monte Carlo
simulation with 10 data samples, each containing 100 pairs of input-output observations
(Hagenblad, 1999). 10 experiments with the same realization of the process (idise
and different realizations of the measurement neigg with different levels of its in-
tensity have been carried out. The intensity of noises was assured by choosing respective
signal-to-noise ratioSNR (the square root of the ratio of signal and noise variances). For
the process nois8NR" was equal to 100, and for the measurement n6i8&°: 1, 10,

100. As inputs for all given nonlinearities the periodical signal (23) and white Gaussian
noise with variance 1 were chosen. In eatthexperiment the estimates of parameters
were calculated. During the Monte Carlo simulation averaged values of estimates of the
parameters and of the threshold and their confidence intervals were calculated. In Ta-
bles 3 and 4, for each input the averaged estimates of parameters and the theeshold
of the simulated®WA system (Fig. 1) with the linear part (24);(= 0.3; a; = —0.5)

and the piecewise nonlinearity (22(= —0.9, ¢; = 0.1, dy = 0.9, d; = 0.1) with their
confidence intervals are presented. It ought to be noted that in each experiment here the
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value of SNR" was fixed and was the same, while the valueSMR® were varying due
to different realizations oé(k). The Monte Carlo simulation (Tables 3, 4) implies that
the accuracy of parametric identification of tR&VA system depends on the intensity of
measurement noise.

5. Conclusions

One of important types of hybrid systems met in practice is piecewise affine Wiener
systems. As a rule, piecewise nonlinearities include a saturation-like function. They can-
not be described by polynomials and are usually noninvertible. On the other hand, it
is known that thePWA system consists of some subsystems, among which switchings
occur at occasional time moments. They could be presented by different threshold re-
gression models, including the model of the linear part ofRNéA system. Indeed, for

the parametric identification of such systems, the ordida&ycan be applied, if it is
known how to recognize observations that belong to different subsystems. Really, ob-
servations do not possess distinct signs that could help us to attribute them to different
data sets. Therefore, frequently a problem of parametric identification dfi& sys-

tem is solved as a problem of the Wiener system with a noninvertible nonlinearity with all
well-known consequences beforehand. Here the nonlinear filtering approach based on the
extended Kalman filter or mixed-integer programming method are used, too (Bl@men
al., 2001; Hagenblad, 1999; Roll, 2003).

It is shown here that a problem of identificationfo¥#A systems could be essentially
reduced by a simple data rearrangement in an ascending order according to their values.
Thus, the available data are partitioned into three data sets that correspond to distinct
threshold regression models. Afterwards, the estimates of unknown parameters of linear
regression models can be calculated by processing respective sets of the rearranged out-
put and associated input observations. A technique, based on ordisaiy proposed
here for estimating the parameters of linear and nonlinear parts of the Wiener system, in-
cluding the unknown threshold of the piecewise nonlinearity, too. During successive steps
the unknown intermediate signal is reconstructed and the missing values of observations
of respective data particles are replaced by their estimates. Various results of numerical
simulation (Figs. 2-9), including that of Monte Carlo (Tables 3, 4) prove the efficiency
of the proposed approach for the parametric identificatiof WA systems. The pro-
cedure could be applied in robust parametric identificatiobhTff dynamic systems by
processing input and noisy output observations in the presence of outliers, too.
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Apie Vinerio sistemu, turin ¢iy dalimis tiesiSka netiesiSkunma su
teigiamais nuoZulnumais, identifikavima

Rimantas PUPEIKIS

Straipsnyje nagrigiamas Vinerio sistem laipsniSkas tiesigs dalies, apraSomos skirtumine
lygtimi su neZinomais koeficientais ir dalimis tiesiS8ko netiesiSkumo su neZinomais nuoZulnu-
mais bei nezinom slenkgiu, junginys. Parodyta, kad pertvarkiugjigno signalo stebjimus pagal
didejartias y reikSmes, galima iSskirti vidurgnstelgjimy dal, atitinkartia nestebimo tarpinio sig-
nalo stelejimus. Pasilytas pilno tarpinio signalo atstatymaitlas pagaigjimo signalo ir i&jimo
signalo vidurires dalies stefjimus. Nezinom tiesires Vinerio sistemos dalies koeficigrit dali-
mis tiesiSko netiesiSkumo parametrei slenksio iverCiai gaunami maziaugju kvadrat) metodo
algoritmais, apdorojant stebimejimo, pertvarkyto i§jimo bei atkurto tarpinio signalduomenis.
Pateikti modeliavimo rezultatai.



