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Abstract. Walras theory is well known and widely used in models of market economy. Various
iterative methods are developed to sidfor the equilibrium conditions.

In this paper a new approach is proposed and implged where the search for Walras equilib-
rium is defined as a stochastic global optimization problem. This way random nature of customer
arrivals is represented and the convergence to equilibrium is provided if equilibrium exists.

This paper describes a part of a Web-based integrated system for scientific cooperation
and distance graduate studies of theories of optimization, games and markets which aim
is to provide researchers and graduate students with hands-on experience on effective use
of software. The objectives are to provide a tool for scientific collaboration and to stimu-
late creative abilities of graduate students to work as independent researchers. The web-site
http://soften. ktu. |t/ “nockus includes a family of economic and finnacial models re-
garding them all as examples of the the general optimization theory.
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1. Introduction

Future enterprises will be characterized by a focus on total quality, globalization, an
object-oriented approach, and a business process-oriented approach. The globalization
will lead to the “Virtual Enterprise”. The virtual enterprise can obtain a competitive posi-
tion by defining and re-engineering its business processes. However, such re-engineering
requires an enterprise model.

A well known example is the Factory of the Future (FOF) project (Rolstadas, 1995). It
is based on a generalization of the Walras model, and defines a number of design choices
and performance indicators.

There are well known and widely used iterative algorithms to define equilibrium in
Walras models under some conditions (Scad &ansen, 1973; Herings, 1994). In this
paper we consider the search for the Naghilirium (Nash, 1950) of the Walras model
of the theory of games and markets (Rosenmuller, 1981) under different non-traditional
conditions. The main difference is stochastic customer arrivals and stochastic service
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times. This is important considering “markets” represented by a collection of small num-
ber of independent servers.

Each server tries to maximize the profit by setting optimal prices for services and
resources. The resources define the servicé.rate

First, an agreement about prices of services and resources — the “Contract Vector”
(CV) —is made. Then profits of individual servers are maximized by changing individual
prices under the assumption that all their partners respect the prices set by CV. This way
one transforms the Contract-Vector into the “Fraud-Vector” @V)

The optimization problem is to search for such CV that minimizes the deviation of the
Fraud-Vector from the Contract-Vector. This makes the fraud less relevant. The fraud is
irrelevant and the Nash equilibrium is achieved, if the deviation is zero. Then servers can-
not increase their profits by changing service and resource prices defined by the contract.

For simplicity the quality of service is defined as the average time lost by customers
while waiting for service§ A customer prefers the server with lesser total service cost.
The total cost is defined as the service price plus estimated waiting losses (expressed in
the same money as the service price). A cosdr goes away, if the total cost exceeds
certain critical level. A flow of customers isaehastic. Service ties are stochastic, too.
There is no known analytical solution for this model. The results are obtained by Monte-
Carlo simulation.

Itis supposed that the server capacity depends on several resources. Each server owns
a minimal amount of all resources for its own needs. It is assumed that each server allo-
cates a fixed amount of single resource for sale. Thus, the number of different resources
in the “market” is equal to the number of servers. The distribution of the market resources
are controlled by their pricés

In the model, the servers share each othsources. Therefore, we are looking for the
equilibrium of both the prices for services and the prices for shared resources.

This market model illustrates the possibilities and limitations of the optimization the-
ory and numerical techniques in models of competitive environments. Initially the model
was developed as a test function for the Bayesian algorithms of stochastic global opti-
mization (Mockus, 2000). However, this simple model may help to design more realistic
ones. Simple models help to understandcpsses of competition better. In addition it
shows the relation between the optimization and equilibrium.This is important for stud-
ies of the Operations Research and the Theory of Games and Markets.

The model is implemented as an Java applet on the web-site:
http://soften. ktu. |t/ “nockus and some mirrors:
http://eta.ktl.mi.lt/ nockus,
http://optimun2.mi.lt/ jonas2,
http://nockus. us/opti mum

1The average number of customers that would be served in nonstop operations, we consider this rate as the
server capacity.

20ften FV is called as the “Best Response”, however hirkt that the name “FraliVector” describes the
situation better because thatist necessarily the best response.

SExpected waiting time is just one of many parameters defining the quality of services. This parameter is
easy to estimate and important in some cases, for example in the network servers and crowded supermarkets.

4This model is similar, but not identical, to the traditional Walras model (Walras, 1874).
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That means that anybody can test the presented examples and some new ones, too.
Thus the scientific cooperation is natural and easy. In this sense the models implemented
as Java applets are similar the analytical ones. The difficulties of development are similar,
too. The first version was implemented by (Perlibakas, 1999), the Profit Analysis using
the Wiener filter was improved by (Sviderskaite, 2003), the updated version was a part
of Master thesis by (Skruodys, 2004). The final version is the result of long process of
coding and testing by (Treigys, 2003; Treigys, 2004).

The software implementation of the Walras model is specific and very important prob-
lem. The main theoretical and practical difflty is to balance the accuracy and efficiency.
Some aspects of this problem are discussetthis paper. The complete description will
by published as a separate paper by the soéwathor Povilas Treigys (Treigys, 2004).

2. Profit Functions

Let us considem servers providing the same service. In the Walras model, the capacity
w; of serverg = 1,...,m depends on the resource vecior+ g; = (x5 + ¢i5), 9,J =
1,...,m) defining the consumption of different resources. Each serueay sale a sin-

gle resource up to a limi; chargingp; for a unit of this resource to partner-servers.
Therefore:

bi: Z wij? 2:1,,m (1)

j=1,...;m

The server controls the vectog; = z;;, 7 = 1,...,m. The component;; denotes the
amount of resourcé; used by the server The server also controls the pricg; for
services. and the prigg that is charged for resourge.

Assume that the server capacity is an increasing function of the resources.

w; = ¢i(Ti + gi)- 2

A simple example of this function
w; = k; H (1 —exp ( — kij(zi; + gij)))- 3
j=1

The resource component; + g;; denotes the total amount of resourcesed by server
i including both the “market” resource; and the “local” resource;;. The coefficient
ki; shows how useful is the resourggfor the serveri. The coefficient:; defines the
capacity limit whene;; — oo.

The profit of theith server:

i i
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Here i is the server indexa; is the rate of customerg, is the service pricez; =
(z;r, k=1,...,m) is the resource vector determining the capaeityof server;.
The rate of customers of each server is defined by the total service cost

¢ =y +%, (5)
wherev; is waiting cost at the servei. A customer goes to the servigiif

ci<ci, j=1,...,.m,j#1, ¢ <co. (6)
A customer goes away, if

miin c; > co, @)

wherecy is the critical cost. The rate of incoming consumers flow is fixed:

a= Z a;, (8)
i=0

whereqy is the rate of lost customers.
From the balance condition follows; = b; — Z#i x;j;. Note that the profit; of
each individual serverdepends on the parametersy;, p; of all m serverg = 1, ..., m.
Here the first component;y; defines the income of a servecollected from cus-
tomers of for its services. The second comporp@@#i z;; defines the sum received
from other servers for the resourée The third componenE#i pjzi; shows the ex-
penses for resources obtained from other servers.

In two-server cases

uy = u1($12,y1,p1,x21, yz,pz) = a1Y1 + p1T21 — P2T12, (9)

and

ug = uz(Z21, Y2, P2, T12, Y1, P1) = G2Y2 + P2T12 — P1o21. (10)

Herex1; andxsy, are not included explicitly because they are defined by the balance
conditions

211 = by — w21, T22 = by — 712. (11)

By fixing the lower and upper limits,,,, a;,;, ay,,bp,, bz, by, 3,5 = 1,..m we
obtain the inequalities

axij < Lij g bxij7 (12)

Pi < bp,,
Yi < by, ,j=1,....,m.

K2

by
b

Sltis. assumed for simplicity that the waiting cost is equal to an average waiting time.
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Conditions (6) and (7) separate the flow of incoming customersintal flows. This
makes the problem very difficult for analytical solution. The separated flow is not sim-
ple one, even in the case when the incoming flow is Poisson (Gnedenko and Kovalenko,
1987). Thus, we need the Monte Carlo simulation, to define average rates of customers
ai, i = 0,1,...,m, by conditions (6) (7), and average profits : = 1, ..., m by expres-
sion (59).

3. Nash Equilibrium

Denote byz = (z;, i = 1, ..., m) the vector of parameters that servemsclude into the
contract. First we fix some initial values of contract vector (E¥) = (29, i = 1, ...,m).
Then the values of the corresponding fraud vector (EV)= (2}, i = 1,...,m), are
obtained maximizing profits of each senieseparately. The maximization is performed
under the assumption that other partngrg ¢ honor the contractz?, ji=1,..,m,

i#1)

z} = arg max u;(z;, z}), j=1,...,m,j#4), i=1,..,m. (13)
P2

Formally, condition (13) transforms the vectgt = (2, i = 1,...,m), n = 0,1,2, ...

7

into the vector:"*!. To make expressions shorter denote this transformatidn by
=T, n=0,1,2,.. (14)
The equilibrium is at the fixed point®, where
2" =T(z"). (15)

The fixed point:" exists, if both the feasible sé&t and all the profit functions are convex
(Michael, 1976). Traditional way to reachetfequilibrium is by iterations (14). That is
possible if the transformatiofi is contracting (von Neumann and Morgenstern, 1953).
Othervise minimization of the deviation from equilibrium is needed. This is not a simple
task considering stochastic arrivals and service times. The problem is very difficult if the
deviation is not only stochastic but multimodal, foo

4. Existence of Nash Equilibrium

The first existence theorem is due to Nash (Nash, 1951) and dates back to 1951. Many
generalizations appeared since then. Finding less and less restrictive sufficient conditions

6In this paper the a sequence of initial contract e¢€V) is defined by optimization methods searching
for equilibrium.

"The deviation is a sum of non-convex functions. It is well known that in this case the sum is not unimodal
as usual.
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have been an active field of research (Foegal., 1999). The proofs of these conditions
are based on the various fixed point theorems (Brouwer, 1912; Kakutani, 1941; Browder,
1968). Considering the examples of this book, we prefer simple existence conditions to
the general ones. Testing the existence conditions, we express them in terms of the profit
functionsu instead of the operatofi.
For example, the equilibrium exists, if the prafitz) is strictly convex function of all
the components of its parameters. Z, andZ is a convex set (Michael, 1976). In such
cases, small changesatomponents will not change the maximum points considerably.
The situation would be different in the non-strictly-convex cases. Here even very
small change of some parametersmay change the maximum poiat of u(z) con-
siderably. For example, in linear cases this point may jump from minimal to maximal
limits. In multi-modal cases the point can jump from one local minimum to another
one. These sharp changes violate the continuity of the transforniétidbhe continuity
of T"is needed in the Brouwer’s fixed point theorem (Brouwer, 1912). In other theorems,
such as Kakutani's (Kakutani, 1941) or Browder's (Browder, 1968), the fixed-point con-
ditions are less restrictive. However, testing these conditions is not a trivial task.

5. Search for Nash Equilibrium

We may obtain the Nash equilibrium directly by simple iterations (22), if the transforma-
tion T is contracting (von Neumann and Morgenstern, 1953). There are more sophisti-
cated and efficient iterative procedures (Herings, 1994).

If the equilibrium exists but the transformatidhis not contracting then one mini-
mizes the deviation.

The equilibrium is achieved, if the minimum

min lz=T()| (16)

is zero. If the minimum (16) is positive then the equilibrium does not exist. That is a
theoretical conclusion. In numerical calculations involving statistical modeling, some de-
viations are inevitable. Therefore, we assume that the equilibrium exists, if the minimum
is not greater then modeling errors.

One can minimize deviation (16) by the usual stochastic approximation techniques
(Ermoljev and Wets, 1988), if the deviation (16) is an unimodal function.df not,
then the techniques of global stochastic optimization (Mockus, 1989) should be used.
The global stochastic optimization may outperform the local one in the unimodal case,
too. That happens, if the noise level is grbatause the Bayesiatohal stochastic opti-
mization methods are less sensitive to large noise levels.

The norm|| z — T'(z) || is not convenient for numerical optimization. Square of norm
is better in this respect

: _ 2
min || z — T'(2) ||° - 17
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The same result one obtains by the following condition.

min (ul (T(z)) — ul(z)) (18)

z€EB “—
3

Here the difference;(7'(z)) — u;(z) shows the profit obtained hiyh server by breaking

the contract:. We call the sum (18) as a fraud profit. Minimization of the fraud profit
seems natural in economical terms and is convenient for computations. In these terms
equilibrium means such a contract where fraud is not profitable.

6. Contract Vector

There are several possibilities to define the contract vegtdrhe first one is to include
all three parameters; = (2%,4?,p9, i = 1,...,m). Then the fraud-vectoiz}, y}, p},

i = 1,...,m) is obtained by maximizing the profits of each seryessuming that all
other partnerg # i will respect the contragtey, 32, p?, i = 1,...,m)

K2

(x117y117p117 ) = argz%%,); ui(-ria Yi, Dis ZC?, yjoapgv .7 = 17 ceey TN, ] 7é ’L) (19)
Here the profit functionu; (z;, i, pi, 9,43,p}, j = 1,...,m, j # i) is defined by ex-
pression (4). There are rectangular constraints (13). A séogimizes only components
x;j, @ # j because;; is defined by the balance conditiofy = b; — Z#i Tji-

In the two-server case

1 1 .1 0 0,0
(1712,?}1,]?1,) = arg max U1(.T12, y17P17J7217927P2)7 (20)
Z12,Y1,P1
and
1 1 .1 0 0.0
($217y25p25) = arg Imax U2($21,y2,p2,$12,y1,p1)- (21)
Z21,Y2,P2

Condition (19) transforms vectors?, n = 0, 1,2, ... into vectorsz™t!, wherez" =
(™, y™,p"), ™ = (zF, ..., 2), y" = (Y}, ...,y%), andp™ = (p¥, ..., p). Denote this
transformation byi”

=Tz, n=0,1,2,.. (22)

Here the vector = (x;, y;, pi,vi i = 1,...,mm) € B C R™*+2m _\\e reach the equilib-
rium® at the fixed point™, where

2" =T(z"). (23)

81f the equilibrium exists.
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The constraints (13) limits the Walras model. Therefore, setting these constraints one
should resolve the following contradiction. Wider limits means more computing for op-
timization but less restriction for the Walras model, and vice versa. A way to get around
this contradiction is to start with narrow bounds (13). One widens them if some of these
bounds obviously restrict the profit maximum.

If the equilibrium test (16) fails additionatsting of the sufficient existence conditions
is needed. It is well known, that the equilibrium exists, if the profis strictly convex
function of parameterg,, x, p) (Michael, 1976). Therefore, the “non-strict-convexity” of
this function could be a reason of the failure to obtain the equilibrium.

Expressions (4) and (10) show that profitsare linear functions of resource priggs
Linear functions are not strictly convex. For example, if this function is nearly constant
then a small change of some parameters may switch the optimal resourcg; drue
zero to upper limit or vice versa.

Thus the Nash equilibrium may not exist in this case. Besides this model is not prac-
tical because the obligation to buy a fixed@mt of resources regardless of the price in
not the realistic one.

To avoid this difficulty “Look-Ahead” (LA) guilibrium models are considered. In the
LA models the control parametepsy, « are divided into two groups: contract and free.
For example in the model (19) all the parameters were included into the contract. The
parameters that are not included into the cacttare called as free. The natural example
of the free parameter is resource consumptians

The important problem of models with free parameters is than one must anticipate the
free parameters of all competitors.

We consider estimations of free parameters based on two different assumptions: Nash
(NLA) and Greedy (GLA). In the Nash ( NLA) case we assume that all the servers select
the free parameters at given contract parameters by conditions of the Nash equilibrium.
In the Greedy (GLA) case servers select sfrele parameters that maximize their profits
at fixed contract parameters. The NLA models may provide genuine Nash equilibrium
if servers estimate competitors profit functions well enough. However GLA models may
represent the behavior of managers better.

Look Ahead LA versions differs by the nurar of parameters to be set free. Denote
by LA(p,y) the case when only the vector of resource demaisdree.

7. “Nash-Look-Ahead” (NLA) Equilibrium
7.1. Profit Function

Using NLA(p,y) the profit of theth server:

J#i J#i
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Herei is the server index; is the rate of customers = (z7,, k =1,...,m), 2}, =

zjx(p, y) is the equilibrium resource vector that defines the capacitpf server;. All
depend on prices andy. From the balance condition follows; = b; — >, 27;.
The vectorz* is defined at fixed price®, y) by this condition

min (ui (T(z)) — ul(x)) (25)

r€EB “—
3

whereT (z) is the Nash transformation (15) of the vecioDenote Nash equilibrium at
fixed price vectofp, y) as

z" =z(p,y). (26)
In two-server cases

Ui(p1,y1,p2,y2) = u1(xle, Y1, P1, 25, Y2, P2) = @1y1 + P123; — P2xis, (27)

and

Ua(p1,y1,p2,y2) = ua(®3y, Y2, D2, 1o, Y1, P1) = G2y2 + p2xiy — p125,.  (28)

Herex}; andzj, are not included explicitly because they are defined by the balance
conditions

2y =b —x+ 21", x5, =by — x},. (29)

One solves (25) many times for each fixed price ve¢toy) before the equilibrium
valuesp = (p*,y*) are reached.

7.2. NLA(p,y) Equilibrium

First a contract-vectop?, y? i = 1,...,m) is fixed. Then the fraud-vectdp;,y} i =
1,...,m) is obtained by maximizing the profits of each seriassuming that other part-
nersj # i keep the contract resource prices.

(p'Llayzl) = arggl%XUz(Puyz pgayjoj = 17 -y T, ] 7& ’L)a 1= 17 -y T (30)

Y

Herepg?, y? j # i are contact prices of competing serverg i.
Condition (30) transforms vectogs®, y® n = 0, 1,2, ... into vectorsp™t!, yn+1,
wherep™ = (pl, i = 1,...,m), andy™ = (y", ¢« = 1,...m). Denote this transformation

by T

=T, n=0,1,2,.., (31)
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wherez = (p, y). We reach the equilibriufrat the fixed poinp™, where
2" =T(z"). (32)

If the equilibrium exists but the transformati@his not contracting then we minimize the
square deviation

: _ 2
min || z — T'(=) |- (33)

The equilibrium is achieved, if the minimum (33) is zero.
The alternative way to achieve equilibrium is by minimizing the fraud profit

min (UZ- (T(2)) — Ul(z)) (34)

zeB 7
Here the differenc&;(T(z)) —u;(z) shows the profit obtained lith server by deviating
from the NLA equilibriumz*.

The final equilibrium values of* are defined substitutingp*, y*) into expression
(26).

7.3. NLA(p,y) Algorithm

7.3.1. Reserve Resources
Consider two-server case for simplicity. The capacity function (3) including resefyes

w; :k/’l]:[ (1—€Xp(—k/’ij(l'ij)+l';j)), 1=1.2, (35)
j=1

where} .z, < bj, i,j =1,2.

7.3.2. Equilibrium Resources
Assume, that at fixed prices, y;,7 = 1,2 servers obtain additional resourcgs fol-
lowing the Nash equilibriumanditions using this algorithm.

1. Apairzy,, 29, is fixed.

2. Individual fraud profits;! andv! are calculated

ul = n;laxu(xlg,xgl), (36)
12

v = maxu(xly, 21). (37)

3. General fraud profit is defined

fl=ul —u® ol =20 (38)

91f the equilibrium exists.
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4. The procedure is repeated f&r? pairszi,, 22, defining a sequence of general
fraud profitsf*, k = 1, ..., K? whereK depends on fixed calculation error.
5. The pairz; 2, 21 with minimal fraud profitf* is considered as equilibrium.

7.3.3. Equilibrium Prices
1. A quadruple of prices!, p3, 4?9, 49 is fixed.
2. Individual fraud profitd/*, V! and corresponding fraud pricés, v+, p3, v3) are

calculated
U' = maxU(p1, y1,05,Y5), (39)
P1,Y1
(pl.y1) =argg3%>l<U(p1,y1,p8,y8), (40)
and
V! = max Us(ps, y2p3, ¥5), (41)
pP2,Y2
(3. y3) = arg maxU (pz, Yaps, Ys)- (42)

3. General fraud profit is defined
Fl=U'-v+vt-Vv" (43)

4. The procedure is repeated for a numbepairs 1o, 221 defining a sequence of
general fraud profit§*, k = 1,..., N whereN is the number of iterations of op-
timization method/footnoteThe optimization of priges; is performed by means
of GMJ set of methods to make optimization as efficient as possible.

5. The quadruple?, p3, y5, y5 with minimal fraud profitf* is considered as equilib-
rium.

7.4. Profit Analysis

The sufficient condition of equilibrium is convexity of profit functions. That is tested this
way:
1. Fix the equilibrium pricegs, p3, i, ys.
2. Change the first paramejgrstep-by-step while keeping other three constant, draw
two graphdJ (p1, ps, vi, y5) andV (p1, ps, vi, y5 , Write values to tables.
3. Do the same for all the paramet@isps, 1, yo.

7.5. Modelling Customers

Intervals between customer arrivals are random and are defined by exponential distribu-
tion. The algorithm is described in Section 9

Initial testing the software could be more convenient by using regular arrivals of cus-
tomers by equal intervals.
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8. “Greedy-Look-Ahead” (GLA) Equilibrium

Definition of GLA equilibrium is similar to that of NLA because in both the cases com-
petitors responses. are anticipated while seagcfor the equilibrium prices. The differ-
ence is that the “greedy” servers selectfilee parameters not by equilibrium conditions
but by maximal profit. We consider only one version GLA(p,y) where the free parameter
is a vector of resource consumptionThe resource vectar is predicted for all servers
assuming that each server defines resouroede by maximizing mfit at fixed both the
resource and service price vectprandy .

Using GLA(p,y) one transforms linear profit functions@f'® into nonlinear ones.

This way one may satisfy the necessary eqtiilim conditions if the profit functions are
convex. That is true in both the cases: NLA and GLA. In this sense both versions are
equivalent. Thus one may select a version that better describes the actual economical
behavior of participants.

Boththe NLA and the GLA approaches is based on the important tacit assumption that
servers know profit functions of their competitors. This is not true as usual. However, that
is a price one pays for making profit functions strictly convex. This is needed to satisfy
necessary equilibrium conditions. The price is not so great when servers know at least
some approximation of competitors profit functions and their behavior

8.1. Profit Function

Using GLA(p,y) the profit of theéth server:

Ui(p,y) = wi(@jy;,pj §=1,..om) = ayy +pi 3 _aj;— > pias. (44)
J#i i

Herei is the server index; is the rate of customers = (z7,, k =1,...,m), 2}, =

zjx(p,y) is the greedy resource vectthat defines the capacity; of serverj and is
obtained by maximizing the profit functidiy; at given contract pricesandy. From the
balgnce condition follqv_vs:;- = b; — ;4 };- At fixed prices(p, y) the vectorz* is
defined by these conditions

max Ui(p7y)a i:17"'7m7 27&] (45)
T ;€EB

Denote the Greedy resource consumption vector at fixed price véptarsas

at = x(p,y). (46)

In two-server cases

Ui(p1,y1,p2,y2) = ui(xle, Y1, p1, 51, Y2, P2) = Q1y1 + P13 — P2xis, (47)

10As defined by expressions (4) and (10).
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and
Ua(p1, Y1, P2, y2) = u2(T31, Y2, P2, T2, Y1,P1) = G2Y2 + p2is — p125;.  (48)

Herez}, andz3, are not included explicitly because they are defined by the balance
conditions

* * * *
Ty =by — T3y, Ty = by — a7y, (49)

One solves (18) many times for each fixed price ve¢toy) before the equilibrium
valuesp = (p*,y*) are reached.

8.2. GLA(p,y) Profit
First a contract-vectap?, y? i = 1,...,m) is fixed. Then the fraud-vectdp},y} i =
1,...,m) is obtained by maximizing the profits of each serivassuming that other part-
ners;j # i keep the contract resource prices.

(pis9i) = argmax Ui(pi, yi pJ, 4 j = Loy j #1), i=1,m. (50)
Herep?, y?j = ¢ are contact prices of competing serverg i.

In the two-server case

(p1,91) = argmax U (p1, 1, P2, ), (51)

and

(ph,y3) = arg max Up(pz, Yap3, Y3)- (52)

Condition (52) transforms vectog&, y™ n = 0,1, 2, ... into vectorsp™t!, y»+1, where
p" = (p!, i =1,...,m), andy™ = (y?, i = 1,...m). Denote this transformation k5§

=T, n=0,1,2,.., (53)
wherez = (p, ). We reach the equilibriut at the fixed poinp™, where
2" =T(2"). (54)

If the equilibrium exists but the transformati@his not contracting then we minimize the
square deviation

: - 2
min || 2 = T() | (55)

11If the equilibrium exists.
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The equilibrium is achieved, if the minimum (33) is zero.
The alternative way to achieve equilibrium is by minimizing the fraud profit

min (UZ- (T(2)) — Ul(z)) (56)

z€B “—
i

Here the differenc&;(T(z)) —u;(z) shows the profit obtained lith server by deviating
from the NLA equilibriumz*.

The final equilibrium values of* are defined substitutingp*, y*) into expression
(26).

9. Monte-Carlo Simulation
9.1. Search for Equilibrium

The analytical solution of the described market models is not practical. Therefore, we
briefly consider the basic steps of an algorithm of the statistical simulation using Monte-
Carlo techniques. The algorithm implements two basic tasks:
— generates the next event time
— updates the state of queuing systerfirg®l by the vector of waiting customers
n(t) = (ni(t), i=1,...,m),
— updates the vectdr(t) = (h;(t), ¢ = 1,...,m) of the service cost including the
money charged and the time lost.
There ar&m + 2 types of event time&
— the timet when a customer arrives into the system,
— the timet when a customer arrives into thil server; =1, ..., m,
— the timet when a customer departs from ttik server,
— the timet when a customer abandons the service (departs from the system without
being served).
Herei = 1,...,m. The system state is updated at each event timie/o vectors define
the system state:
— avectom = n(t) with m components = (nq, ..., n,,), wheren, = n;(t) shows
the number of customers waiting for the service ofitieserver,
— a vectorh = h(t) with m component® = (hy,..., hy), Whereh;(t) = y; +
vi, 1 = ni(t)/w; shows the total customer expensgds money charged for the
service, andy; is the time lost waiting for the service of tfith servet?.
There are no state changes between events. The basic steps of the Monte Carlo algorithm:
1. Fix the zero eventtime= t° = 0 when the first customer arrives.

12For simplicity, it is assumed that “time-is-money” and that a unit of time cost a unit of money, in the real
life cases the corresponding coefficients should be included
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2. Define the zero state vectot by the conditionn? =0, i =1,...,m
and the zero state vectaf by the condition 7 = y; = 0, i = 1,...,m because
there are no customers waiting for service yet.

3. Define the next arrival into the system by the expression

To = —1/aln(l —n), (57)

wheren is a random number uniformly distributed in the interval [0,1].

4. Chose the best senviérfor the first customer by the conditioh = arg min;—o_. ., h;
whereh; = y;, because; = 0, i = 1, ..., m since there are no customers waiting
yet,i® = 0 means that the customer abandons the service.

5. Define the time of event when the first customer will be served by the sérver
using the expression

Tio = —1/z0 In(l — 7). (58)

6. Define the next evemt by comparing the arrival time, and the service timeo :
if 7, < 70 thent! =7,
if 7, > 7,0 thent! = 70,

7. Define the system state at the next evént
if t* =7, thenn;o = landn; =0, i =1,....,m, i # i°,
consequentlyo = yo + 1/wp andh; = y;, i = 1,...,m, i # i,
if t! =10 thenn; =0, i=1,...,m,andh; = y;, i =1,...,m, i #°.

Definition of later events and system stie longer but the main idea remains the

same. For illustration, we update the fourth step fontttecustomer:

— chose the best servifiifor thenth customer by the conditiof = arg min;—o_._., hi,
whereh; = y; + i, vi0 = n;/w;o, andn; is the number of customers waiting for
server.

The algorithm can be directly adapted to the Monte-Carlo simulation of the Nash

model with two servers, too. For example, that can be done this way:

— set to unit both the resource charges=1, i = 1,2,

— set to zero resources exchanges= 12 = 0,

— assumethat;; = x1, x20 = 22, Where variables;, x5 are from expression (59).

ui:u’i(zlaylv"wxmaym):a’iyifzi; iil,...,m, (59)

whereuw; is the profit,y; is the service priceq; is the rate of customers;; is
the running cost, andis the server index. Assume that a server capacijtis an
increasing function of the running cost:

If the number of severs: > 2 then some madification of the described algorithm is
needed.
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9.2. Testing Equilibrium Conditions

In the Monte-Carlo simulation, equilinn tests (17) should be relaxed by accepting
some simulation errat:

min || 2 = 7(2) [*< ¢, (61)
or
min > (Ui (T'(2) - ui(Z))y <e (62)

3

To test the convexity of profit functions, some smoothing is desirable. The smoothing
eliminates the random deviations due to Monte-Carlo simulation. Both the convolution
and the Wiener filters are applied for smoothing the profit functions (possibly multi-
modal). The convolution filter defines the function at some fixed point as an average of
values in the neighborhood of this point. The more sophisticated Wiener filter is imple-
mented, too.

9.3. Wener Filter

If the objective functiory (z) is defined by Monte Carlo simulation, some noise is present.
That means that one observes the sum

o(z) = fz) + ¢, (63)

where¢ is a random number called the noise.

If finding the optimum of a convex functiofi(z) is the only goal, we can apply
some stochastic optimization algorithms (Ermoljev and Wets, 1988). These algorithms
converge to the optimum gf(x) by filtering the noise during the optimization process.

To test properties of (x), such as convexity, unimodality e.t.c., we need specific
smoothing algorithms that eliminate false#b optima. In one-dimensional cases, a con-
venient smoothing function is the conditional expectation of the Wiener process with
noise (Kushner, 1964; Zilinskas and Senkiet@81). It is assumed that the optimization
parameter: € [0, 1], the Wiener parameter is a unit, and the ngjge Gaussian with
zero mean and varianc® at the pointse® € [0,1], ¢ = 1,...,n. Then the conditional
expectationu, = u,(z"*) of the objective functiony,, = f(z*) at some fixed point*
with respect to the observations resujfs= ¢(z*), i = 1,...,n, can be expressed this
way

k by n
Doien bivi + o Zi:kJrl CilYi
k by n .
D1 b+ o Zi:kJrl Ci

e = (64)
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Here
bi=1, By =1, (65)
S2
bQZL;LQ, By = By + bo, (66)
53
......... S 2b7+ .
b= ST B= By 4 b, (67)
k
cn, =0, (68)
SE. ki1 + Tht1Ck -
C = ki1 k] S2 LR +17 Ck+1 = Z Ci, (69)
k i=k+1
Tij = |xZ — zj|. (70)
It is convenient to assume that
S; =85, i=1,...,n, (71)

wheresS can be considered as a smoothing parameter.
If S = 0 then no smoothing occurs. The smoothing function (the conditional expec-
tation) is the piece-wise line connedlithe observed points (see Fig. 1).

ol i . §
(1) x(32) x(next) x(3) x(4) x (%)

Fig. 1. The Wiener Model. The conditional expectatior(z), the conditional standard(z), and the risk
function R(x) regarding fixed values (1), y(1), z(2), y(2), ...
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If S is large then one obtains a horizontal line corresponding to the average value of
observed valueg;. That means a sort of “total smoothing”. Using the Wiener smooth-
ing of a single realization one predicts avezag multiple realizations if the underlying
assumptions of the Wiener model are true.

Figs. 2 and 3 show how the first server prafit depends on the price, charged

Em difference... 99,603 ' sSmaoothing = |10
1 - %1 server ... ILB9T 2 - il sErveEr .. 4.5
. 1l= RIS Pl= 7V466.Y 2= 1175 P I= BILA.
vl = Smin
I
[0 - | B === == | bt Wiener
h.l'- " L] ] " " : |
Ba— S N N SN S N S N ST q IUFEE
os II."
L] ]
a1 y
0.2 r' ]
0.1 = - 14
f  BGE 368 %§6 406 GB6 GO0 AR BID ®EE Pt
1-5t server profit gl -

Fig. 2. The relation of the profii; on the resource price; .
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0.1 ]
0.2 .
0.1l = 1
[ ] il 2ok 3 <400 fTE@ 0k TR BB WO M

|1—!1. senver profit gl krll

Fig. 3. The “refreshed” relation of the profiy on the resource price; .
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Fig. 4. The “refreshed” relation of the profiy on the resource price; smoothed by the Wiener filter.

for its resources. There are two samples of the same relation. They show the differences
between two samples of random arrival times of hundred customers.

The buttons “smooth” and “wiener” on the right side are for switching on these filters.
The button “smooth” is for the convolution filter. The button “wiener” is for the Wiener
filter.

The field denoted by “S” at the top right corner, defines the smoothing parameter
of the Wiener filter (see expression (71).

One can increase the level of smoothing by pressing the “smooth” or “wiener” buttons
repeatedly.

The “refresh” button repeats the Monte-Carlo simulation of the same profit function.

Fig. 4 shows the sample of the “refreshed” graph smoothed by the Wiener filter.

The underlying profit function is the same in all the Figs. 2 and 3 defines different
graphs because of the simulation errors.eAfmoothing 4 the level of these errors is
lower.

Note that the actual screenshots are displayed instead of the traditional nice pictures
made by presentation tools. The advantage of screenshots is that readers willing to test
the model directly by uploading data will observe the results in exactly the same form.

10. Softwarelmplementation
The software is intended to be a tool for graduate studies and scientific cooperation in

the Internet environment. Thus the software should be platform independent. One must
get the same results in the same form as other colleaques working on different computers



544 J. Mockus

and using different operating systems. Realization of the Walras model including the
stochastic arrival times of customers is complicated and time consuming task.

Java j2sdkl.5 satisfies all that. The Java implementation of the Walras model by
(Treigys, 2004) is on the web-sites.

11. Graphical UsersInterface
11.1. Input-Output

The original Java optimization framework GMJ (Mockus, 1989) was used. Tis is an open
system: various optimization methods could be included to test different models by some
standard or user-defined graphical representation systems. For example, Figs. 3 and 4
were made by a custom-made system the “Profit Analysis”, Figs. 10 and 11 were obtained
by a standard GMJ analysis system the “Projection”.

The Bayesian method “Bayes” (Mockus, 1989) was used for most of the examples.
The coordinate method “Exkor” (Zilinskas, 1981) was applied to test the “globality” of
the objective functions, see Figs. 10 and 11.

The input data of the Walras model:

— B1 andB2 are the stocks of server resources allocated for sale, both set to 1.0,

B11, B22, B12 and B21 are the minimal stocks of resources needed for normal

operation, all setto 0.1,

the “run-away” threshold i€’'0, set to 20,

the customer rate id, set to 100,

the efficiency of serverg;;, all set to 1.0,

the accuracy of equilibrium search and accuracy of profit analysis both are set to

10%,

Regularclient parameter is set to zero, that means random arrivals,

the lower bounds of all the prices, p2, y1, y2 are set to zero,

the upper limits of resource pricgs, p2 are set to 1000.0,

the upper limits of service priced, y2 are 25.0,

the default value$ are set in the middle.

The results of optimization:

— Iteration denotes the number of best iteration
F(z) means the minimal deviation from the equilibrium point,

— pl,p2,yl,y2 are the prices of resources andvees obtained searching for equi-
librium.

11.2. Profit Analysis

Figs. 5 and 6 show how the profits of servers depend on the service chargés
Figs. 2 and 7 show how the profits of servers depend on the resourceydrig@s

13The default values are needed only for methods staftom some initial point, for example coordinate
search by the Wiener modélzkor (Zilinskas, 1981).
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Fig. 6. The relation of profits on the service chagge

11.3. Globality Test

To test globality of the objective function one needs regular clients and coordinate op-
timization algorithms where changing one variable all the others are fixed, for example

FEzxkor by (Zilinskas, 1981).
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Figs. 8 and 9 show how the objective function depends on the resource prices. In the
given service price range the objective is nearly unimodal.

Figs. 10 and 11 show how the objective function depends on the service prices. Note
that here the objective is multimodal, minimal values are at the ends of given service
price interval. Thus global optimization methods are needed even in the simplest case of
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regular customers. It is noticed (Mockus, 1997a; Mockus, 1997b) that Bayesian methods
of global optimization could be more efficient as compared to local methods of stochastic
optimization in cases of unimodal objectiveot if the “noise” level is sufficiently large.
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11.4. Example of Local Optimization

Some algorithms of local optimization cagach the exact solution if the starting point
and other parameters are adapted to a fixed deterministic multimodal function.

After lengthy trials by the well known modification of the simplex algoritlittexi
(Himmelblau, 1972) some illustrative example was made.
The exact equilibrium¥(z) = 0 in the regular customers case was reached after 32
iterations.

That is special case. In the case of random customers and arbitrary starting point the
results are rather poor, as expected.

12. Conclusions

The process of Walras model development shows that mathematical modelling and soft-
ware implementation is iterative process. The main reason is that results depends on the
accuracy of calculations. High accuracy oftequires long computing time. Ressolving

this contradiction one needs to adapt the theoretical models.

For example, the first version of the Walras model was implemented by (Perlibakas,
1999). The first update is described in (Treigys, 2003; Skruodys, 2004). The final soft-
ware version was realized by (Treigys, 2004). Theoretical models were changed several
times during this five years of developmemtadually adapting tohte real computing
environments.
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Walraso konkurencinis modelis, globalaus optimizavimo pavyzdys
Jonas MOCKUS

Walraso teorija yra gerai zinoma ir giai naudojama nagréjant rinkos ekonomikos procesus.
Sukurti iteraciniai metodai pusiausvyrai rasti.

Straipsnyje pasiytas irigyvendintas naujas padiis, kai Walraso pusiausvyros ieskojimas
formuluojamas kaip stochastinio globalaus optimizavimo uzdavinys. Takdu lvertinamas atsi-
tiktinis uZsakyny pohudis ir uztikrinamas konvergavimagpusiausvya, jei ji egzistuoja.

Walraso modelio program@realizacija sudaro dahtegruotos distancini aukStugju studiy ir
mokslinio bendradarbiavimo sistemos optimizavimo bei lagintinkos teorij) srityse veikiagios
interneto aplinkoje. Sistema suteikia mokslininkams galimybes kaéidiritirti, kaip efektyviai
panaudoti optimizacini modeliy programir iranca.

Tikslas yra pateiktiranki, palengvinaritmokslini bendradarbiavira bei stimuliuojaritk urybi-
nius jaunyju mokslininky sugekjimus.

Tinklapyje http : //soften.ktu.lt/mockus pateikiama teorija bei prograngénrealizacija
Walraso bei e#s kity ekonomini ir finansiniy modeliy, nagrirgjant juos kaip bendros optimizavi-
mo teorijos pavyzdzius.



