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Abstract. The paper considers moving locally predefined (MLP) finite element remeshing tech-
nique for deep penetration of the rigid cone into homogeneous and porous medium. Remeshing
presents a computational tool implemented in the form of postprocessor type software compatible
with standard FEM codes. It involves a transfer operation combining both the moving least square
method based on stress patch recovery and the interpolation method for transfer of state variables.
The developed MLP remeshing is able to overcome numerical difficulties occurring due to large
distortions of the Lagrangian mesh and contact sliding and capture steady-state behavior. It shows
good performance in modeling of cone penetration into elasto-plastic homogeneous and porous
media reaching several diameters of the cone.
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1. Introduction

Recently, the finite element method (FEM) hasbecome a universal and powerful compu-
tational tool applied to many different problems of engineering analysis and has been a
subject of an increasing amount of study for some time. The quality of numerical solu-
tions depends, however, on the quality of the finite element mesh, where the appropriate
meshing technique can considerably affect the final result. A complicated geometry and
physics as well as a large amount of elements require the use of automatic meshing in
order to considerably reduce the users’ influence and the human errors in this process.

By now there has been a considerable effort devoted to the development of mesh-
ing and remeshing algorithms and software. The postprocessor type remeshing technique
referred to as the adaptive FE analysis has been successfully used for the solution of lin-
ear elastostatic problems. Adaptive algorithms consist of building a new mesh, using the
same type of elements, and ‘adapting’ the element size to the requirements of the solu-
tion. It means, reducing their size, when the interpolation must be enriched, i.e., higher
accuracy is needed, and enlarging the elements, when it is already accurate enough. A
remeshing technique is, actually, a computational tool giving the desired element size in
the domain as a function of the pointwise error. An error assessment is needed to design
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a new mesh verifying the accuracy prescription. The best mesh for a given FE analy-
sis problem can be defined as a compromise between both the need for accurate results
and the desire for computational efficiency. A consensus in terms of an optimal mesh is
generally reached by combining the intelligent remeshing strategies and rigorous error
estimation. Among numerous contributions, the works of Diez and Huerta (1999), Lee
and Hoobs (1999), Owen and Saigal (2000), Baušyset al. (2001), Vasiliauskieṅe and
Baušys (2002) illustrate the basic ideas of mesh adaptivity.

At present, the formal structure of the adaptive FE technique for linear elliptical prob-
lems is well known. This is not the case for non-stationary geometrical and, especially,
structural non-linear problems, where the solution domain is undergoing considerable
changes. However, due to large deformation in the process and the inherent nature of
useful Lagrangian formulation with mesh nodes attached to material points, the finite
element mesh distorts considerably. This leads to inaccuracies in computation of the
state variables, numerical instability and inaccurate description of the deformed geom-
etry, especially, contact geometry. Actually, the approximation of moving continuum by
the time-dependent FE mesh presents two slightly different subproblems – generation of
initial mesh and its adaptation in motion.

Perhaps the most general solution of a dynamic non-linear solid problem may be
found in the framework of the Arbitrary Lagrangian Eulerian (ALE) formulation. A num-
ber of works of Belytschko and co-authors are reviewed in the book (Belytschkoet al.,
2001) presenting a theory and some computational aspects of the FE ALE formulation. It
describes both the motion of the material and the motion of the mesh, with mesh velocity
being not equal to material velocity. Along with its versatility the ALE approach requires
the evaluation of a new mesh in each time step and is quite expensive both in terms of
solution effort and price of the software codes. Meshing problems related to different
formulations have been discussed by Chenot and Bay (1998).

In terms of the conventional Lagrangian formulation traditionally used in mechanics
of solids and a wide range of engineering applications, the mesh distortion problem can
be resolved with a proper remeshing technique. In this case, a solution procedure cannot
be repeated from the initial configuration, but has to be continued from the previously
computed state. The basic idea ofadvanced remeshing is to ensure discretisation of the
current deformed configuration, with all history-dependent variables being transferred
from the reference mesh to the new deformed mesh. It comprises a loop of operations
until the required accuracy has been reached and requires a decision making mechanism
for remeshing. The remeshing concept in the Lagrangian framework will be kept in mind
throughout the paper, avoiding discussion about the formulation which would make the
paper overlong and go beyond the scope of the paper. In addition, it would be quite natural
for dealing with porous media as it has been used in various applications.

The potential areas of engineering applications driving the development of the FE
remeshing technique mainly concern metal forming (Zhuet al., 1997; Chand and Kumar,
1998; Liuet al., 1998; Alveset al., 2003; Gauthamet al., 2003) and fracture mechanics
(Bouchardet al., 2003; Yang and Chen, 2004).

The use of remeshing in other engineering areas, including geotechnical problems, is
still limited. The applications concern standard problems such as bearing capacity anal-
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ysis of strip and circular foundations (Hu and Randolph, 1998) and pile driving (Liyana-
pathiranaet al., 2000). One of the most challenging issues in geotechnical engineering
is simulation of cone penetrations tests (CPT) used to evaluate in-situ properties of soil,
since the cone must be pushed into soil witha vertical displacement several times the
diameter of the cone. However, a large distortion of the finite element geometry dur-
ing penetration leading to ill-conditioned equations and failure of an iterative process
restricted the application of the FEM to CPTmodeling. Recently, remeshing as an alter-
native to avoid a large mesh distortion has been applied for these purposes (Markauskas
et al., 2003; Susila and Hryciw, 2003).

Up to now, all the above mentioned applications of remeshing have been limited to
modeling the solution domain as a single field medium. However, most of the problems
are really multi-physics problems, where coupling of different field variables has to be
taken into account. Remeshing issues with respect to the coupled thermo-mechanical
problems and related to metal forming problems are reported by Leeet al. (2002) and by
Wriggers and Rieger (2003), while penetration into the porous medium with remeshing
described in terms of the coupled solid-pore water model is presented by Markauskas
(2003).

An advanced FE remeshing technique comprises both the theoretical and algorithmic
aspects. Theoretical aspects are mainlyrelated to quality of mesh to be continuously
monitored during the entire simulation process, where error estimation procedures play
a crucial role. Different universal and problem-oriented error estimators based on the
error norm of stress, strains or energy as well as different error indicators frequently
used in adaptive FE analysis (Zienkiewicz and Zhu, 1992; Hu and Randolph, 1998; Diez
and Huerta, 1999; Baušyset al., 2001; Gauthamet al., 2003) may be explored for these
purposes.

Besides the above error-based criteria on element size distribution, it would be also
necessary to have a geometrically based measure of the deformation of the mesh char-
acterising the geometric distortion of the elements (Zhuet al., 1997; Liuet al., 1998;
Gauthamet al., 2003; Alveset al., 2003). The majority of these are based on geometric
metrics such as aspect ratio, diagonal ratio, skew, taper, etc. Theoretical aspects related
to a specific remeshing issue, namely, the variable transfer operation between meshes,
seems to be originally generalised by Pericet al. (1996).

The geometric measures, however, cannot capture all difficulties associated with the
description of geometry in the case of contact problems. When the contact boundary is
not exactly recovered, the geometry errors provide artificial shocks of contact forces de-
stroying monotonic convergence of the iterative process. The theoretical solution of this
problem has not been known until now, while in engineering applications the problem is
being solved in an algorithmic way combining the theoretical knowledge with the heuris-
tic and semi-empirical arguments.

Now, the number of studies devoted to algorithmic aspects of the remeshing technique
are growing fast. In this respect, it can be stated that a considerable effort is focused on the
development and improvement of the meshing and remeshing codes in different fields.
On the other hand, the most popular universal and problem oriented FE codes used in
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research and industry are seldom supported with the remeshingutilities, although many
details of the algorithms are not available for commercial reasons.

The algorithmic issues mainly comprise the choice of elements, remeshing strategies,
mesh generation technique and data transfer between different meshes. The most com-
monly used finite elements for the simulation of 2D problems are linear or quadrilateral
elements. The application of the constant stress triangle is limited by its insufficient accu-
racy, though the generation of mesh is considerably easier (Pericet al., 1996; Bouchardet
al., 2003). The latest advantage has been extensively explored in the adaptive remeshing
by applying six-node triangular elements (Hu and Randolph, 1998). However, the quadri-
lateral elements forming the basis of structured meshes have not received due attention in
remeshing procedures. This could be accountedfor the difficulties in generating unstruc-
tured all-quadrilateral meshes. The remeshing algorithms with four-node quadrilateral
mesh generators for the 2D metal forming problems are demonstrated by Gauthamet al.
(2003) and by Chand and Kumar (1998). In the case of remeshing for a large deformation
analysis, eight-node elements might be preferable (Zhuet al., 1997; Pedersen, 1998). In
recent years, a great effort has been made in developing three-dimensional remeshing
algorithms (Leeet al., 2002; Alveset al., 2003), where the discussion around the choice
between tetrahedral and hexahedral elements is still continued.

The aim of remeshing is to provide a proper discretisation tool to continue simulation
for the whole structure deformation period. This aim may be achieved by implement-
ing the corresponding remeshing strategy to be addressed in this discussion. In general,
adaptive remeshing with an adaptive mesh perfectly fitting the deformed geometry at any
time increment may be considered the most perfect modelling strategy. The generation
of a new mesh is required, when a number of elements may get excessively distorted
outside the quality limits. Here, any element and time step size have to be automatically
adjusted according to given criteria. Examples of the particular problem-oriented adap-
tive remeshing are presented by Zhuet al. (1997), Bouchardet al. (2003) and Gautham
et al. (2003).

In adaptive remeshing applications, the number of elements is typically increased,
when a mesh is renewed. Frequent adaptive remeshing, however, results in an increase
in both the cost and the error of computation. In order to control the total model size,
constant mesh-structural topology strategy is used as an alternative. This alternative is
based on the concept of a background mesh. The background mesh can move with the
deformed domain geometry. In most cases, the background mesh is a structured mesh,
whereas the available elements are concentrated in the areas of the model, where the
largest stress and strain gradients occur.

Generally, mesh distortion may have a global or local nature. In the case when the
average mesh quality is outside the limits, theglobally predefined remeshing procedure
with recalculation of new positions of the nodes is employed. The location of new nodes
is obtained by sweeping the mesh according to global changes of the entire structure
(Chand and Kumar, 1998; Pedersen, 1998; Leeet al., 2002).

Otherwise, the strain and stress often concentrate in some locations within the solution
domain. They may occur in interfering with the rigid boundary as in metal forming (Liu
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et al., 1998; Gauthamet al., 2003) and penetration problems (Markauskas, 2003 ) or
in the propagation of locally embedded cracks during fracture (Bouchardet al., 2003).
Therefore, only a few elements cause a severe distortion, while the remaining elements
are deformed slightly. The local distortion may be avoided in two ways. Firstly,local
readjustment may be done by generating a new mesh having a new topology with special
attention to a local subregion, for example, in the vicinity of the crack tip (Yang and
Chen, 2004). Secondly, thelocally predefined strategy is that the elements in a new mesh
retain after remeshing the same mesh-structural topology as the old one. Some examples
of local remeshing in metal forming are presented by Liuet al. (1998). Actually, different
combinations of remeshing strategies supplied by different error and distortion measures
can raise the efficiency of the FE simulation.

Another most important issue in remeshing is the transfer of the state variables be-
tween old and new meshes during an incremental transient or non-linear process. Since
mapping cannot be supplemented with equilibrium iterations, mappingerrors may propa-
gate and pollute the whole simulation. Two basic mapping methods have been evaluated.
The intra/extrapolation method using conventional FE shape functions is applied mainly
for the transfer of nodal values of primary state variables such as displacements or pres-
sures (Pericet al., 1996; Alveset al., 2003), while a moving least square method is
applied to the transfer of the values of secondary state variables such as stress, strains,
internal variables, etc., defined in Gauss integration points (Chand and Kumar, 1998). A
combination of both methods is also possible (Pedersen, 1998; Zhuet al., 1997).

The paper addresses the moving locally predefined FE remeshing technique for deep
penetration of the rigid cone into deformable medium. Remeshing techique presents a
problem-orented computational tool implemented in the form of the postprocessor type
software compatible with standard FEM codes. A major goal is to illustrate the capability
of the developed technique to capture steady state penetration of the cone into the porous
media with penetration depth of several diameters, which is still a very difficult or even
insolvable problem using standard FE software.

The paper is organized as follows. In Section 2, the cone penetration problem and
the main solution issues are described. The coupled two-field FE model with remeshing
for the non-linear elasto-plastic porous medium are presented in Section 3. The proposed
moving locally predefined FE remeshing technique involving the transfer of the state
variables is reported in Section 4. Finally, the numerical performance of remeshing by
the investigation of penetration into homogeneous and porous media is illustrated and a
discussion on the results is reported in Section 5.

2. Problem Description

The cone penetration test is an effective experimental tool to evaluate in-situ properties
of the soil which is extensively used in geotechnical engineering. One of the primary
applications of these tests was to measure the cone resistance. Advanced devices also
involve measurements of the friction along the sleeve of the tool and the pore pressure at
different locations.
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Actually, the most important characteristic relating to experimental measurements and
mechanical properties of the medium is cone resistance which has to be obtained by deep
steady-state penetration. It presents the acting resultant force on the cone tip divided by
the cone cross area. Typically, the whole penetration procedure follows from several to
dozens of meters.

The experimental device referred to as penetrometer presents a cone on the end of a
series of rods. It is pushed into the deformable medium at a constant rate. The cone with
a diameterd of 35.7 mm, cone tip angle – 60◦ and penetration speed equal to 2 cm/s is
usually referred to as a standard one (Lunneet al., 1997).

Nowadays, most of the efforts of engineers are focused, however, on the correlation
and correction of measurement results, rather than physical interpretation of factors in-
fluencing the stress and pressure fields around the cone. An efficient way of interpreting
cone-soil interaction is numerical modeling. The finite element method widely used in
engineering alongside the existing semi-empirical approaches, becomes the most attrac-
tive alternative to handle the penetration problem and the influence of various factors on
cone resistance.

In the numerical simulations, the penetrometer is considered to be a rigid cone pre-
embedded into a hole pre-bored in deformable half-space medium (Fig. 1). The penetra-
tion process is initiated by applying displacementu to the rigid surface of the penetrom-
eter, until a steady state is reached. The numerically obtained loading curve relating to
the resultant loadF acting on the tip of the cone and cone displacementu are the most
important characteristics of the resistance and, at the same time, the quality indicator of
numerical analysis. Actually, to capture the steady-state behavior and cone resistance of
soil, the cone must be pushed into the medium at the depth of several diameters of the
cone.

Since the cone is penetrating by vertical loading, the 3D problem may be reduced
to axi-symmetric one with 2D domain (Fig. 2). To avoid boundary effects at the start of
the analysis, the cone is placed into a pre-bored hole having the initial depthh, with the
surrounding soil still in its in-situ stress state.

The soil region divided by finite elements should be considerably large to avoid the
influence on the result of the replacement of the infinite half-space by a limited size

Fig. 1. Illustration of cone penetration.
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Fig. 2. 2D solution domain (a) and the smoothed geometry of penetrometer (b).

zone. The size of the 2D solution domain is defined by two parameters,D andh + H ,
the values of which are usually verified by numerical experiments with a larger domain.
The symmetry axis and the bottom boundary are assumed to be rigid, while the right
boundary reflects the external surrounding infinity medium, where boundary conditions
may be prescribed by using a rigid surface or infinite elements.

The nature of the penetration problem is highly non-linear, while the main difficul-
ties are referred not only to large strain and material non-linearities governed by con-
tinuum mechanics equations, but also to considerable changes of geometry of solution
domain and mainly, as a consequence, to contact sliding. The reliable response calcula-
tion requires, however, the proper choice of the FE discretisation as well as mathematical
problem formulation.

Up to now, all known FE applications to cone penetration problem were performed
using the structured quadrilateral mesh. The arguments to prefer this meshing strategy
to a popular adaptive approach may be explained as follows. The problem contains two
concentrators, the cone tip and sharp connection of the cone and the sleeve. A traditional
procedure of the adaptive finiteelement refinement leads even to a larger local distortion
of mesh in the vicinity of the concentrators, and, as a consequence, the simulation process
of penetration fails at smaller displacement values. To avoid such a large mesh distortion,
larger elements can be used (Shenget al., 1997; Mabsoutet al., 1995), but, in this case, the
accuracy of calculated stress values decreases dramatically. Difficulties of another type,
apart from FE mesh, are associated with the conventional displacement approach and
Lagrangian type problem formulation for a single constant topology mesh. It was pointed
out by van den Berg (1994) and later reported by Songet al. (1999), Markauskaset al.
(2002) and Voyiadjis and Kim (2003). Large distortions of the finite element geometry
during penetration leading to the failure of an implicit iterative solution schema restricted
the application of the FEM to CPT modeling. Probably the most successful latest results
of this kind, with application to porous medium, were reported by Voyiadjis and Kim
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Fig. 3. Results of CPT analysis without remeshing: a) deformed geometry, b) loading curve.

(2003). They were related, however, not to a standard but to mini cone and were limited
by penetration depth of 3.5 diameter of the cone.

The interpretation of the local behaviour (Markauskaset al., 2003) illustrates that not
only distortion, but contact sliding play a crucial role. By sliding of the cone with respect
to a solid, the outer contact solid node after a certain period of relatively slow sliding loses
the contact with the conical surface of the cone and moves along the vertical surface of
the sleeve at a higher rate.

To illustrate the arising difficulties, cone penetration analysis with contact behaviour
is considered using a smooth cone with smoothed geometry (Fig. 2b), where a sharp
cone-sleeve connection is approximated by a circular curve with the rounded-off radiusr.
Numerical results obtained for the cone withr = 10 mm presented in Fig. 3 are a typical
illustration of the cone behaviour. As follows from a simple observation, a large distortion
of mesh (Fig. 3a) and the irregular character of a loading curve (Fig. 3b) leading to the
failure of computation process at relatively small displacement values clearly indicate
unsatisfactory validity of numerical simulation. In this case, the corner node criterion
value (Erhartet al., 2001) is below 0, which indicates that an element is irregular. By
using a smaller value of the rounded radius, finally tending to the sharp angle, and by
including the increasing roughness of contact, this tendency is even worse.

Finally, the above drawbacks show that a single mesh strategy is not able to follow
deep penetration, therefore, new innovative meshing strategies are required, one of which
is expected to be moving locally predefined remeshing.

3. Mathematical Models

The deformable medium penetrated is expected to be a soil which consists of solid grain
particles and voids that are filled with water and/or air. Generally, the soil presents a
mixture, the behaviour of which may be described by a mathematical model of multi-
phase deformable medium.

In the framework of the current investigation, deformable medium is considered to
be the two-phase porous medium consisting of solid grains (skeleton) and pore water.
Each phase is regarded as individual continuum following its own behavior governed
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by different equations. The skeleton is assumed to be elastic-plastic solid undergoing
large strains and large displacements, while the flow of pore-water through the voids is
assumed to follow Darcy’s law. Under certain assumptions, the flow of pore-water may be
neglected and two-phase medium model may be transformed to homogeneous continuum
model.

A mathematical model explored here to describe the medium is a widely used La-
grangian continuum mechanics approach with respect to remeshing. It is based on the
equilibrium of internal and external virtual works in the current configuration correspond-
ing to timet + ∆t and should be written for the current volumet+∆tV as:∫

t+∆tV

t+∆tτij · δt+∆teij
t+∆td V = δt+∆tR, (1)

wheret+∆tτij are the Cartesian components of the Cauchy stress tensor,t+∆teij are the
Cartesian components of an infinitesimal strain tensor andδt+∆tR is the virtual external
work. Thet denotes time related to reference configuration, while∆t stands for time
operation interval. It is not related to time step associated with the appropriate numerical
incremental procedure. Such interpretation reflects the essence of the developed remesh-
ing technique and enables us to omit a discussion concerning the computational aspects
of the total and the updated Lagrangian formulations.

Here and further, the left-side superscript indicates the configuration related to time
t in which the quantity occurs, while the left-side subscript indicates the configuration
in which the quantity is measured. If the quantity occurs in the same configuration in
which it is also measures, the left subscript may be omitted, e.g., we may havet+∆tτij ≡
t+∆t
t+∆tτij .

The body is described by a non-linear constitutive relationship as well by non-linear
contact boundary conditions, but since it alsoundergoes large displacements and large
strains causing the unknown current configurations, the relation in (1) cannot be solved
directly. In spite of certain differences occurring in interpreting the Lagrangian approach
(Bathe, 1982; Crisfield, 1997; Belytschkoet al., 2001) all of the studies define stress and
strain measures referred to the reference configuration corresponding to timet:

In addition, the behavior of porous solid is also affected by pressurep of pore-water
filling the voids, and the concept of effective stress is employed to describe the effect of
strong coupling, where conventional Cauchy stress tensortτij is replaced by the effective
Cauchy stress tensortτ ′

ij such that

tτ ′
ij = tτij + tpδij , (2)

whereδij is Kronecker delta.
The coupled soil-pore fluid model of porous medium presents the equilibrium equa-

tions of the skeleton-fluid mixture which can be written using the principle of virtual work
(1) with respect to (2) and the balance of mass, which simply means atransient seepage
equation. By considering saturated incompressible medium and omitting the details, it
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may be sufficient to consider a general matrix form of coupled transient static finite ele-
ment equations, expressed in terms of the nodal displacements{u}, nodal pressures{p}
and their velocities{u̇} and{ṗ} (Zienkiewicz, 1984):

[
0 0

−QT 0

]{
u̇(t)
ṗ(t)

}
+

[
K Q

0 H

]{
u(t)
p(t)

}
= −

{
F (t)
q(t)

}
. (3)

Here,[K] presents the structural stiffness matrix, and the fluid matrix[H ] presents
permeability, while[Q] couples the field of pressures in the equilibrium equations. The
right-hand vector stands for external forces and flows{F } and{q} including boundary
terms.

The incremental Lagrangian FE formulation of coupled equations (3) may be
presented as follows (see for example Voyiadjis and Abu-Farsakh, 1997; Potts and
Zdravkovic, 1999):

[
tK tQ

−tQT tH∆t

]{
t∆u
t∆p

}
= −

{
t∆F
t∆q

}
. (4)

Here,{t∆u} and{t∆p} are increments of the nodal displacements and pressures during
time operation interval∆t, [tK], [tQ] and[tH ] presents the coefficient matrices defined
in configurationt, while {t∆F } and{t∆q} are increments of the external nodal load
and flow, respectively.

Increments of the nodal variables for the time interval∆t are defined in a usual man-
ner as{t∆u} = {t+∆tu} − {tu}.

The original formulation (3)–(4) assumes the single initial finite element mesh defined
for the entire operation interval. Let us denote values of the scalars, vectors and matrices
at timet related to the meshh by the right-side subscripth.

As it is obviously used in the finite element method, a discussion on the matrices
of (4) will be continued for an individual elemente denoted hereafter by the right-side
superscripte. Let us consider meshh, defined in reference configurationt. For the sake
of simplicity, the incremental stiffness matrix may be presented in two terms:

[tKe
h] =

∫
tV e

h

[tBe
h]T

[
tCep(tχe

h)
]
[tBe

h]td V

+
∫

tV e
h

[tBe
NLh]T[tτ e

h ][tBe
NLh]td V. (5)

Here, the integration is performed in the reference volumetV e
h defined in meshh.

The first term expresses the conventional stiffness[tKe] including initial displace-
ments, while the second term[tKe

G] denotes the geometric stiffness matrices. Here,
[tBe] = [tBe

L] + [tBe
NL] is the non-linear strain-displacement transformation matrix

for the total strain composed of the linear and non-linear terms[tBe
L] and [tBe

NL], re-
spectively.[tCep] is the elastoplastic material property matrix depending on the internal
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variabletχe, which, in our case, is a history-dependent hardening parameter, while ma-
trix [tτ ] stands for Cauchy stresses. The contact boundary conditions between the de-
formable medium and the rigid cone surface may be also implemented in different ways.
The kinematic measures of overclosure and of relative shear sliding are controlled at each
prescribed integration point. They have to be obtained in the same manner as the stiffness
matrix (5). The remaining matrices[tQe

h] and[tHe
h] are defined in a similar manner.

The given incremental right hand vectors{t∆F e
h} and{t∆qe

h} are defined in a similar
way. The load vector{t∆F e

h} is presented as follows:

{t∆F e
h} = {t+∆tF e

h} −
∫

tV e
h

[tBe
Lh]T [tτ e

h ]td V. (6)

Here,{t+∆tF e} is the vector of the external applied nodal loads at timet + ∆t incorpo-
rating body forces and tractions, while the second term presents the resultant nodal forces
due to element stresses at timet.

At a certain time instancetr, when the current configuration undergoes considerable
changes distorting initial meshh defined at reference configurationt, a new mesh should
be generated. By applying the remeshing technique, the incremental equation (4) and the
corresponding matrices must be reformulated in the new meshh + 1, while the solution
procedure has to be continued from the previously computed state related to the meshh.

Now, the stiffness matrix (6) has to be defined as

[trKe
h+1] =

∫
trV e

h+1

[trBe
h+1]

T
[tr

Cep(trχe
h+1)

]
[trBe

h+1]
trd V

+
∫

rtV e
h+1

[trBe
NLh+1]

T[trτ e
h+1][

trBe
NLh+1]

trd V. (7)

Computation of the new matrix (7) may be implemented in different ways. The current
development is aimed at keeping to standard procedures as much as possible. The integra-
tion methodology over the deformed domain is, generally, mesh independent. Since the
new material property matrix[trCep] and geometric matrices[trBe

h+1] and[trBe
NLh+1]

may be calculated in the new mesh geometry using the same procedures of standard
codes, the main difference occurs by imposing the values of the Cauchy stress{trτ e

h+1}
and hardening parametertrχe

h+1. These values have to be transferred from the old mesh
h to the new meshh + 1. Reformulation of other matrices and vectors in the new mesh
h + 1 may be done in a similar way as in the case of the stiffness matrix (5). The main
difference is that, in addition to Cauchy stress and hardening parameter, the values of
pore-water pressure{tph} obtained in the meshh have to be transferred to the new mesh
h + 1 as{trph+1}. The transfer operation belongs to the remeshing technique to be im-
plemented.

Homogeneous solid presents a particular case of the model (4).
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4. Remeshing Technique

The proposed and developed remeshing technique presents a problem-oriented technique
devoted to simulation of deep penetration into deformable homogeneous and porous
medium. Generally, the remeshing technique comprises three phases. First, an initial or
background mesh must be chosen. Next, guidelines for the generation of the new mesh
(remeshing decision and new mesh generation)are required and, finally, a procedure for
the transfer of data between the meshes has to be developed.

The initial mesh is assumed to be a background mesh. Its generation takes into ac-
count the experience gained by the authors and other researchers. It presents a structured
quadrilateral mesh with four-node bilinear isoparametric elements with full integration
for displacement and pore pressure fields. Theyare quite simple for the generation pur-
pose, as well as preventing mesh locking and may be applied for both homogeneous
and porous media. The four Gauss integration points allow us to recover the variation
of the internal variables in the new mesh with sufficient accuracy. The mesh density has
a locally predefined character since the highest stress and strain gradients occur in the
vicinity of the contact zone between the rigid cone and deformable medium. The critical
element size is chosen a priory along the contact cone surface. This refinement is swept
into both directions, thereby covering the entire solution domain and fitting requirements
of relative element sides.

The moving strategy is chosen for remeshing. The local background mesh with con-
stant characteristic sizea remains unchanged during the entire operation period. Its lo-
cation is predefined by the location of themoving cone. Because penetration actually
presents the motion of the cone, driven by displacement increments∆u, the mesh is re-
generated at the prescribed increments. At each increment the new global mesh is then
generated according to the requirements used in the generation of the background mesh.
The concept of the moving locally predefined (MLP) remeshing is illustrated in Fig. 4.

Most of different remeshing criteria foundin the literature are based on geometrical
or local error observations. In our problem, the critical distortion occurs at the cone-
sleeve connection. It makes the deformation process irregular, but the main reason for
this is not only the distorted geometry, but the sliding of the element with respect to the

Fig. 4. Illustration of strategy of themoving locally predefined remeshing.



Moving Locally Predefined Remeshing for Deep Cone Penetration FE Analysis 501

corner node. To prevent sudden jumping of the element node from the conical surface of
the cone, which leads to very slow convergence of the equilibrium when using an implicit
time integration schema, a regular remeshing frequency with the predefined displacement
increment∆u equall/2 to l, wherel is the size of the smallest element, was put forward
as a remeshing indicator.

The remeshing is supplied with a transfer operation of the required state variables.
The coupled model (4) contains two types of internal variables, which have to be trans-
ferred to a new mesh. The pressure field{p} is described by primary variables defined at
nodes, while the stress field described by Cauchy stress{τ} and internal variables pre-
senting hardening parameterχ are defined at Gauss points, therefore, a combined transfer
technique with two different procedures has to be used.

The transfer operation at time instancetr between the new meshh + 1 and the old
meshh is presented here by linear transformations. For Cauchy stress

{trτh+1} = [Ts]{trτh}, (8)

while for pore pressure

{trph+1} = [Tp]{trph}, (9)

where[Ts] and[Tp] are the respective algebraic transformation matrices.
The moving least square method using superconvergent patch recovery (SPR) tech-

nique (Zienkiewicz and Zhu, 1992) originally proposed for stress recovery has been ap-
plied to transfer Gauss points variables. The least square procedure is developed on the
basis of a standard FE approximation technique. It is assumed that the transferred scalar
variableτ over the patchp surrounding the particular assembly points is described by
the same order polynomial function as that present in the shape functions of the finite
element. This polynomial expansion used for each stress component may be written as:

τ(x) =
[
P (x)

]
[a], (10)

where[P ] contains the appropriate polynomial terms and[a] is a set of unknown param-
eters. For our case in which the bilinear quadrilateral elements are used[P (x)] = [1, x,
y, xy] and[a] = [a1, a2, a3, a4].

The determination of the unknown parameters[a] of the expansion given in equation
(10) is made by ensuring a least square fit of this to the set of Gauss points existing in the
finite element patch considered. In our operation procedure, the transfer transformation
(8) gives the stress valuetrτ i

h+1(x
i
Gh+1) specified in the single Gauss pointi of the new

meshh + 1 with the stress vector{trτ p
h (xp

Gh)} composed by the stress values in the
Gauss points of the finite element patchp:

trτ i
h+1(x

i
Gh+1) = [Ts]

{
trτ p

h (xp
Gh)

}
, (11)

wherexi
Gh+1 andxp

Gh are the co-ordinates of Gauss points. A transformation matrix
is obtained by a standard least square minimization procedure employing a polynomial
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expression (10):

[Ts] =
[
P (xi

Gh+1)
](

[P̃ ]T[P̃ ]
)−1[P̃ ]T. (12)

Here,[P̃ ] ≡ [P̃ (xp
Gh)] is a singular rectangular matrix composed of the same polynomial

expressions (10) defined at the Gauss points of the patch in the old meshh. The above
procedure (10-11) is also applied to a hardening parameterχ. Matrix [P̃ ] is the same for
each component of a transferred variable and hence only a single evaluation of the inverse
matrix for the patch is necessary.

For the transfer of the node variables a simple interpolation method has been used.
In our operation procedure, the transfer transformation (9) gives the pressure value
trpi

h+1(x
i
Nh+1) specified in the nodal pointi of the new meshh + 1 with the pressure

vector{trpe
h(xe

Nh)} composed of the pressure values in the nodal points of the finite
elemente:

trpi
h+1(x

i
Nh+1) = [Tp]

{
trpe

h(xe
Nh)

}
, (13)

wherexi
Nh+1 andxe

Nh are the co-ordinates of nodal points. A transformation matrix is
obtained by direct application of a polynomial expression (10):

[Tp] =
[
P (xi

Nh+1)
][

P̄ (xe
Nh)

]−1
. (14)

The main difference of interpolation compared to the least square approximation is
that a set of unknown parameters[a] is uniquely defined in the finite element consid-
ered, while[P̄ (xe

Nh)] is a nonsingular square matrix composed of the same polynomial
expressions (10) defined at the nodal points of the element in the old meshh.

The developed moving least square and interpolation methods are illustrated in Fig. 5.
The transfer operation using the moving least square method consists of the following
steps: constructing the patches from the Gauss points of the old elements mesh (Fig. 5a),
finding the patch where the Gauss point of the new element is (Fig. 5b), transferring
the variables from the Gauss points of the old mesh to the Gauss points of the new mesh
using the polynomial function (Fig. 5c). The interpolation operation is a similar, but more
simple procedure (Fig. 5d).

The proposed remeshing as regeneration of the mesh together with the transfer of the
state variables to a new mesh is implemented as post-processor type software compatible
with conventional FE codes, while current investigation is implemented into ABAQUS
(1998) environment.

The total incremental coupled non-linear FE analysis with the combined remeshing
technique comprises a loop of operations untilthe required overall penetration has been
reached. The flow chart of the analysis is presented in Fig. 6. In the case of homoge-
neous medium a transfer procedure is simplified by omitting thenodal transfer of the
pore pressure procedure (9).
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Fig. 5. Transfer operation: moving least squaremethod (a–c) and interpolation method (d).

Old deformed mesh — — — New unformed mesh
� Gauss point of old mesh � Gauss point of new mesh
• Nodal point of old mesh ◦ Nodal point of new mesh

5. Numerical Results and Discussion

Numerical results given below presents a number of examples illustrating the basic fea-
tures of the considered remeshing technique capturing finally the non-linear behavior of
porous solid with respect to different permeability.

Example 1 – cylindrical cavity expansion. The penetration problem can be treated as
the expansion of the cylindrical cavity on the shaft of the penetrometer and the expansion
of the spherical cavity on the tip of penetrometer (Lunneet al., 1997). The constant
cylindrical expansion presents a more simple part of the cone penetration problem, the
consideration of which, however, may be used for understanding its role in the entire
behavior of penetration as well as for evaluating the role of remeshing.

The cylindrical expansion was treated numerically by considering an example of fixed
2D axisimetric solution domain. The cavity was expanded from 0 to 20 mm radius by con-
trolling the radial motion of the inner boundary. The solution domain (1.0 m in the radial
direction and 0.1 m in height) was discretised in the 200 four-noded rectangular elements
which form a relatively rough mesh. Such a mesh was taken to increase a possible error
of remeshing technique because it is clear that with the finer mesh the diffusion from
transferring procedure can only decrease.The problem presents a particular case of a
boundary moving with constant velocity, therefore, remeshing should efficiently capture
mesh deformation.

The large displacement problem of axisymetric cavity expansion is analyzed in an
uncompressible elastic perfectly plastic Mises material. The material has the following
properties: yield stressσy = 40 kPa, Young’s modulusE = 30 MPa and Poisson’s ratio
υ = 0.495.
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Fig. 6. Flow chart of non-linear coupled FE analysis with moving locally predefined remeshing.

First, one simulation was made without remeshing and two simulations were per-
formed with remeshing: (a) with 4 remeshing steps (per 5 cm of the expansion value);
and (b) with 8 remeshing steps (per 2.5 cm of the expansion value). It is apparent that all
three numerical results agree extremely well.

On the other hand, remeshing may be treated as iterative approximation of geometrical
nonlinearity by geometrically linear models. This approach has already been applied by
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Fig. 7. Resultant expansion force-displacement curves of cavity expansion.

Hu et al. (1999). To verify this approach, the small strain analysis with remeshing was
performed. Three simulations with 4, 8 and 16 remeshing steps during cavity expansion
were made (Fig. 7). It is clearly seen that when more remeshing steps are used the results
from small strain FE analysis converge toward the results from geometrically nonlinear
FE analysis.

The performed cavity expansion analyses demonstrate that there is no significant drift
in the accuracy of the large displacement solution, due to repeated remeshing, while even
a linear model with remeshing converges to nonlinear response. The reason of the ob-
served performance of the geometrically nonlinear model is a character of deformation
where one side expansion is predominant and small distortions of the elements occur.
The results illustrate good performance of remeshing and, at the same time, show that the
main difficulties in simulation of penetration occur not due to overall cavity expansion
but due to the local expansion of a moving cone. The mesh regeneration rule used for the
cavity expansion is further utilized for the CPT problem.

Example 2 – an illustration of basic features. This example illustrates basic features
of the developed MLP remeshing for the penetration problem. The standard penetrometer
was modeled as a rigid surface having a small rounded-off radiusr = 2 mm. The cone
is placed into a pre-bored hole having the initial depthh = 0.55 m. The size of the FE
domain was taken equal toD = 0.625 m,h + H = 1.25 m. The characteristic size of the
locally predefined mesha = 105 mm (Fig. 4). The kinematic boundary conditions are
imposed on the medium-medium boundary of a discretised domain. The motion of the
bottom boundary was assumed to be restricted in the vertical direction, while the right
lateral boundary was restricted in horizontal direction. The initial state of the medium is
defined by the weightγ = 18 kN/m3 and the lateral pressure ratioK0 = 1.0. This example
deals with a smooth cone exposing the perfectly sliding contact surface, where absolute
displacements and velocities of the solid and the boundary may be differ. The homoge-
neous material is assumed to be elastic-perfectly plastic incompressible Mises material
with Young’s modulusE = 30 MPa, Poisson’s ratioν = 0.495 and the yield stressσy
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= 40 kPa. The composition of the locally predefined background mesh is illustrated in
Fig. 8a. The displacement increment betweenremeshing steps was taken to be about half
the size of the element on the cone.

The simulation results are illustrated by the loading curveF − u (Fig. 9) describing
deep penetration of the cone. To investigate the influence of mesh density, four tests using
various meshes with 458, 1632, 3541 and 6472 elements, with 4, 8, 12 and 16 elements
on the cone tip, respectively, have been performed. The cone penetrated the medium until
the displacement of one cone diameter was reached.

The curves obtained by the MLP remeshing technique contain jumps, the frequency
of which is related to the frequency of remeshing steps. The curve4FE corresponding to
the simulation with 4 elements on the cone shows the largest jumps while the curve16FE
obtained in the simulation with 16 elements demonstrates the smallest jumps. It indicates
that the size of jumps decrease with increasing the amount of elements.

The convergence of the resistance load by mesh refinement is illustrated in Fig. 10.
The results illustrate the reduction of the jumping amplitude while increasing mesh den-
sity and the convergence of all three curves. The interpretation of the results shows that
jumping has mainly three reasons. The first is related to shifting of the nodal points by

Fig. 8. The locally predefined background mesh used for analysis: a) for homogeneous medium, b) for porous
medium.

Fig. 9. Loading curve obtained by using different FE discretisation on the cone.
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mesh regeneration, the second reason is related to corner node sliding, while the third one
is related to a transfer procedure. Since refinement of the mesh and remeshing interval
are time-consuming processes, it is desired to reach the equilibrium by a coarser mesh
and relatively large remeshing interval. Typical curves of resistance load are presented in
Fig. 11. As follows from the convergence test, using different approximation approaches,
different smooth loading curves1, 2 or 3 may be obtained by the approximation of the
simulation results and thesecurves converge to one curve2. On the other hand, examina-
tion of the results gives an opportunity to construct a smooth curve2 directly by a coarser
mesh and using a relatively large remeshing interval. Finally, it should be emphasized,
that the remeshing technique developed and implemented in the post-processor software
also comprise the evaluation of the smooth loading curve.

Example 3 – penetration in homogeneous medium. The numerical technique discussed
and verified above is applied to simulate conepenetration in clay. Since water permeabil-
ity of clay is very low, the water in this soil has no time to flow out of the pores when cone
penetration is performed at the standard speed. Therefore, the cone penetrates the com-
pletely undrained soil (Jamiolkowskiet al., 1985), and a homogeneous elastic-perfectly
plastic incompressible Mises material may be applied for clay (Ukritchonet al., 1998).
The contact surface is assumed to be rough (i.e., the limit of friction between the pen-
etrometer and clay is equal to clay shear strength).

Fig. 10. Convergence of resistance load by mesh refinement.

Fig. 11. Loading curve obtained by MLP remeshing technique.
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The following material parameters were used:E = 22.5 MPa,ν = 0.495, γ =
18 kN/m3, K0 = 1.0. As follows from the undrained soil analysis, yield stressσy is re-
lated to undrained shear strength asσy = 2cu. Shear strengthcu can be obtained from the
triaxial compression test and is taken ascu = 50 kPa. These parameters define the rigidity
indexIr = 150.

After verification by numerical experiments with a larger domain, the size of a dis-
cretized domain was taken asD = 1.1 m,h+ H = 1.8 m. For modeling cone penetration
into 5 m depth the upper part of the mediumwas replaced by the additional external
pressurep = 80 kPa on the free upper soil surface. The same boundary conditions and a
background mesh as in the previous simulations where used in this example.

The domain was discretized by 1944 bilinear four nodded elements, while soil-cone
interaction is described by the contact surface. The total value of DOF of the model is
equal to 5082. The cone penetrated up to 14 diameters. The smoothed load-displacement
curve illustrating cone behavior is shown in Fig. 12.

Quantitative properties are illustrated by a comparison with experimental results,
where the cone factorNc is used a as quality indicator. It relates cone resistance and
material properties. Kurupet al. (1994) have presented the results of a calibration cham-
ber study on CPT in overconsolidated cohesive soils giving an average valueNc = 15.
The Mises model used here corresponds only to lightly overconsolidated clays. There-
fore, the numerically obtained values for the rough coneNc = 14.4 may be considered as

Fig. 12. The loading curve illustrating cone penetration in clay as homogeneous medium.

Fig. 13. The loading curve illustrating cone penetration in porous medium.
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being in very good agreement with experimental results.
Numerical results prove that the applied remeshing allows us to simulate practically

unlimited penetration illustrating the qualitative power of the suggested technique, while
the comparison of the results with the experiments quantitatively shows the accuracy of
the applied numerical technique.

Example 4 – penetration in porous medium. The last example is aimed to illustrate
the performance of MLP remeshing technique for cone penetration into porous medium
presenting water saturated normally consolidated soil. The friction between a rigid sur-
face and soil was not taken into account, which is a case of the smooth penetrometer. A
medium-medium boundary described by the infinite FE was taken on the right side of the
discretized domain. It allowed us to reduce the size of the FE domainD to 0.625 m. The
vertical sizeh + H was taken to be 1.8 m.

Since deep penetration is considered and only a limited area around the cone is mod-
eled by finite elements, the gradient of the vertical stress from soil weight and pore water
is of minor importance and a homogeneous initial state of stress and pore pressure can be
introduced into the model at the start of analysisσv,0 = σh,0 = 80 kPa,p0 = 80 kPa.

For normally consolidated soil the modified Drucker-Prager/Cap model (DPC)
(ABAQUS, 1998) with the following major parameters is used to describe the proper-
ties of the skeleton: Young’s modulusE = 5 MPa, Poisson’s ratioυ = 0.2, friction angle
φ = 30◦, initial hydrostatic compression yield stresspb,0 = 80 kPa. The cap hardening
law is defined by the piecewise linear function relating the hydrostatic compression yield
stress,pb, and the corresponding volumetric plastic strain,εpl

vol, as follows: 10 kPa – 0.0,
300 kPa – 0.0005, 500kPa – 0.0023, 1000 kPa – 0.004, 1500 kPa – 0.0052.

The background mesh with 18 elements on the cone was used in simulation, which
is far enough for obtaining the accurate results in homogeneous media (Markauskaset
al., 2003; Voyiadjis and Abu-Farsakh, 1997), is shown in Fig. 8b. The entire soil domain
was discretized using a structured meshwith 1378 bilinear four nodded elements, while
soil-penetrometer interaction was described by the contact surface. This mesh provides a
high quality solution to a coupled problem leading to minimal pore pressure oscillations
in the worst case with a very small water permeability value. Stresses and plastic strains
are transferred by moving least square method, while pore pressure is transferred by
interpolation method. In our investigation,simulation was limited to the displacement
valueu = 260 mm or relative valueu = 7d with respect to cone diameterd.

The validity of remeshing is justified by comparing the simulation results in porous
media described by the coupled model (4) and homogeneous media. For the sake of
comparison, the cone penetration analysis in fully undrained and fully drained soil as
homogeneous medium is made. The modeling results show that in limit cases the differ-
ences between the porous media and the homogeneous media are small, which confirms
the validity of the remeshing technique for the coupled model. The analysis using dif-
ferent soil permeability values is presented in Fig. 13. The curves from1 to 9 describe
porous media with different permeability (1 – k = 10−5 m/s, 2 – k = 10−6 m/s, 3 –
k = 5 · 10−7 m/s, 4 – k = 10−7 m/s, 5 – k = 5 · 10−8 m/s, 6 – k = 10−8 m/s, 7 –
k = 10−9 m/s, 8 – k = 10−10 m/s, 9 – k = 10−11 m/s), while the curves10 and11
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present homogeneous media. The character of curves from the analysis proves that the
developed remeshing technique provides high quality modeling of deep penetration into
the porous media, since the steady-state behavior is reached and subsequently followed
with practically unlimited penetration of thecone. It can be seen that cone resistance ob-
tained from the numerical simulations increases rapidly until it reaches the steady state
conditions at a depth of about 2d, when soil permeability is 10−11 m/s, while the steady
state is reached at the depth of about 4d, when permeability isk = 10−5 m/s. When soil
permeability is 10−11 m/s, the obtained cone resistance is about two times lower than that
found for soil permeability of 10−5 m/s.

It may be concluded that no excess pore pressure is generated and cone penetration
at standard speed is performed in drained conditions when the coefficient of permeability
is higher than 10−5 m/s. The result obtained is in good agreement with the conclusion
made by van den Berg (1994). But in the considered case, the generated excess pore pres-
sure does not affect cone resistance considerably, when soil permeability is greater than
10−6 m/s. The fully undrained condition is achieved when permeability is lower then
10−10 m/s, but the increase of permeability does not affect cone resistance considerably
when permeability is lower than 10−9 m/s. Cone penetration in intermediate soils is per-
formed under partially drained conditions. According to their character of the curve and
permeability thresholds agree well with the numerical results obtained and discussed by
Songet al. (1999).

The profiles of the pore pressure and vertical normal stress corresponding to per-
meability values 10−7 m/s and 5·10−7 m/s for penetration depth of 6d are depicted in
Fig. 14 and 15. The change of pore pressures and vertical normal stresses clearly indicate
the change of physical nature of porous medium and the steepest degradation of cone

Fig. 14. Pore pressure and vertical normal stress corresponding to permeabilityk = 10−7 m/s.
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Fig. 15. Pore pressure and vertical normal stress corresponding to permeabilityk = 5·10−7 m/s.

resistance, when permeability increases from 10−7 m/s to 5·10−7 m/s. Such a sudden
change of the generated pore pressure causes a significant change in the loading curve.

Finally, it may be concluded that the developed remeshing technique yields physically
reliable results and make possible to investigate the cone penetration in porous medium
in a wide range of permeability.

6. Discussion and Conclusions

The moving locally predefined finite element remeshing technique for simulation of rigid
cone penetration into homogeneous and porous media using the Lagrangian approach
is developed. It involves the transfer operation combining both the moving least square
method based on SPR technique and the interpolation method for transfer of state vari-
ables. The developed remeshing technique is implemented into post-processor type soft-
ware compatible with the standard FEM code.

On the basis of the numerical analysis the following conclusions have been drawn:

1. Large distortion of the finite elements and overlapping of the contact surfaces is a
serious obstacle in the application of theconventional displacement finite element
method to large displacement analysis, but the developed MLP remeshing is able
to overcome numerical difficulties coused by large distortions of the initial mesh
and by contact sliding and to capture the steady-state penetration behavior.

2. Remeshing technique is supplied with an approximation procedure, which allows
the construction of a smooth loading curve by relatively coarse finite element dis-
cretisation and remeshing frequency.
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3. The developed remeshing technique is applied to the rough cone test in clay, where
large penetration of penetrometeru = 14d is reached. The obtained cone factor
value 14.4 provides good agreement with experimental results and proves the high
quality of the remeshing technique.

4. The developed remeshing technique is applied to modeling deep penetration of
rigid penetrometer into elasto-plastic saturated porous media, which is a very dif-
ficult or insolvable problem using standard FE software. It exposed good perfor-
mance in reaching steady-state behavior,with the practically unlimited value of
cone displacement. In the present investigation, the simulation was stopped at the
displacement valueu = 260 mm or relative valueu = 7d with respect to penetrom-
eter diameterd.

5. The developed remeshing technique combining different approximation of stress
and pressure fields demonstrates its ability to capture the behavior of porous media
a wide range of permeability and deep cone penetration values. It extends the per-
formance of standard FE software by considering penetration problems which can
hardly be solved by a conventional fixed mesh Lagrangian approach.

6. The moving locally predefined remeshing technique is a universal computational
tool generally compatible with different formulations and may be applied to other
problems, but further research and verification of technical remeshing details are
required for particular cases.
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Vasiliauskieṅe, L., and R. Baušys (2002). Intelligent initial finite element mesh generation for solutions of 2D

Problems.Informatica, 13(2), 239–250.
Voyiadjis, G.Z., and M.Y. Abu-Farsakh (1997). Coupled theory of mixtures for clayey soils.Computers and

Geotechnics, 20, 195–222.
Voyiadjis, G.Z., and D. Kim (2003). Finite element analysis of the piezocone test in cohesive soils using an

elastoplastic–viscoplastic model and updated Lagrangian formulation.Int. J. Plasticity, 19, 253–280.
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Slanki lokaliai apibr ėžta baigtini ↪u element ↪u pergeneravimo technika
kūgio formos zondo gilios penetracijos analizei

Rimantas KǍCIANAUSKAS, Darius MARKAUSKAS

Aprašoma slanki lokaliai apibrėžta baigtini↪u element↪u tinklo pergeneravimo technika, skirta
kūgio formos standaus zondo giliai penetracijai↪i homogenin↪e ir poring↪aj ↪a terp↪e modeliuoti. Ši tech-
nika realizuota postprocesoriaus tipo programa suderinama su standartinėmis BEM programomis.
Siūloma technika apima ir kintam↪uj ↪u perk̇elimo ↪i skirtingus tinklus operacija, taikant slanki↪uj ↪u
mažiausi↪u kvadrat↪u metod↪a ↪itempimams ir interpoliavimo metod↪a sl̇egiams perkelti. Pasiūlytas
metodas↪igalino išvengti skaitini↪u sunkum↪u dėl didelio Langranžo tinklo išsikraipymo ir kontak-
tinio praslydimo, ir taip pasiekti nusistovėjus↪i būv↪i modeliuojant k̄ugio penetracij↪a ↪i tampri ↪aj ↪a plas-
tin ↪e homogenin↪e, o taip pat poring↪aj ↪a terp↪e ir ↪ismeigiant k̄ug↪i iki keleto kūgio skersmen↪u.


