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Abstract. A novel approach to outlier detection on the ground of the properties of distribution of
distances between multidimensional points is presented. The basic idea is to evaluate the outlier
factor for each data point. The factor is used to rank the dataset objects regarding their degree of
being an outlier. Selecting the points with the minimal factor values can then identify outliers. The
main advantages of the approach are: (1) no parameter choice in outlier detection is necessary;
(2) detection is not dependent on clustering algorithms.

To demonstrate the quality of the outlier detection, the experiments were performed on widely
used datasets. A comparison with some popular detection methods shows the superiority of our
approach.
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1. Introduction

The data derived from measurements usually have some amount of noise, which can be
viewed as outliers. The outliers also can be viewed as records having abnormal behaviour.
The preferable way to deal with outliers is to keep one extra set of outliers, so as not to
pollute factual clusters.

For some applications exceptional cases are more interesting than the common ones.
Statistics defines an outlier as a point that does not fit a probability distribution. Data

mining has developed its own definitions. The global definition of an outlier introduced
in (Knorr et al., 1998) considers two parametersε, δ. A point can be declared an outlier
if its ε-neighbourhood contains less than1 − δ fraction of a whole dataset.

How to describe local outliers? Different subsets of data have different densities and
may have different distributions. A point close to a tight cluster can be a more probable
outlier than a point that is further away from a more dispersed cluster.

In most of the studies conducted on outlier detection, an object in the dataset may
be an outlier or not. For many applications it becomes more meaningful to evaluate a
degree of being an outlier for each dataset object. Thelocal outlier factor that specifies
the degree of outlierness was first introduced and investigated in (Breuniget al., 2000).
The definition is based on the distance to thek-nearest neighbour.
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Outliers and clusters in a dataset are related. An outlier means not being in or close
to a cluster. According to this approach clustering algorithms generate outliers as by-
product (for example, in (Esteret al., 1996)). The data that do not naturally fall into any
cluster can be viewed as solitary clusters. However, if a clustering algorithm attempts to
find larger clusters, these outliers will be placed in some cluster. This process may create
poor clusters.

The outlier factor introduced in this paper also evaluates the degree of being an out-
lier. The local or global properties of the proposed factor depend on the structure of the
dataset.

1.1. Parameter Discussion

In most outlier detection approaches, the quality of the results greatly depends on a
choice of the algorithm parameters. For example, determination of the local outlier factor
in (Breunig et al., 2000) can be performed by considering different values of the pa-
rameterMinPts, specifying a minimum number of objects in the neighborhood of some
object. The local outlier factor value changes with a change of theMinPts values non-
monotonically even for such a pure distribution as the Gaussian distribution.

The notion ofDB(pct, dmin) for a global outlier in (Knorret al., 1998) also contains
two parameters: percentage of objectspct and minimal distancedmin.

Moreover, sometimes the choice of a function in some methods can be arbitrary. For
example, the influence function in the density-based clustering method in (Hinneburget
al., 1998) can be an arbitrary function.

Adaptation of the parameter values to the dataset requires additional experimentation.
Sometimes the choice of algorithm parameters is based on some a priori recommenda-
tions.

Our approach practically does not require the parameter choice or a choice of func-
tions; evaluation of the frequency function in determining the outlier factor can be seen
as natural adaptation to the existing structure of distances between data points.

1.2. Distribution of Distances between the Points

Since visualization of high-dimensional data is rather difficult we want to investigate sim-
ple measures to understand the geometry of a given dataset. A useful idea is to analyse
the distribution of distances between the points. Brin (1995) draws attention that one way
of analysing whether the data may contain clusters is to plot an approximate probability
density function of the pairwise distances between all the points in a dataset. If the data
contains clusters, then the histogram of distances will show two peaks: a peak represent-
ing the distance between points in clusters andthat peak representing the average distance
between the points. If only one peak is present, then clustering is likely to be difficult.

The distributions of distances between random uniformly chosen vectors in 20 and 50
dimensional hypercubes of side 1 were analysed usingL1 andL2 metrics in (Brin, 1995).
The author obtained Gaussian-like (not exactly Gaussian) distributions with extremely
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narrow peaks. He also stated that correlated or clustered data has somewhat different
properties and tends to have a flatter distribution. In his example, taking random blocks
from an image, then treating them as 256- or2500-dimensional vectors and taking theL2

distances between them, he creates a distribution with two maxima. The first maximum
near zero distances indicates a great deal ofclustering in the data; the second one is com-
mon to all multidimensional spaces. We can see in all cases a dominating narrow peak,
which is usual for a uniform distribution of data points in a multidimensional hypercube.
This peak is different for different space dimensionality.

We will investigate the distribution of distances between random and uniformly cho-
sen vectors of various dimensionality because our outlier detection technique uses these
distributions.

The rest of the paper is organized as follows. In the next section, we present theoretical
and experimental results relative to the distribution of distances between the uniformly
distributed points in a multidimensional hypercube. In Section 3, the basic ideas of eva-
luation of the outlier factor are introduced. In Section 4, we provide the experimental
evaluation of our approach. Section 5 summarizes the results.

2. Distribution of Distances between the Uniformly Distributed Points in a
Multidimensional Hypercube

Analytical evaluation of the distribution of distances is possible only for a low data di-
mensionalityn, therefore a great deal of experimental evaluation has been performed.

2.1. Analytical Evaluation

Let n-dimensional vectors be uniformly distributed in multidimensional unit hypercube
[0..1]n. TheLk – norm of a vectorv is defined as

‖v‖k = k

√√√√ n∑
i=1

|vi|k. (1)

TheLk – distance between two vectorsv andw is

‖v − w‖k. (2)

The statistical analysis of distancesfor the can be found in (Schmitt, 2001).
In case n = 1, the density function of the distances between two uniformly distributed

random values ranging in [0..1] is defined by the derivation of the interval distribution

φ|V −V |(x) =
d(2x − x2)

dx
= 2 − 2x for 0 � x � 1 and 0 otherwise. (3)
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The expecting value and the standard deviation of the distances therefore are:

E|V −V | =
1
3

(4)

and

σ|V −V | =
1√
18

. (5)

In case n > 1, we may find only approximate evaluations in (Schmitt, 2001) that the
expecting value converges in probability to the constant

E|V −V | −→
p

√
n

6
. (6)

Experiments with higher dimensions confirm this result. For a low number of dimen-
sionsn the expecting value evaluation (6) differs (especially ifn = 1, the correct value
is 1/3, instead).

The analytical evaluation of standard deviationσ|V −V | is very hard in casen > 1. Ex-
periments with a high number of dimensions show that the standard deviation converges
towards the constant 0.24.

2.2. Experimental Evaluation

In a hypercube of side length 1 two points are selected from a uniform distribution, and
their Euclidean distanceL2 is computed. This is repeated for1 000 000 times. The results
are the computed relative frequency distributionfu(d) of distances between the points,
normalized to the total sum 1. They are illustrated in Fig. 1 for dimensionalities 1–7, and
their values are presented in table in the Appendix.

Fig. 1. Computed relative frequency distribution ofL2 distances between the uniformly distributed multidi-
mensional points for dimensionalitiesn = 1 − 7.
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The frequency distributions of distances of uniformly distributed multidimensional
points are extremely non-uniform, especially for higher dimensions. This fact of domi-
nating narrow peak existence is a disadvantage if we want to use these distributions in
the analysis of multidimensional data with a view to extract some properties on point
outlierness.

3. The Basic Idea and the Algorithm

The basic idea is to eliminate the influence of a dominating narrow peak in the relative
frequency distribution, and analyse only the difference between the frequency distribu-
tion of a given datasetfn(d) and the corresponding distribution of uniformly distributed
pointsfu(d) of the same dimensionality. The difference function

f(d) = fn(d) − fu(d) (7)

may be treated as afrequency function.
If the points in the given dataset are uniformly distributed, we obtain frequency func-

tion with the values near to zero for all interpoint distances.
If the points are not uniformly distributed, the greatest values of frequency function

will indicate the most frequent and most characteristic interpoint distances; the lowest
values will indicate rare, atypical distances.

The frequency function is similar to the influence function introduced in (Hinneburg
et al., 1998) which can be an arbitrary (for example, Square Wave or Gaussian) function.

An example of the frequency function for a two-dimensional dataset is illustrated in
Fig. 2. The dataset consists of two normally distributed data clusters; the distance between
them is equal to 0.8. The function has two peaks typical for data with clusters.

Fig. 2. An example of the frequency function for a two-dimensional dataset with two clusters.
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For each data pointi theoutlier factor

Ri = 1/m

m∑
j=1
j �=i

f
(
d(Xi, Xj)

)
(8)

can be calculated. Herem is the number of data objects,d(Xi, Xj) is the distance be-
tween thei-th andj-th points, andf(d) is the difference function (7).

It is obvious that the values ofoutlier factor are limited between−1 and1.
The outliers will have the lowest values of the outlier factorR, because the distances

between the outlier points and the rest data points will be atypicaland the corresponding
frequency function values in (7) will be low.

The algorithm naturally follows from the basic idea. It works in four steps:
Step 1: The frequency distributionfn(d) of a given dataset is evaluated.
Step 2: Thefrequency function is calculated according to (7) and using the values of

the table in Appendix.
Step 3: For each data point theoutlier factor R is calculated according to (8).
Step 4: The data points with the lowest values of theoutlier factor are treated as

outliers.
Obviously the algorithm’s complexity is O(m2), wherem is the number of data ob-

jects. However the estimation of the frequency function and outlier factor may be based
only on a part of data points. Such an approximation may improve the complexity, but its
influence requires further investigations.

4. Tests and Results

We discuss the results from the test datasets, used to evaluate the performance of the
proposed approach to the outlier detection.The outlier detection methods used for com-
parison are selected on the base of the availability of implementation.

The four methods used for comparison are:

• Donoho–Stahel (see (Knorret al., 2001)),
• Hadi (see (Hadi, 1994)),
• MML clustering (see (Oliveret al., 1996)), and
• Replicator neural networks (RNN) (see (Williamset al., 2002)).

Other detection methods, for example, Atkinson (1994), Billoret al. (2000), deBoer
et al. (2000), Knorret al. (2000), Kollioset al. (2001), are related to the four included
methods.

4.1. HBK Dataset

The HBK dataset is an artificially constructed 4-dimensional dataset with 75 data points
including 14 outliers (Hawkinset al., 1984). Regression approaches can find only the first
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10 outliers, but cannot find scattered data points 11–14 (“true” outliers) although they lie
far away from the main data cluster.

The results of the proposed outlier detection method and the four methods used for
comparison on the HBK dataset are summarized in Table 1. The values in columns 1–4
of Table 1 are taken from (Williamset al., 2002).

Donoho–Stahel and Hadi methods rank all 14 outliers at the top 14 places but the
“true” outliers are not at the top 1–4 places.

The MML method identifies only four scattered “true” outliers but the rest are placed
not adequately.

The RNN method has 14 outliers at the top 16 places and has located all the “true”
outliers in a single cluster at the 1–4 places.

The proposed method demonstrates the best detection of all and “true” outliers.

4.2. Wood Dataset

The four outliers (data points 4, 6, 8, and 19) in the Wood dataset (Draperet al., 1966) are
not easily identifiable according (Rousseeuwet al., 1987). The number of data is equal

Table 1

Top 20 outliers for Donoho–Stahel, Hadi, MML Clustering, RNN and the proposed method on the HBK dataset.
The first 14 outliers are written in Italics. The four scattered “true” outliers (11, 12, 13, 14) lie far away from
the main data cluster; they are underlined

Dono–Stahel Hadi
MML

Clustering
RNN

Proposed
method

14 14 12 14 11

4 4 14 12 14

3 5 13 13 13

5 3 11 11 12

9 9 4 7 5

7 7 53 6 3

10 12 7 8 1

6 10 47 3 7

2 6 68 1 8

8 2 62 2 10

12 8 60 10 2

13 13 34 5 9

1 11 43 16 6

11 1 27 49 4

53 53 49 4 15

47 47 16 9 27

68 68 1 20 41

75 43 38 51 49

43 34 20 21 20

70 60 61 31 35
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to 20, and the dimensionality is equal to 6.
The results of the proposed outlier detection method and the four methods used for

comparison on the Wood dataset are summarized in Table 2. The values in columns 1–4
of Table 2 are taken from (Williamset al., 2002).

Hadi, MML Clustering and RNN methods did not successfully identify all outliers.
According to the MML method the outliers are identified only in the last 4 places.

The proposed and Donoho–Stahel methods demonstrate the best outlier detection.
They rank all 4 outliers successfully, at the top 4 places. The order of all the 4 outliers is
in fact the same for both methods.

In Fig. 3 we can see that the ranked valuesof the outlier factor sharply distinguish
four “real” outliers: ten “not true” outliers in HBK data, and similarly four outliers in
Wood data from the remainder of the points.

Using test datasets, we demonstrate that the proposed outlier factor can be used to
find outliers that cannot be otherwise identified by the existing approaches.

Table 2

Top 20 outliers for Donoho–Stahel, Hadi, MML Clustering, RNN and the proposed method on the Wood
dataset. 4 outliers (points 4, 6, 8, and 19) are “true”; they are in Italics and underlined

Dono–Stahel Hadi
MML

Clustering
RNN

Proposed
method

19 7 10 13 19

6 11 12 10 8

8 16 20 6 6

4 9 11 9 4

11 12 7 20 2

7 10 13 12 12

16 19 1 19 14

5 17 9 7 10

12 18 17 4 13

14 3 18 18 15

10 20 3 16 11

9 1 16 11 16

1 13 2 1 17

3 8 14 5 3

18 5 5 15 5

17 6 15 17 7

20 14 4 14 1

15 4 19 2 20

13 15 8 8 18

2 2 6 3 9
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Fig. 3. Ranked values of the outlier factor for all the points of HBK dataset (square data points) and Wood
dataset (triangular data points).

5. Conclusions

In this paper, we propose a new approach for the multivariate outlier detection.
The outlier factor notion is based on the frequency distribution of distances between

the multidimensional points. It naturally evaluates the degree of being an outlier.
Our approach does not require the parameter choice or a choice of functions; evalu-

ation of the frequency function in determining the outlier factor can be seen as a natural
adaptation to the existing structure of distances between data points.

The comparison with some popular outlier detection methods shows the superiority
of our approach.

There are two directions in ongoing research. The first one is to improve and investi-
gate the performance of computation. The second one is to expand the capabilities of the
proposed approach to clustering data containing large amounts of noise.
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Appendix. Relative Frequency Distribution of Distances between the Points for
Dimensionalities 2–7

Intervals of distances n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

0 – 0.1 0.028248 0.003724 0.000438 6.21E-05 4E-06
0.1 – 0.2 0.074865 0.023037 0.005431 0.001139 0.000228 3.8E-05
0.2 – 0.3 0.107724 0.052889 0.019487 0.006392 0.001928 0.000515
0.3 – 0.4 0.126370 0.085838 0.043165 0.018647 0.007465 0.002863
0.4 – 0.5 0.136276 0.115526 0.072224 0.039776 0.019664 0.009668
0.5 – 0.6 0.135251 0.136354 0.103483 0.066080 0.041315 0.023417
0.6 – 0.7 0.126206 0.144947 0.128833 0.097856 0.069383 0.047321
0.7 – 0.8 0.107135 0.139666 0.146991 0.128757 0.102671 0.078755
0.8 – 0.9 0.082220 0.119686 0.149317 0.148947 0.133778 0.114418
0.9 – 1.0 0.049624 0.089606 0.132659 0.152905 0.153391 0.143333
1.0 – 1.1 0.018749 0.051632 0.096332 0.133724 0.153213 0.158745
1.1 – 1.2 0.006344 0.024941 0.057946 0.097756 0.129481 0.149526
1.2 – 1.3 0.000961 0.009399 0.028386 0.060561 0.091285 0.119391
1.3 – 1.4 2.6E-05 0.002358 0.011279 0.030458 0.054749 0.079762
1.4 – 1.5 0.000350 0.003267 0.012208 0.026669 0.043792
1.5 – 1.6 4.8E-05 0.000649 0.003700 0.010444 0.019548
1.6 – 1.7 9.81E-05 0.000887 0.003315 0.006525
1.7 – 1.8 8.01E-06 0.000134 0.000807 0.001880
1.8 – 1.9 4E-06 1.2E-05 0.000186 0.000434
1.9 – 2.0 2.2E-05 5.81E-05
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Išsiskirianči ↪u duomen ↪u tašk ↪u paieška, grindžiama tašk↪u tarpusavio
atstumais

Vydūnas ŠALTENIS

Straipsnyje↪ivestas duomen↪u tašk↪u išskirtinumo matas, leidžiantis naujai ir efektyviai vykdyti
daugiamǎci ↪u išsiskiriaňci ↪u duomen↪u tašk↪u paiešk↪a. Matas grindžiamas tašk↪u tarpusavio atstum↪u
analize. Tam lyginamas atstum↪u tarp duomen↪u tašk↪u pasiskirstymas su daugiamačiame kube toly-
giai pasiskiršciusi ↪u tašk↪u tarpusavio atstum↪u pasiskirstymu. Pasiūlytiems algoritmams neb̄utinas
parametr↪u parinkimas – metodas natūraliai prisitaiko prie analizuojam↪u duomen↪u strukt̄uros.

Eksperimentai pasīulytu algoritmu analizuojant plǎciai paplitusius testinius išsiskirianči ↪u
duomen↪u tašk↪u paieškos uždavinius parodė jo geresn↪i veikim ↪a lyginant su žinomais metodais.


