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Abstract. A temporal logic of belief and actions (TLBA) is considered. TheTLBA allows us to
express informational and dynamic properties of computational agents. The considered fragment
of TLBAallows one: (1) to present a deduction-based structured decision procedure; (2) to separate
a decision procedure forso-called induction-free formulas and (3) to use only logical axioms for
such formulas. The main new technical tool of the presented decision procedure is separation rules
which incorporate traditional rules for the temporal operator “next”, belief modalities and action
constants.
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1. Introduction

Design of systems that are required to perform high-level management and control tasks
in complex dynamic environments is becoming of increasing commercial importance.
Such systems include the management and control of air traffic systems, telecommuni-
cations networks, business processes, space vehicles, medical services. It is now widely
accepted that computational agents technology will have a key role to play in the devel-
opment of the twenty-first century computer systems. The computational agents are often
called asrational (or intelligent) agentsbecause they make good decisions about what to
do (Wooldridge, 2000; Wooldridge and Jennings, 1995).

There has recently been much interest in the use of mathematical logic fordeveloping
formal theories of such agents. Much of this interest arises from the fact that rational
agents are increasingly being recognized as an important concept in computer science,
software engineering, and artificial intelligence. It is recognized that logical proof meth-
ods are required for: (1) reasoning within the rational agents; (2) verification of agent-
based systems with respect to the specification; (3) studying the properties of rational
agents formalism.

One of the main tasks to solve these problems is to find decision procedures allowing
us to tell in an automatic way whether the given specifications are provable (or true)
in some logical formalism. A popular approach to formal methods in the investigation
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of properties of computer systems is concerned with model-checking (see, e.g., Clark
et al., 2000). Unfortunately, the model-checking approach runs into serious difficulties
when we consider complex agent-based computer systems. Therefore, along with the
model-checking approach, a deductive approach (based on logical calculi) is widely used.
Deduction-based decision procedures will not only tell us whether a given specification is
provable (true) or not, but also give the proof of the specification whenever it is provable.
The deductive approach is more promising in the case of first-order agent-based logics.

The best known logical theories of rational agents areBDI logics (Rao and Georgeff,
1991) andKARO logics (Meyer and van der Hoek, 1995). InBDI logics, each rational
agent is viewed as having three mental attitudes: belief (the main component ofBDI log-
ics), desire, and intention. TheBDI logics (for Belief, Desire, and Intention) are fusion
of various propositional temporallogics and propositional multi-modal logics expressing
the properties of the mental attitudes. TheKARO logics (for Knowledge, Abilities, Re-
sults, and Opportunities) focus on the dynamics of mental states: how actions can change
the agents knowledge (beliefs), desires, and so on. TheKARO logics are a combination
of propositional dynamic logic (Harelet al., 2000), logics of knowledge and commit-
ment logics (Meyer and van der Hoek, 1995). TheKARO logics do not have explicit
temporal modalities and semantically are more complex thanBDI logics. In (Fisher and
Wooldridge, 1997) it is presented a powerful concurrentMETATEM system, based
on the first-order temporal logic with multi-agent belief operators. In (Wooldridge, 2000)
it is described a rich logicLORA (Logic of Rational Agents), based on a three-sorted
first-order logic,BDI logic, and a dynamic logic. Unfortunately, theMETATEM and
LORA are neither complete nor decidable. Decision procedures forBDI logics, based
on tableau-like calculi, are presented in (Rao and Georgeff, 1998). A different, more ob-
vious, decision procedure (based on sequent-like calculus) for a branchingBDI logic
is presented in (Nide and Tanaka, 2002). Tableau-based decision procedures for proposi-
tional temporal logics of knowledge and belief are described in (Wooldridgeet al., 1998).

In this paper, a temporal logic of belief and action (TLBA) is considered. TheTLBA

is a fusion of the three logics: Computational Tree Logic (CTL) (Emerson, 1990), mul-
timodal logicKD45n for belief modalities (Wooldridge, 2000), and propositional dy-
namic logic (Harelet al., 2000). Since the belief modalities are the main modalities of
BDI logics, the logicTLBA can be considered as a core of the propositional fragment
of theLORA logic (Wooldridge, 2000).

The TLBA allows us to express informational and dynamic properties of rational
agents. The aim of this paper is to present a deduction-based decision procedure for
TLBA. The presented decision procedure is based on sequent-like calculus. For sim-
plicity, we considerR-sequents ofTLBA (Section 3). TheR-sequents ofTLBA allow
us: 1) to present the proposed procedure in structured way; 2) to separate a decision proce-
dure for so-called induction-free sequents and 3) to use only logical axioms (in leaves of
derivations) for induction-free sequents. In the general case, we used, as in (Pliuškevičius,
1993, 1994, 1996, 1998, 2001; Nide and Tanaka, 2002; Pliuškevičius and Pliuškevičieṅe,
2003), non-logical axioms along with the logical ones. But these non-logical axioms are
captured here in a simpler, more evident andmore structured way. Moreover, since the
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TLBA contains a propositional dynamic logic, the presented decision algorithm (in a
special case) can be used as new decision algorithms for the multi-modalKD45n and
for the considered fragment of a propositional dynamic logic.

The paper is organized as follows. In Section 2, the components of theTLBA are de-
scribed. In Section 3, the language of theTLBA is presented. In Section 4, the Gentzen-
like decision procedure for a propositional logic is briefly recalled. In Section 5, auxiliary
tools for the presented decision procedure are described. In Sections 6 and 7, decision al-
gorithms for so-called induction-freeR-sequents and arbitraryR-sequents are presented.
In Section 8, conclusions and further investigations are briefly discussed.

2. Components ofTLBA

TheTLBA consists of three components: (1) logical, (2) informational and (3) dynamic.
The logical componentof TLBA consists of the classical propositional logic with

usual logical operators⊃, ∧, ∨, ¬.
The informational componentof TLBA consists of the multi-modal logicKD45n

(doxastic logic or weak-S5n) allowing us to represent an agent’s beliefs and contain-
ing belief operatorsBel(i), i ∈ {1, . . . , k} (k � 1), i is a constant that stands for an
agent. The semantics of multi-modal logicsKD45n (and other normal modal logics) is
based on Hintikka–Kripke (or possible worlds) semantics using the notion of a reachabil-
ity (accessibility) relation (Fitting, 1993). TheKripke structure consists of a non-empty
set whose elements are called worlds and binary relations. These relations define which
worlds are considered accessible from otherworld. As in (Wooldridge, 2000) we assume
that the reachability relation of belief operators are distributive, transitive, serial, and Eu-
clidean. Therefore the formulasBel(i)(P ⊃ Q) ∧ Bel(i)P ⊃ Bel(i)Q, Bel(i)P ⊃
Bel(i)Bel(i)P , Bel(i)P ⊃ ¬Bel(i)¬P , and¬Bel(i)P ⊃ Bel(i)¬Bel(i)P (express-
ing, correspondingly, the distributive, transitive, serial and Euclidean properties of the
reachability relation) are valid inKD45n. The multi-modal logicKD45n allows us to
compose belief modalities of different agents. This property permits us to express com-
plex informational aspects about agent-based systems. Using the logicKD45n, we get
information of the following form: agents have belief about themselves, other agents and
the environment. The belief modalities are the main modalities in the theory and practice
of rational agents (Wooldridge, 2000). Other, simpler modal operators are desire and in-
tention operators (Wooldridge, 2000) satisfying only distributive and serial properties of
the reachability relation.

The dynamic componentof TLBA consists of two parts: a temporal part and an agent
part.

The temporal partof TLBA consists of a Computational Tree Logic (CTL), often
regarded as the simplest useful branching-time temporal logic (Emerson, 1990). The time
is discrete and branching. TheCTL contains operators which operate the paths that are
possible from a given state. In the linear-time temporal logic, operators are provided for
describing events along a single computation path. The temporal component ofTLBA
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allows us to specify the temporal properties of an agent-based system: how the state of
an agent and the environment changes over time.

The agent partof TLBA consists of a propositional non-deterministic dynamic logic
(PDL) (Harelet al., 2000). Instead of elementary programs (as in the traditionalPDL),
we consider action constants, representing actions or actions sequences and interpreted
as an arbitrary binary relation, and satisfying the simplest multi-modal logicKn (Fitting,
1993). ThePDL allows us to represent the actions (or actions sequences) that agents
perform, and the effects of these actions. UsingPDL operators we can get composed
actions. The main operation∗ is often called a “star” operation and thePDL without this
operation is called a star-freePDL.

3. Language ofTLBA

The language ofTLBA contains: a set of propositional symbolsP , P1, P2, . . ., Q,
Q1, Q2, . . . (it is assumed that all propositional symbols are flexible, i.e., their values
change in time); a set of agent constantsi, i1, i2, . . ., j, j1, j2, . . ., a1, a2, . . . , b1, b2, . . .,
c1, c2, . . . (i, j, il, jl, al, bl, cl ∈ {1, . . . , k}); a set of belief modalitiesBel(i) (i ∈
{1, . . . , k}, k � 1); temporal operators:© (“next”), U (“until”), path quantifiers∀ (“for
each path”),∃ (“there exists a path”); a set of action constantsα1, α2, . . . , β1, β2, . . .;
action constructors:◦ (“composition”),∪ (“non-deterministic choice”),∗ (“non-determi-
nistic iteration” or “star”),? (“test”); true (logical constant for truth); logical operators:
⊃ (implication),∧ (conjunction),∨ (disjunction),¬ (negation).

Formulas and actions ofTLBA are defined inductively as follows: every proposi-
tional symbol and truth constanttrue are formulas; any action constant is an action; if
α andβ are actions, then(α ◦ β), (α ∪ β), (α∗) are actions; ifA, B are formulas, then
A ⊃ B, A ∧ B, A ∨ B, ¬(A) are formulas; ifP is a formula containing only proposi-
tional and logical symbols, thenP? is an action; ifi is an agent constant,A is a formula,
thenBel(i)A is a formula; ifA, B are formulas,Q is path quantifier (Q ∈ {∀, ∃}), then
Q ©A andQ(AU B) are formulas. The formulaA is a logical one ifA contains only
logical and propositional symbols. Belief modalities can be nested. For example, formula
Bel(i) Bel(j)P , whereP is a proposition “John is a good programmer”, means “agenti

believes that agentj believes that John is a good programmer”.
The logical symbols⊃, ∧, ∨, ¬ have their usual meaning. The operator© is the

next time operator; the formula∀©B (∃©B) intuitively means thatB is true in eve-
ry (in some, respectively) immediate successor of the current state. It is clear that
∃©B = ¬∀©¬B and∀©B = ¬∃©¬B. The operatorU meansuntil, the formula
∀(AUB)(∃(AUB)) means that, for every path (for some path),A is true untilB is true.
The monadic modalities♦ (“now or some time in future”) and� (“now and always
in future”) are defined using the modality “until”:Q ♦A = Q(true UA), Q ∈ {∀, ∃},
∀� A = ¬∃♦¬A. Since the invariant rules (see Section 7) for the temporal modalityW
(“unless”) and action modality∗ (“star”) have a similar shape, instead modalityU , we
shall use modalityW (“unless” or “weak until”). The formula∀(AWB) (∃(AWB))
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means that, for every path (for some path), eitherA is true untilB is true, or else,A is
always true, i.e.,Q(AWB) = Q(AUB) ∨ Q � A; moreover,Q � A = Q(AW¬true).

Therefore in formulas we consider three types of modalities, namely, temporal modal-
ities: © andW ; belief modalities:Bel(i), and action modalities[αi].

The path quantifier∀ (∃) expresses inevitability (optional, correspondingly) tempo-
ral properties. For example, the formulaBel(i)∀(P1 WP2) means: “agenti believes
that inevitablyP1 is true until P2 is true, orP1 is inevitably true” and the formula
Bel(i)∃(P1 WP2) means: “agenti believes that optionallyP1 is true untilP2 is true,
or P1 is optionally true”.

Now, let us consider the action component ofTLBA. The formula[α]A means: “eve-
ry possible execution of the actionα leads to a situation in whichA is true”. The com-
pound actions have the following meaning:α ◦ β – “do α followed by β”; α ∪ β –
“eitherα or β, non-deterministically”;α∗ – “repeatα a finite, but non-deterministically”;
A? – “proceed ifA true, else fail”. The Algol-like program constructions “ifP then
α elseβ” and “while P do α” can be expressed using the action operators as follows,
(P? ◦ α) ∪ (¬P? ◦ β) and((P? ◦ α) ∪ (¬P?))∗, respectively.

Together with other operators, the actionoperators allow us to express informational
and dynamic properties of rational agents. For example, the formula∀� Bel(i)[α∗]P
(whereα means the action “extract an importantinformation from a company” andP
means “get a lot of money”) means “inevitably always agenti believes that, after repeated
extraction of an important information from a company more than once he gets a lot of
money”.

The temporal operators and the action operator “star” allow us to express so-called
induction-like properties. Namely:

A ∧ Q � (A ⊃ ©A) ⊃ Q � A (induction-like property of the temporal operator
“always”), Q ∈ {∀, ∃};

C ∧ Q � ((C ∧ ¬B) ⊃ (A ∧ ©C)) ⊃ Q(AWB) (induction-like property of the
temporal operator “unless”),Q ∈ {∀, ∃};

A∧ [α∗] (A ⊃ [α]A) ⊃ [α∗]A (induction-like property of the action operator “star”).
The first two operators express the main property of the temporal operators “always”

and “unless”; the third one expresses the main property of the action operator “star”.
The semantics of temporal operators� (“always”), W (“unless”), and the action

operator∗ (“star”) explicitly expresses the infinitary rules for these operators (see, e.g.,
Emerson, 1990; Kawai, 1987; Harelet al., 2000; Pliuškevǐcius, 1996).

{Γ → ∆, Q © kA}k∈ω

Γ → ∆, Q � A
(→ � ω),

{Γ → ∆, Wk}k∈ω

Γ → ∆, Q(AWB)
(→ Wω),

{Γ → ∆, [α]kA}k∈ω

Γ → ∆, [α∗]A
(→ ∗ω),
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whereω = {0, 1, . . .}; © kA = A (if k = 0), © kA = © © k−1A (if k � 1); W0 =
A∨B; Wk = B∨(A∧Q © Wk−1) (k � 1); [α]kA = A (if k = 0), [α]kA = [α] [αk−1]A
(if k � 1); Q ∈ {∀, ∃}.

Infinitary rules are widely used in the logics of programs and agent-based logics.
Instead of formulas we consider sequents, i.e., formal expressionsA1, . . . , An →

B1, . . . , Bm (whereA1, . . . , An (B1, . . . , Bm) is a set of formulas) which are interpreted
as the formula∧n

i=1Ai ⊃ ∨m
j=1Bj , i, j � 0.

To describe the considered fragment ofTLBA, let us recall the notions of positive
and negative occurrences (see, e.g., Wang, 1964).

A formula (or some symbol) occurspositivelyin some formulaB if it appears within
the scope of no negation sign or in the scope of an even number of the negation sign, once
all the occurrences ofA ⊃ C have been replaced by¬A ∨ C; in the opposite case, the
formula (symbol) occursnegativelyin B. For a sequentS = A1, . . . , An → B1, . . . , Bm

positive and negative occurrences are determined just like for the formula∧n
i=1Ai ⊃

∨m
i=1Bi.

EXAMPLE 1. Let S = ∀(AW(B ∨ C)) → ∃(AWB), ∃(AWC), then the first (from
the left) occurrence of the symbolW and the occurrences of the symbols∀ and∨ are
negative, two second occurrences of the symbolW and two occurrences of the symbol∃
are positive.

A sequentS is anR-sequent, ifS satisfies the followingregularity condition: if for-
mulasQ(AWB) (Q ∈ {∀, ∃}) and/or[α∗]A occur negatively inS, thenA andB do not
contain positive occurrences of the temporal operatorW and positive occurrences of the
action operator∗ (“star”), and action constants.

EXAMPLE 2. LetS1 be a sequent obtained from the sequentS (Example 1), taking in-
stead ofA, B, C the formulasBel(i), ¬Bel(j), and [α∗

1]P , respectively; letS2 be a
sequent obtained from the sequentS (Example 1), taking instead ofA, B, C the for-
mulas¬∀(P WQ), ¬Bel(j) and¬[α∗

1]P , correspondingly. Then the sequentS1 is an
R-sequent, but the sequentS2 is not anR-sequent.

4. Gentzen-like Decision Algorithm for a Propositional Logic

Gentzen has applied his sequent calculi in the decision problem to the classical and in-
tuitionistic propositional logic (Gentzen, 1934–35). The Gentzen algorithm was based
on his main theorem on normal form derivations. According to this theorem, all the se-
quents in the derivation of a given sequentS contain only some parts (subformulas) from
the sequentS, i.e., during the construction of derivations nothing new can be obtained.
Therefore bottom-up applying the rules of sequent calculus, the derivation must be termi-
nated. Gentzen’s decision algorithm was improved in (Wang, 1964), exploiting a notion
of the invertible rule.

The rule(i) is called invertible in a sequent calculusI, if the derivation inI of the
conclusion of(i) implies the derivability inI of each premise of(i). Let (i) be any rule.
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Usually(i) is applied to get the conclusion of(i) from the premises of(i). Sometimes it
is convenient to apply(i) to get premises of(i) from the conclusion of(i). In this case,
instead of “application of(i)” we have a “bottom-up application of(i)”. In case(i) is
invertible, the bottom-up application of(i) preserves the derivability.

DEFINITION 1 (calculusGW ). The calculusGW is defined by the following postulates.
Axiom: Γ, A → ∆, A.
The formulaA is called the main formula of the axiom.
The rules consist of traditional invertible rules of inference:

Γ, A → ∆, B

Γ → ∆, (A ⊃ B)
(→⊃),

Γ → ∆, A; Γ, B → ∆
Γ, (A ⊃ B) → ∆

(⊃→),

Γ → ∆, A; Γ → ∆, B

Γ → ∆, (A ∧ B)
(→ ∧),

Γ, A, B → ∆
Γ, (A ∧ B) → ∆

(∧ →),

Γ → ∆, A, B

Γ → ∆, (A ∨ B)
(→ ∨),

Γ, A → ∆; Γ, B → ∆
Γ, (A ∨ B) → ∆

(∨ →),

Γ, A → ∆
Γ → ∆,¬A

(→ ¬),
Γ → ∆, A

Γ,¬A → ∆
(¬ →).

From the shape of the rules of the calculus we can see that each premise of some
rule (i) has less complexity (defined as the number of occurrences of logical symbols)
than the conclusion of the rule (i). Using this property, we can eliminate logical symbols
(elimination property of the calculusGW ). Using the elimination property of the calculus
GW starting from a given sequentS, we bottom-up apply the rules of the calculusGW

until in each branch we get an axiom or an “atomic” axiom (having propositional symbols
as the main formulas of the axiom). In this case,GW � S (i.e., the sequent is derivable
in the calculusGW ), or there exists a branch, a leaf of which contains no axioms. By
invertibility of the rules of calculusGW , in this caseGW � S. Therefore the termination
criterion of the decision procedure is rather simple: either in all the leaves we get axioms
(or atomic axioms) – positive criterion, or in a leaf of some branch we get a sequent which
is not an axiom.

Using induction on the hight of derivation, we can show (see, e.g., Pliuškevičius,
1990) that all the rules of the calculusGW are invertible.

EXAMPLE 3. (a) LetS = A ∨ B → (B ∨ A) ∧ (B ∨ ¬B), then by bottom-up applying
(from left to right) the rule(∨ →) and afterwards the rules(→ ∧), (→ ∨), (→ ¬), we get
four sequentsS1 = A → B, A; S2 = A, B → B; S3 = B → B, A; S4 = B, B → B,
which are axioms. Therefore the procedure terminates positively and we getGW � S.

(b) LetS = A∨B → A∧ (B ∨¬B), then by bottom-up applying (from left to right)
the rule(∨ →) and afterwards the rules(→ ∧), (→ ∨), (→ ¬), we get four sequents
S1 = A → A; S2 = A, B → B; S3 = B → A; S4 = B, B → B. The sequentsS1,
S2, S4 are axioms, butS3 is not an axiom. Therefore the process terminates negatively
and we getGW � S.



386 R. Pliuškeviˇcius, A. Pliuškeviˇcienė

5. Some Auxiliary Tools of the Decision Algorithm forR-sequents

The decision algorithm presented here is a substantial extension of the Gentzen-Wang
algorithm, presented in the previous section. In this section, we present the main auxil-
iary tools of the decision algorithm forR-sequents: separation and reduction rules, and
marked contraction rules. First we introduce some canonical forms ofR-sequents.

An R-sequentS is a primary R-sequent, ifS = Σ1, BΓ, ∀©Π1, ∀W∆1, [αq]Ω,
[α∗]Θ1 → Σ2, B∆, ∀©Π2, ∀W∆2, [βk]∇, [α∗]Θ2, where for everyi (i ∈ {1, 2}) Σi

is empty or consists of logical formulas;BΓ(B∆) is empty or consists of formulas of
the shapeBel(ak)A, 1 � k � n (Bel(bj)B, 1 � j � m, correspondingly);∀©Πi

is empty or consists of formulas of the shape∀©A; ∀W∆i is empty or consists of
formulas of the shape∀(AWB); [αq]Ω ([βk]∇) is empty or consists of formulas of the
shape[αq]A ([βk]M , correspondingly), whereαq andβk are action constants;[α∗]Θi is
empty or consists of formulas of the shape[α∗]A, whereα is an action. AnR-sequent
S is areduced primarysequent ifS is a primary one not containing∀W∆i, [α∗]Θi, but
Γ, ∆, Πi, Ω, ∇ may contain temporal operatorW and action operator∗.

Let us define reduction rules by means of which eachR-sequent can be reduced to a
set of primary and reduced primaryR-sequents.

DEFINITION 2 (reduction rules). Reduction rules consist of the following rules:

• logical rules: all the rules of the calculusGW ;
• temporal rules:

Γ, ∀©¬A → ∆
Γ → ∆, ∃©A

(→ ∃© ),
Γ → ∆, ∀©¬A

∃©A, Γ → ∆
(∃© →),

A ∨ B, B ∨ Q © (Q(AWB)), Γ1 → ∆1

Q(AWB), Γ1 → ∆1
(QW →),

whereΓ1 → ∆1 contains positive occurrences ofW (“unless”) or © (“next”),

Γ → ∆, A, B; Γ → ∆, B, Q © (Q(AWB))
Γ → ∆, Q(AWB)

(→ QW),

whereQ ∈ {∀, ∃};

A ∨ B, Π → Θ
Q(AWB), Π → Θ

(W0 →),

whereΠ → Θ does not contain positive occurrences eitherW (“unless”) or ©

(“next”);
• action rules:

Γ → ∆, [α][β]A
Γ → ∆, [α ◦ β]A

(→ ◦), [α][β]A, Γ → ∆
[α ◦ β]A, Γ → ∆

(◦ →),
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Γ → ∆, [α]A; Γ → ∆, [β]A
Γ → ∆, [α ∪ β]A

(→ ∪),
[α]A, [β]A, Γ → ∆
[α ∪ β]A, Γ → ∆

(∪ →),

Γ, P → ∆, B

Γ → ∆, [P?]B
(→?),

Γ → ∆, P ; B, Γ → ∆
[P?]B, Γ → ∆

(? →),

Γ → ∆, A; Γ → ∆, [α] [α∗]A
Γ → ∆, [α∗]A

(→ ∗), A, [α][α∗]A, Γ1 → ∆1

[α∗]A, Γ1 → ∆1
(∗ →),

whereΓ1 → ∆1 contains positive occurrences of∗ (“star”) or action constants,

A, Π → Θ
[α∗]A, Π → Θ

(∗0 →),

whereΠ → Θ does not contain positive occurrences either∗ (“star”) or action
constants.

REMARK 1. (a) The temporal rules(→ ∃© ), (∃© →) correspond to the seman-
tic equivalent between the path quantifiers:∃©A ≡ ¬∀©¬A. The temporal rules
(QW →), (→ QW) correspond to the following semantic equivalent (see, e.g., Emer-
son, 1990)(A∨B)∧(B∨Q © (Q(AWB))) ≡ Q(AWB) (whereQ ∈ {∀, ∃}), and to the
sequential rules for the “unless” operator from (Nide and Tanaka, 2002). The action rules
(→ ∗), (∗ →) correspond to the semantic equivalent[α∗]A ≡ A ∧ [α] [α∗]A (see, e.g.,
Harelet al., 2000). The other action rules(→ ◦), (◦ →), (→ ∪), (∪ →), (→?), (? →)
correspond (respectively) to the following semantic equivalent[α ◦ β]A ≡ [α] [β]A;
[α ∪ β]A ≡ [α]A ∧ [β]A; [P?]A ≡ P ⊃ A (see, e.g., Harelet al., 2000). The temporal
rule(W0 →) (action rule(∗0 →)) corresponds to the case of the infinitary rule(→ Wω)
(rule (→ ∗ω), respectively, whenk = 0) (see Section 3).

(b) The bottom-up applications of the temporal rule(→ ∃© ), (∃© →) eliminate
occurrences of the path quantifier∃. The bottom-up applications of the rule(W0 →)
(rule (∗0 →)) eliminate occurrences of the operator “unless” (“star”, correspondingly).

We can see the same effect in the left premise of the rules(→ QW), (→ ∗). The
bottom-up applications of the action rules(→ ◦), (◦ →), (→ ∪), (∪ →), (→?), (? →)
eliminate the occurrences of the action operators◦, ∪, ?, correspondingly.

From the shape of the primaryR-sequent it is easy to see that bottom-up applying
logical rules, the rules(∃© →), (→ ∃© ) and action rules, except the rules for of the
“star” operator, eachR-sequent can be reduced to a set of primaryR-sequents. As follows
from the shape of reduced primaryR-sequents bottom-up applying reduction rules each
primary R-sequent can be reduced to a set of reduced primaryR-sequents. For each
reduced primaryR-sequent the separation rules (see below) are bottom-up applied.

EXAMPLE 4. Let S = [α∗
1 ∪ α∗

2]P1, ∃©P2, (Bel(i)P3 ∨ Bel(j)P4) → (Bel(i)P5 ∨
Bel(j)P6), (P7 ⊃ [α3]P8). Bottom-up applying logical rules(∨ →), (→ ∨), (→⊃)
and the rules(∃© →), (∪ →), we get two primaryR-sequents:S1 = [α∗

1]P1,



388 R. Pliuškeviˇcius, A. Pliuškeviˇcienė

[α∗
2]P1, Bel(i)P3, P7 → ∀©¬P2, Bel(i)P5, Bel(j)P6, [α3]P8 and S2 = [α∗

1]P1,
[α∗

2]P1, Bel(j)P4, P7 → ∀©¬P2, Bel(i)P5, Bel(j)P6, [α3]P8. Bottom-up apply-
ing the rule (∗ →) to S1, S2 we get two reduced primaryR-sequentsS∗

1 =
P1, [α1] [α∗

1]P1, P1, [α2] [α∗
2]P1, Bel(i)P3, P7 → ∀©¬P2, Bel(i)P5, Bel(j)P6, [α3]P8

and S∗
2 = P1, [α1] [α∗

1]P1, P1, [α2] [α∗
2]P1, Bel(j)P4, P7 → ∀©¬P2, Bel(i)P5,

Bel(j)P6, [α3]P8.

As pointed out in (Hudelmaier, 1996), one of rather effective techniques (instead of
traditional ones) for deciding the provability of sequents inS4n is based onloop checking
(the same techniques is also used forKD45n). Namely, if “essentially the same” sequent
occurs twice on a branch of a constructed deduction, then there is a shorter deduction with
the same end sequent which does not show this redundancy, and one may backtrack. This
loop checking requires quite involved implementation techniques. Therefore, contrary
to loop checking, we propose a so-calledloop exclusion(for belief modalities) method.
The loop exclusion corresponds to the construction of a contraction-free sequent calculus
(see, e.g., Hudelmaier, 1996).

First, let us introduce the simple separation rules.

DEFINITION 3 (separation rules(SR∗
l )). The separation rules(SR∗

l ) are of the following
shape:

Sl

Σ1, BΓ, ∀©Π1, [αq]Ω → Σ2, B∆, ∀©Π2, [βk]∇ (SR∗
l ),

where1 � l � 3, the conclusion of the rules (SR∗
l ) is a reduced primaryR-sequent, such

thatGW � Σ1 → Σ2.
Let ∀©Π2 = ∀©A1, . . . ,∀©An (n � 1) or ∀©Π2 = ∅, then
S1 = Π1 → A0

i (1 � i � n), whereA0
i ∈ {∅, Ai} andA0

i = ∅ if ∀©Π2 = ∅, and
A0

i = Ai if ∀©Π2 �= ∅.
Let [βk]∇ = [β1]∇1, . . . , [βn]∇n (n � 1); [αq]Ω = [α1]Ω1, . . . , [αm]Ωm (m � 0),

where[αj ]Ωj , 0 � j � m ([βi]∇i, 1 � i � n) consists of formulas of the shape[αj ]Bρ,j

(of the shape[βi]Mρ,i, respectively), moreover,[αj ]Ωj may be the empty word, then
S2 = Ω0

j → Mρ,i (1 � i � n, 1 � j � m, ρ � 1), whereΩ0
j = Ωj , if αj = βi and

Ω0
j = ∅, if αj �= βi or [αq]Ω = ∅.

S3 = BΓm, Γm → B∆n, A0, Bel(k)A0, whereA0 ∈ {∅, A}, B∆n, Bel(k)A0 ⊆
B∆, BΓm ⊆ BΓ, and BΓm(B∆n) is empty or consists of the formulas of the shape
Bel(k)M .

The rule(SR∗
3) (which corresponds non-invertible rule of Shwart’s (1989)) does not

reflect peculiarities of belief modalities, i.e., distributivity, transitivity, seriality, and Eu-
clidean properties, and it is directed to the realization of the loop checking method. There-
fore we shall use more sophisticated separation rules for belief modalities, which reflect
peculiarities of belief modalities and are directed to the realization of the loop exclusive
method (for induction-freeR-sequents, see below).
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To define the new separation rules let us introduce two sorts of marks of belief-
type modalities, namely, the first sort of marks is of the shapeσ∗ (where σ ∈
{Bel(i), © , W , [αk]}), and the second sort of marks has the shapeBel+(i). The first
sort of marks is defined as follows: ifB = Bel∗(i)A, then each occurrence of belief,
temporal and action modalities inA is marked by the first sort of marks andσ∗∗ = σ∗.
The second sort of marks is used only for positive occurrences of belief modalities in
the sequent and only in formulas of the shapeBel(i)A. The first sort of marks is used
for positive and negative occurrences of modalities. Both of these marks are meant to
restrict applications of new separation rules for belief modalities and to exclude loops for
induction-freeR-sequents.

DEFINITION 4 (separation rules(SRl)). The separation rules(SRl) (1 � l � 5) are
obtained from the rules(SR∗

l ) (1 � l � 3) replacing the rule(SR∗
3) by the rules

(SR3), (SR4) and (SR5) having the same conclusion as the rule(SR∗
3) and the fol-

lowing premises.
Let Bel(l)Aρ,l ∈ B∆, whereAρ,l contains at least one negative occurrence of a

belief modality andBel(l)Aρ,l (1 � l � p, ρ � 1) has no second sort of marks,
B∆′ = B∆ � Bel(l)Aρ,l, where B∆′ = Bel(b1)∆1, . . . , Bel(bm)∆m (m � 0);
BΓ = Bel(a1)Γ1, . . . , Bel(an)Γn (n � 0), whereBel(ak)Γk, 0 � k � n (Bel(bj)∆j ,
0 � j � m) is empty or consists of formulas of the shapeBel(ak)M (of the shape
Bel(bj)B, respectively). Then

S3 = Bel∗(ak)Γ0
k, Γ0

k → Bel∗(bj)∆0′
j , Aρ,l, Bel+(l)Aρ,l, whereBel∗(ak)Γ0

k = ∅,
Γ0

k = ∅ (Bel∗(bj)∆0′
j = ∅), if ak �= l (bj �= l) and Bel∗(ak)Γ0

k = Bel∗(ak)Γk

(Bel∗(bj)∆0′
j = Bel∗(bj)∆′

j ), in the opposite case.
Let Bel(l)Aρ,l ∈ B∆ (1 � l � p, ρ � 1), andBel(l)Aρ,l has no second sort of

marks, andBΓ = Bel(a1)Γ1, . . . , Bel(an)Γn (n � 0), whereBel(ak)Γk (0 � k � n)
is empty or consists of formulas of the shapeBel(ak)M . Then

S4 = Bel∗(ak)Γ0
k, Γ0

k → Aρ,l, Bel+(l)Aρ,l, whereΓ0
k = Γk, if ak = l, andΓ0

k =
∅, Bel∗(ak)Γk = ∅ in the opposite case; moreover,Bel∗(ak)Γk = ∅, if Bel(l)Aρ,l

and each formula fromBel(ak)Γk contains the same number of occurrences (different
polarity) of the same belief modalities.

Let B∆ is empty or consists of arbitrary formulas of the shapeBel(l)A and BΓ be
of the same shape as in the previous case, then

S5 = Bel∗(ak)Γ0
k, Γk →, where Bel∗(ak)Γ0

k = ∅, if Γk = Bel(c1), . . . ,
Bel(cq)Γ′

k (q � 0) andΓ′
k does not contain positive occurrences of belief modalities,

andBel∗(ak)Γ0
k = Bel∗(ak)Γk, in the opposite case.

REMARK 2. (a) Using peculiarities of the belief modalities it is easy to prove that each
application of the rule(SR∗

3) can be replaced by the applications of the rules(SR3),
(SR4), (SR5), and vice versa.

(b) The rule(SR3) corresponds to the Euclidean property of belief modalities. The
rule (SR4) corresponds to distributivity, transitivity, and seriality properties of belief
modalities. The rule(SR5) corresponds to the seriality property of belief modalities.

(c) The separation rules(SRl) (1 � l � 5) incorporate the following rules:
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• the rule for the “next” operator:

Π → A0

∀©Π → ∀©A0
(∀© ),

where∀©Π is empty or consists of formulas of the shape∀©B; A0 ∈ {∅, A};
• the rule for the action constants:

Ω → A

[αi]Ω → [αi]A
[αi],

where[αi]Ω is empty or consists of formulas of the shape[αi]B;
• the non-invertible rules for belief modalities (which incorporate the rules for

belief modality (Nide and Tanaka, 2000)):

Bel(i)Γ, Γ → Bel(i)∆, A0, Bel(i)A0

Bel(i)Γ → Bel(i)∆, Bel(i)A0
(Bel-KD45),

Γ → A

Bel(i)Γ → Bel(i)A
(Bel-K),

whereA0 ∈ {∅, A} andBel(i)A0 = ∅ if A0 = ∅, andBel(i)A0 = Bel(i)A,
if A0 = A; Bel(i)Γ(Bel(i)∆) is empty or consists of formulas of the shape
Bel(i)M ; the rule(Bel-KD45) corresponds to the modal logicKD45 and the
rule (Bel-K) to the modal logicK;

• the structural rule of weakening:

Θ1 → Θ2

∆1, Θ1 → ∆2, Θ2
(W ).

DEFINITION 5 (marked contraction rules). Duringthe reduction to primary and reduced
primary R-sequents the marked contraction rulesBel+(i)A, Bel◦(i)A = Bel+(i)A
(where◦ ∈ {∅, ∗}) andσ∗A, σA = σ∗A (whereσ ∈ {Bel(i), © , W , [αk]}) and the
ordinary contraction ruleA, A = A (which follows from the set-type notion of a sequent)
will be used implicitly.

REMARK 3. (a) A bottom-up application of the separation rule(SR1) (rule(SR2)) elim-
inates occurrences of the symbol© (“next”) (the occurrences of action constants, corre-
spondingly). The rules(SR3), (SR4) and(SR5) separate the temporal and action parts
from the “belief” part, which contains, in general, duplication of formulas with belief
modalities. Despite this duplication, using thecontraction rules and two sorts of marks,
we can exclude loops for induction-freeR-sequents (see Section 6) in derivations.

(b) Introducing two sorts of marks in simple separation rules(SR∗
l ), 1 � l � 3,

and using marked contraction rules we can also exclude loops. In this case we get more
complex derivations. The separation rules(SRl), 1 � l � 5, allow us to get more simple
derivations but require more sophisticated analysis.



Decision Procedure for Temporal Logic of Belief and Actions 391

6. Decision Procedure for Induction-freeR-sequents

An R-sequentS is an induction-free (IFR-sequent) ifS does not contain positive oc-
currences of operators “unless” and “star”. The decision procedure forIFR-sequents is
realized by means of calculus for the induction-free temporal logic of belief and action
(IFTBA).

DEFINITION 6 (calculusIFTBA). A calculusIFTBA is obtained from the calculus
GW by adding the separation rules(SRl) (l ∈ {1, 2, 3, 4, 5}) and the reduction rules,
except for the rules(→ QW) and(→ ∗).

Using induction on the height of derivation, we can show that all the reduction rules
of the calculusIFTBA are invertible.

The separation rules(SRl) (l ∈ {1, 2, 3, 4, 5}) are not simply invertible, but they are
disjunctively invertible.

Using induction on the height of derivation, we can prove the following

Lemma 1. LetS be a conclusion of the rules(SRl) (l ∈ {1, 2, 3, 4, 5}) andIFTBA �
S, then either there existsi (1 � i � n) such thatIFTBA � S1, or there existsi
(1 � i � n) and ρ � 1 such thatIFTBA � S2, or there existsl (1 � l � p) and
ρ � 1 such thatIFTBA � S3, or there exists suchl (1 � l � p) andρ � 1 such that
IFTBA � S4, or there existsk (1 � k � n) such thatIFTBA � S5.

Because of duplication of belief modalities in the separation rules(SR3), (SR4),
(SR5) there is a possibility to generate infinitely bottom-up applications of these rules,
in general. To stop this infinite process let us introduce a notion of belief final (b-final)
R-sequents which will be a stopping device for non-derivableR-sequents in the calculus
IFTBA.

An R-sequentS∗ is b-final if S∗ consists of only atomic formulas and/or marked
modalities.

The decision procedure for anIFR-sequentS is realized by constructing the so-
called ordered derivations in the calculusIFTBA.

DEFINITION 7. An ordered derivationD for induction-freeR-sequents consists of sev-
eral horizontal levels. Each level consists of bottom-up applications of reduction rules.
At each level, where a set consisting of only reduced-primaryR-sequents is received, all
possiblebottom-up applications of the separation rules(SRi), i ∈ {1, 2, 3, 4, 5} to every
reduced-primaryR-sequent are realized. Each bottom-up application of the separation
rules(SRi) (i ∈ {1, 2, 3, 4, 5}) provides a possibility to construct adifferent(in general)
ordered derivationDk (k � 1).

The ordered derivationDk is a successful one, ifeachleaf ofDk ends with a logical
axiom. Letall possible ordered derivationsDk be such that ineachDk thereexistsa
branch having either such a leaf that a sequent in this leaf contains only atomic formulas
and is not an axiom, or an induction-freeR-sequentS∗ such thatS∗ is ab-finalR-sequent.
In these cases,IFTBA � S and derivation is an unsuccessful one.
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Theorem 1. LetS be an induction-freeR-sequent. Then one can automatically construct
a successful or unsuccessful ordered derivationD of theR-sequentS in IFTBA such
thatD always terminates.

Proof. The automatic way of construction of an ordered derivationD and correctness
(i.e., preservation of derivability) follows from invertibility of the rules of the calculus
IFTBA; termination follows from finiteness of the generated subformulas inD and
from the shape of separation rules(SRl), 1 � l � 5.

EXAMPLE 5. (a) LetS = Bel(i)A →, whereA = ([α1]P ∧¬[α1]Q). Bottom-up apply-
ing (SR5) (and then(∧ →), (¬ →)) to S, we get (using thatA does not contain belief
modalities) anR-sequentS1 = [α1]P → [α1]Q. To S1 we can bottom-up apply only
(SR2) and get anR-sequentP → Q, which is not an axiom. ThereforeIFTBA � S.

(b) Let S = Bel(i)A →, whereA = ([α1]P ∧ ¬Bel(i)Q). Bottom-up applying
(SR5) (and then(∧ →), (¬ →)) we get anR-sequentS1 = Bel∗(i)A, [α1]P →
Bel(i)Q. Since[βk]∇ = ∅ and Q does not contain a negative occurrence of belief
modality, we can bottom-up apply only(SR4) (and then(∧ →), (¬ →) and implic-
itly the marked contraction rules) and get anR-sequentS2 = Bel∗(i)A, [α1]∗P →
Bel+(i)Q, Q. ThereforeS2 is b-final R-sequent andIFTBA � S.

EXAMPLE 6. Let S∗ = ∀(P1 W([α∗]P2 ∨ Bel(i)P3) → ∆, where∆ = P1, [α]P2,

Bel(i)(Bel(i)(P3 ∨ P4)). ThenS∗ is a primary induction-freeR-sequent. Let us con-
struct an ordered derivation. First we reduce the sequentS∗ to a set of reduced primary
sequents. SinceS∗ does not contain either positive occurrences of “unless” or “next”,
instead of bottom-up application of(QW →) we can bottom-up apply(W0 →) to S∗

and get theR-sequentS∗
0 = P1 ∨ ([α∗]P2 ∨ Bel(i)P3) → ∆. Bottom-up applying the

rules(∨ →), (∗ →), from the sequentS∗
0 , we get three reduced-primaryR-sequents:

S∗
1 = P1 → ∆; S∗

2 = P2, [α][α∗]P2 → ∆; S∗
3 = Bel(i)P3 → ∆.

The sequentS∗
1 is an axiom.

Let us consider theR-sequentS∗
2 . We can bottom-up apply the separation rules(SR2)

or (SR4) to the sequentS∗
2 . Let us try to bottom-up apply the rule(SR4) to S∗

2 . Then
we get a reduced-primaryR-sequentS∗

21 =→ Bel(i)(P3∨P4). We can bottom-up apply
the rule(SR4) to the sequentS∗

21 and, after applying bottom-up the rule(→ ∨), we get
a sequent→ P3 P4 which is not an axiom. Now let us bottom-up apply the rule(SR2)
to S∗

2 and get anR-sequentS∗
22 = [α∗]P2 → P2. SinceS∗

22 does not contain positive
occurrences either of∗ or action constants, bottom-up applying(∗0 →) to S∗

22 we get an
axiomP2 → P2.

Now let us consider theR-sequentS∗
3 . We can bottom-up apply the separation rules

(SR2) or (SR4) to the sequentS∗
3 . Bottom-up applying(SR2) to S∗

3 , we get the sequent
→ P2, which is not an axiom. Bottom-up applying(SR4) to S∗

3 , we get the reduced
primaryR-sequentS∗

31 = P3, Bel∗(i)P3 → Bel(i)(P3 ∨ P4). We can bottom-up apply
the rule(SR4) to the sequentS∗

31 and get the sequentP3 → P3∨P4, and after bottom-up
applying the rule(→ ∨), we get an axiomP3 → P3, P4.
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Therefore, for theIFR-sequentS∗, we have constructed a successful ordered deriva-
tion (in the calculusIFTBA). HenceIFTBA � S∗.

7. Decision Algorithm for Arbitrary R-sequents

In this section, we consider arbitraryR-sequents, i.e., sequents with positive occurrences
of “unless” and “star” operators. As indicatedin Section 3, positive occurrences of these
operators allow us to formulate induction-like properties of temporal and action parts of
TLBA. This fact necessitates a departure from ordinary Gentzen-like calculi. The basic
positiveclosure axiomΓ, A → ∆, A of the calculi, described in the previous sections,
is not sufficient for an arbitraryR-sequent. The positive branch closure now requires an
inspection ofR-sequents other than a logical axiom in a leaf of derivation. This idea was
raised in (Wolper, 1985) and realized for the tableau-like temporal calculus. Wolper’s
idea is wide used in the works on the temporal resolution calculus of Liverpool school
(see, e.g., Fisheret al., 2001). Wolper’s idea was rediscovered in (Pliuškevičius, 1993)
for the sequent-like temporal calculus with separation rules, and subsequently used in
(Pliuškevǐcius, 1994; 1996; 1998) and (Pliuškevičius and Pliuškevičieṅe, 2003).

So, along with the logical axioms, we introduce notions of temporal saturated (t-
saturated) and action saturated (a-saturated)R-sequents that play the role of non-logical
axioms. The decision algorithm for an arbitraryR-sequent is realized by means of a
temporal calculus for belief and action (TBA).

Let D be a derivation in some calculus and(i) be a branch inD. The R-sequent
S∗ = Γ → ∆ from the branch(i) is asaturatedR-sequent if, in the branch(i) aboveS∗,
there exists anR-sequent of the shapeS∗∗ = Γ, Π → ∆, Θ, in a special case,S∗ = S∗∗.

A saturatedR-sequentS∗ is t-saturatedif S∗ = Γ → ∆, Q(AWB), and a saturated
R-sequentS∗ is a-saturatedif S∗ = Γ → ∆, [α∗]A. These sequents will be used as
non-logical axioms.

DEFINITION 8 (calculusTBA). A calculusTBA is obtained from the calculusIFTBA

by adding: (1) non-logical axioms of the shapeΓ → ∆, Q(AWB) or Γ → ∆, [α∗]A and
(2) the reduction rules(→ QW), (→ ∗).

We can present the decision procedure for an arbitraryR-sequent in the same way as
in the case of induction-freeR-sequents. Namely, we construct ordered derivations in the
same manner, as described in the previous section. But there is a new substantial point:
along with the logical axioms there arenon-logical axioms. If there existsan ordered
derivationD of R-sequentS such that in a leaf ofeachbranch(i) of D there is either
a logical axiom, or a non-logical axiom, then in both these casesTBA � S (positive
criterion of termination of the procedure). If inall the possible ordered derivationsDk

of an R-sequentS thereexistsa branch having an induction-freeR-sequentS+ such
that IFTBA � S+, thenTBA � S (negative criterion of termination of the decision
procedure).
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To justify the presented decision procedure, we must found: (1) termination of the pro-
cedure and (2) disjunctive invertibility of the separation rules(SRi) (i ∈ {1, 2, 3, 4, 5})
in TBA. The foundation of the negative criterion of termination of the procedure fol-
lows from the regularity condition ofR-sequents and decidability of induction-freeR-
sequents. The positive criterion of termination will be founded by means of finiteness
of the so-calledR-subformulas of primaryR-sequents which are generated during the
construction of an ordered derivation. Let us define the precise notion ofR-subformulas
of anR-sequent. This notion corresponds to Fischer–Ladner closure (see, e.g., Emerson,
1990; Harelet al., 2000).

DEFINITION 9 (R-subformulas). LetS be a primaryR-sequent andC be a formula en-
teringS. A set ofR-subformulas ofC from S is denoted asRSub(C) and defined induc-
tively.

1. RSub(P ) = ∅, whereP is a propositional symbol.
2. RSub(Q ©A) = RSub(A), whereQ ∈ {∀, ∃}.
3. RSub(¬A) = RSub(A).
4. RSub(A� B) = {RSub(A)} ∪ {RSub(B)} (� ∈ {⊃,∧,∨}).
5. RSub(Bel(i)A) = Bel(i)A ∪ {RSub(A)}.
6. RSub(Q(AWB)) = Q ©Q(AWB) ∪ {RSub(A)} ∪ {RSub(B)}; Q ∈ {∀, ∃}.
7. RSub([αi]A) = RSub(A), whereαi is an agent constant.
8. RSub([α∗]A) = [α] [α∗]A ∪ {RSub(A)}.
9. RSub[α ◦ β]A = RSub([α] [β]A).
10.RSub[α ∪ β]A = {RSub([α]A)} ∪ {RSub([β]A)}.
11.RSub([P?]A) = RSub(A).
A set of R-subformulas of theR-sequentS = A1, . . . , An → An+1, . . . , An+m

(or a set of formulasS = {A1, . . . , An+m}) is denoted byRSub(S) and defined as
RSub(S) = ∪n+m

i=1 RSub(Ai).

From the definition ofRSub(S) we get that for each primaryR-sequentS, the set
RSub(S) is finite. LetS be a given primaryR-sequent,D be an ordered derivation ofS,
andSi be a primaryR-sequent fromD. Then, from the shape of the rules of the calculus
TBA, the description of an ordered derivation, and from the definition ofRSub(S) we
get thatRSub(Si) ⊆ RSub(S). Therefore nothing new can be obtained in constructing
an ordered derivation of anR-sequent. Hence, if an ordered derivationD does not contain
an induction-freeR-sequentSi such thatIFTAB � Si, then in a leaf of each branch(i)
of D there is either a logical axiom or a non-logical axiom.

Hence the termination of the positive criterion of the decision procedure is justified.
To justify the disjunctive invertibility of the separation rules(SRi) (i ∈ {1, 2, 3, 4, 5}) an
infinitary calculusTBAω is introduced.

DEFINITION 10 (calculusTBAω). A calculusTBAω is obtained from the calculus
TBA by means of: (1) elimination of non-logical axioms and (2) replacing the rules
(→ QW), (→ ∗) by the rules(→ QWω) and(→ ∗ω) (see Section 3).
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Using double induction on〈n, h〉, wheren is the number of positive occurrences of
W and∗, h is the height of derivation, analogously as in (Pliuškevičius, 1998), we can
justify the disjunctive invertibility (see Lemma 1) of the separation rules(SRi) (i ∈
{1, 2, 3, 4, 5}) in TBAω. To prove thatTBAω andTBA are equivalent for the class of
R-sequents, let us introduce the invariant calculusINTBA, which is obtained from the
calculusTBA, replacing the non-logical axiom by the following invariant rules:

Γ → ∆, I; I → B, Q ©I; I → A, B

Γ → ∆, Q(AWB)
(→ QW ′),

Γ → ∆, I; I → [α]I; I → A

Γ → ∆, [α∗]A
(→ ∗′),

where the formulaI is called an invariant formula and is constructed automatically, using
non-logical axioms (analogously as in (Pliuškevičius, 1994)). Analogously as in (Pliuške-
vičius, 1998), we can show that the calculiTBA, INTBA, andTBAω are equivalent
for the class ofR-sequents. Therefore the rules(SRi) (i ∈ {1, 2, 3, 4, 5}) are, also, dis-
junctively invertible in the calculusTBA. Hence the justification of the main points of
the presented decision algorithm for an arbitraryR-sequent is complete and we can get
the following

Theorem 2. LetS be a non-induction-freeR-sequent. Then one can automatically con-
struct a successful or unsuccessful ordered derivationD of theR-sequentS in TBA

such thatD always terminates.

Proof. The automatic way of construction of an ordered derivationD and correctness
(i.e., preservation of derivability) follow from invertibility of the rules ofTBA; the ter-
mination follows from finiteness ofRSub(S).

REMARK 4. (a) To make the presented decision procedure more effective some sub-
sumption rules can be introduced with the help of which non-essentialR-sequents can be
eliminated.

(b) The complexity of the presented algorithm (as in a temporal logic (see, e.g., Emer-
son, 1990) and inPDL (see, e.g., Harelet al., 2000)) isPSRACE-complete, i.e., during
the construction of an ordered derivation we generate anR-sequence the length of which
can be restricted by some polynomial depending on occurrences of the operatorsW
(“unless”) and∗ (“star”).

EXAMPLE 7. Let S = ∀(AW(B ∨ C)) → ∃(AWB), ∃(AWC). Let us construct an
ordered derivation ofS in the calculusTBA. First we try to reduce the sequentS to a
set of reduced primary sequents. It is easy to verify that during this process and bottom-
up applying the reduction rules, we get theR-sequent of the shapeS1 = A ∨ (B ∨ C),
Γ → A, B, C, ∆ and the reduced primaryR-sequentS2 = A∨(B∨C), ∀© (∀(AW(B∨
C), ∀©¬∃(AWB)), ∀©¬∃(AWC)) → B. FromGW � A∨ (B ∨C), Γ → A, B, C,
∆ follows thatTBA � S1. Let us consider theR-sequentS2. We can bottom-up apply
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only the rule(SR1) to the sequentS2 and get anR-sequentS21 = ∀(AW(B ∨ C)),
¬∃(AWB)),¬∃(AWC) →. Bottom-up applying the rule(¬ →) to S21, we get an
R-sequentS∗ = ∀(AW(B ∨ C)) → ∃(AWB), ∃(AWC). SinceS∗ = S, S is a
t-saturated one, i.e., a non-logical axiom.Therefore we have constructed a successful
ordered derivation having logical axioms and one non-logical axiom. HenceTBA � S.

8. Conclusions and Further Investigations

In the paper, the decision algorithm for a restricted temporal logic of belief and actions is
presented (TLBA). The considered logic allows us to express informational and dynamic
properties of rational agents (see Sections 2, 3). The regularity condition (see Section 3)
allows us: 1) to separate the decision procedure for induction-free sequents and 2) to
use only logical axioms in leaves of derivations for these sequents (see Section 5). The
main technical tool of the presented decision algorithm is the separation rules(SRi)
(i ∈ {1, 2, 3, 4, 5}) which incorporate traditional rules for the “next” operator, multi-
modal belief modalities, agent constants, and reflect the properties of belief modalities.

Unfortunately, the consideredTLBA does not contain, just likeBDI, KARO and
LORA logics, any tools for interaction betweendifferent agents and for action interac-
tions. So, in future investigations, we are going to consider agent-like logics with interact-
ing beliefs and actions and containing tools for communications. Another interesting and
important investigation is related with the consideration of some fragments of first-order
agent-based logics, extension results in (Pliuškevičius, 2000; Pliuškevičius and Pliuške-
vičieṅe, 2003), and with consideration of some fragments of the first-order agent-like
logic LORA (Wooldridge, 2000).
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Pliuškevǐcius, R. (1998). Replacement of induction by similaritysaturation in a first-order linear temporal logic.
Journal of Applied Non-classical Logics, 8(1–2), 141–169.
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Išsprendžiamoji procedūra tik ėjimo ir veiksm ↪u laiko logikai

Regimantas PLIUŠKEVǏCIUS, Aida PLIUŠKEVǏCIENĖ

Pateikiama išsprendžiamoji procedūra kompiuterini↪u agent↪u logikai, ↪ijungiaňciai laiko logik ↪a
CTL, multimodalumo logik↪a KD45n ir teigini ↪u dinamin↪e logik ↪a. Šios logikos aprašo informa-
cines ir dinamines kompiuterini↪u agent↪u savybes.


