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Abstract. The present paper describes the development and the performance of parallel FEM soft-
ware for solving various CFD problems. Domain decomposition strategy and parallel iterative GM-
RES solver have been adapted to the universal space-time FEM code FEMTOOL, which allows
implementation of any partial differential equation with minor expenses. The developed data struc-
tures, the static load balancing and the inter-processor communication algorithms have been partic-
ularly suited for homogeneous distributed memory PC clusters. The universality of the considered
parallel algorithms has been validated solving applications described by the Poisson equation, by
the convective transport equation and by the Navier—Stokes equations. Three typical benchmark
problems have been solved in order to perform the efficiency study. The performance of parallel
computations, the speed-up and the efficiency have been measured on three BEOWULF PC clusters
as well as on the cluster of IBM RISC workstations and on the IBM SP2 supercomputer.
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1. Introduction

Computational fluid dynamics (CFD) plays an increasingly important role in the design
of modern industrial components. Various computational methods are developed for dis-
cretising the governing equations and spatial domains. The finite element method (FEM)
(Baker, 1983; Zienkiewicet al., 1991) has the cahility of accepting complex geome-
tries in an integrated fashion, making it particularly interesting to the designers of com-
plex mechanisms. However, it has alwayeh the problem of the FEM that larger com-
putational times have been associated with it. Parallel computing is thus perceived as a
promising avenue for future advances in this applied area of science.

Domain decomposition (Smitét al., 1996) is the most efficient parallelisation tech-
nigue used for finite element algorithms. The basic idea of this technique is the partition-
ing of the computational doain into sub-domains, each being assigned to a processor.
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Non-overlapping domain decomposition (Le Talleical., 1997) of the grid is gener-

ated with processor interfaces coincideiittva subset of element surfaces. This implies
that adjacent processors share nodes onuhealsmain interfaces. The sub-domains ex-
change data with each other through their bouiedalf localised data dependency is not
destroyed, a solution on the interior elements of a particular sub-domain can be sought
entirely in parallel. Then all required datalMbe local to the processor in control of that
specific sub-domain. Inter-processor communication is necessary only when the solution
on boundary elements of a sub-domain is sought. Such computation and communication
arrangement enables data parallelism to leeated efficiently and isgrticularly suitable

for platforms of distributed memory computers. A parallel computer is used efficiently if
load-balancing (Mandel, 1993) is performed and none of the processors have to wait for
information they need from other processdn recent years efficient parallel methods
have been introduced. Amongst them, the Shur domain decomposition method (Farhat
et al., 1994) proposes a dual approach of the Shur formulation and overlapping Schwarz
splitting (Tang,1992) provides an alternative to non-overlapping domain decomposition
methods.

The most time consuming parts of FEM software are the assembling of finite element
coefficient matrices and solving large systems of linear equations. The domain decom-
position strategy significantly reduces the first time consuming part, because coefficient
matrices are assembled locally on every processor. Iterative Krylov subspace methods are
believed to be very fast in solving large linear equation systems. The generalised mini-
mal residual solver (GMRES) (Saatial., 1986) is a sophisticated iterative solver, which
cannot break down even for indefinite matrices. This solver employs the Arnoldi process
to construct an orthogonal basis of Krylov sub-spaces. In order to avoid excessive stor-
age requirements and computational cdstghe orthogonalisation, GMRES is usually
restarted after each m iteration steps. This algorithm is referred to as GMRES(m). The
parallel implementation of GMRES(m) on distributed memory computers and the per-
formance study is presented in (De Sturler and Van der Vorst, 1995). The basic approach
involves parallelisation of the computationally intensive matrix-vector products and dot
products of the solver acres partition to gb-domains.

Preconditioning is a very important device for the efficiency and robustness of GM-
RES solver, particularly, of ill-conditionedatrices. However, despite this, there is little
theory available to guide the design of efficient and parallel preconditioners for the vari-
ous types of matrices encountered in CFD applications. The diagonal (Harouttialian
1993) and block-diagonal (Klawonn, 1998) precttiothers based on the simple iteration
of Jacobi type are believed to be the simplest and very well parallelised preconditioners.
There are many kinds of othergronditioners proposed in the literature, among which
ILU type preconditioners (Meijerinkt al., 1977) based on incomplete Cholesky decom-
position are most widely used. However, the inherent sequentiality of these precondition-
ers precludes efficient implementation ontdizited memory computers. (De Sturler,
1995; Pavarino, 2000) investigated indefiniteerlapping Schwarz splittings combined
with local ILUT preconditioning. Several soygticated preconditioners suitable for non-
overlapping domain decomposition strategy have emerged in the last decade: coarse grid
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preconditioner (Mandel, 1990), wire basket techniques (Smith, 1992) and multilevel pre-
conditioner (Zhang, 2001). However, failure rates of preconditioned iterative solvers are
still too high for them to be used as black box library software for solving general sparse
matrices of practical CFD interests.

In the present paper, parallel FEM software based on the domain decomposition strat-
egy and iterative GMRES solver is developed and investigated. Mathematical models of
investigated problems are tined in the Section 2. Sectio3 introduces FEM formula-
tions and stabilisation techniques applied in this work. Section 4 discusses implementa-
tion of parallel algorithms in the general FEM code developed for solving various prob-
lems. In Section 5, numerical results are presd and efficiency of the code is discussed.
Concluding remarks are included in Section 6.

2. Mathematical and Numerical Models

CFD investigates a wide range of practical problems described by a large set of partial
differential equations (PDEs). The main PDEs solved in CFD areas are considered in
this work. The Poisson equation is the elliptic differential equation describing potential
flows. The convective transport equation governs non-steady sediment transport and ther-
mal processes. The Navier—Stokes equations form the basis for non-linear mathematical
models of viscous flows. All above mentioned PDEs discretised by various numerical
schemes are implemented in the general FEM software. The solved PDEs and the em-
ployed FEM formulation are outlined in the following sub-sections.

2.1. The Poisson Equation

The Poisson equation is one of the simplest equations used in CFD areas:

0 (k: %) —q, (1)
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here,¢ is an unknown functior¥; is the coefficient ang is a source term. In this paper,
all governing equations are providién a Cartesian reference frame;( j = 1,2,3)
using index notation and usual summation convention.

The standard Galerkin method is applied for the development of the finite element
formulation. The state variable within an element is approximated by shape functions
NT that are equal to weighting functiod§. The weak form of the weighted residual
statement is obtained after applying the Green—Gauss theorem to the left side of (1):
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The boundary ternT" incorporates Newmann boundary conditions. The Galerkin
FEM discretisation (2) of Poisson equation yields a symmetric and positive defined ma-
trix. Such systems of equations are efficiently solved by iterative solvers.
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2.2. The Convective Transport Equation

Time-dependent problems of convective transport are governed by hyperbolic PDE:

oY oY

3
ot Ty, =0 ®

herey is transported variable ang is the j-th component of the velocity vector.

The standard Galerkin method yields oscillatory solutions when it is applied to con-
vection dominant problems in conjunction with classical time-stepping algorithms. The
Galerkin Least Squares Method (GLS) (Hugteesl., 1989) belongs to the family of
the stabilised methods based on adding ailssabion term to the Galerkin method. This
stabilisation term is the least square form of the residual of (3) evaluated elementwise
and multiplied by a stabilisation parameter. GLS method is naturally used together with
space-time approach (Tezduwhal., 1992), and the temporal derivatives are treated like
the first spatial derivatives:
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The time derivatives are computed using tcahweighted space-timfinite elements in
every space-time sla),,. The stabilisation parametet is calculated in every finite
elementQ$:

he
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®)
here,h. is a measure of the finite element lenghj, is a length of velocity vector in
finite element (e = 1,..., N). The implicit numerical schema (4-5) is unconditionally
stable. The resulting coefficient matrices are unsymmetrical in spite of the symmetry of
the stabilising term.

2.3. The Navier—Stokes Equations

The laminar and Newtonian flow of viscouscaimcompressible fluid is described by the
Navier—Stokes equations:

8u1 8uz dp
ou;

(’)xi

=0, (7)
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where the pressupeand the velocity components are primary variables is the den-
sity, u is the dynamic viscosity coefficient arid are the gravity force components.

In recent years, the spatiee GLS finite element method has been developed as a
general-purpose computational approach teesa wide variety of incompressible flow
problems (Tezduyaet al., 2000). The corresponding variational formulation employs
the time-discontinuous Galerkin method andludes least-squares terms to stabilise the
formulation. The stabilisation nature of the formulation prevents numerical oscillation for
incompressible flows, using equal-order interpolation functions for velocity and pressure
and preserves the consistency of the standard Galerkin method when adapting remeshing
is performed.

The variational FEM formulation for the space-time GLS can be written in a matrix
form:

/ N. RdQ+Z Q%W RdQ / FdQ+Z/ W - FdQ; (8)

here, X is the vector of unknown variables in 2D cagejs the right hand side vector:

Uy pF
X={usp, F={ pF p; ©)
P 0

R is the residual matrix of the equations (6-7):

T
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N is the matrix formed by standard Galerkin shape functions:
N 0 0

N=|0NO0|; (11)
00N

W is the matrix of GLS weighting functions:

AN AN
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here,7supc, TconT @andTpspe are stabilisation paramatss of non-linear convection
terms, pressure terms and continuity egpracorrespondingly. Tezduyar proposed to use
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different values for the outlinedatilisation parameters (Tezduygiral., 2000). In this
work,

TSUPG = TPSPG = TCONT = Te = , (13)
2 [ul,
here,
2 he
acoth< a >p|“|e 3 (14)
p|u|e he QM

The Green—Gauss theorem is applied to the Laplasian appearing in the fir&ftdgm
of (8). In the stabilisation term® - R of (8), the Laplasian is not evaluated, because the
first order shape functions are preferable. The time derivatives in the GLS stabilisation
terms can be evaluated or, alternatively, can be omitted in order to save computational re-
sources. The numerical experiments performed in this work showed that the inclusion of
time derivatives inR and W stabilisation matrices makes solution insignificantly more
accurate. The absence of the time derivatind®th matrices slightly increases the num-
ber of nonlinear iterations (4% per 50 time steps), but significantly improves the conver-
gence of GMRES solver (40% per 50 time steps). The employed stabilisation parameters
add symmetric stabilisation matrix including bigger pressure stabilisation terms therefore
obtained coefficient matrices are bettengeeded by the iterative GMRES solver.

3. Parallel Algorithms

Parallel algorithms were implemented in the FEMTOOL program (Rutschmann, 1995)
created in the Swiss Federal Institute echnology and developed in Innsbruck Univer-
sity and Vilnius Gediminas Technical University. FEMTOOL isiaite Element Method
Toolbox, which allows implementation of any partial differential equation with minor ex-
penses. Time dependent problems are sobs#alg space-time finitelements. The order

of shape functions is determined by input and is limited neither in space nor in time.
A given transient problem can be solved in several implicit time steps from one time
level to the other or in one single implicitegt for all time levelsSpace-time finite ele-

ment integration in time and the high order shape functions generated automatically make
FEMTOOL applicable to various CFD problems.

Parallelisation of the FEMTOOL is based on the domain decomposition strategy. Fi-
nite element meshes are partitioned into sub-domains by METIS or ParMETIS libraries
(Karypiset al., 1998). The multilevel graph partitioning schemes and parallel multilevel
k-way graph partitioning algorithms are employed for creating finite element mesh par-
titions of high quality (Fig. 1). Partitions afoughly equal size ensure the static load
balancing on the homogeneous parallel maesirT he fill-reducing orderings of sparse
matrices computed by METIS significantly reduce the amount of communication in par-
allel sparse matrix-vector multiplicatiomhe node-based nested dissection algorithms
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Fig. 1. The partitioned finite element mesh (10000 elements, 16 sub-domains).

outperform other popular reordering algorithms. METIS routines are incorporated in the
pre-processor of FEMTOOL.

Parallel sparse matrix-vector operations need information about the degrees of free-
dom processed on neighbouring sub-domains. Every processor creates local arrays for
communication between neighbouring processors. Fig. 2 shows data structure used for
inter-processor communication. The data structure illustrates how the processor 1 ad-
dresses and stores the local data necessary for neighbouring processors 0, 2 and 3.
Local variablenr_of_nb stores the number of neighbouring processors (sub-domains)
for a considered processor. The arr@y2proc(nr_of_nb) contains identification num-
bers of neighbouring processors. The variakilebnd_var stores a local number of
degrees of freedom that are also processed on the other processors. Only these un-
knowns are needed for inter-processomoaunication in parallel FEM codes. The ar-
ray nb2var_ptr(nr_of_nb + 1) contains the pointers to the arrap2var(tot_bnd_var).

nb2proc(nr-of-nb):

nb2var_ptr(nr_ofnb+1):pz

nb2var(tot_bnd_var): Wl G \1\ \}\\Q :
, e I ! )
Y(negtot): T Vs SN RN TR

Fig. 2. Data structures for iet-processor communication.
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These pointers are used for conveniaatess of data belonging to any processor. The
last cell in arraynb2var_ptr is used for identifying the end of the arrag2var. The main
integer arraynb2var (tot_bnd_var) defines the position of a considered variable in as-
sembled coefficient matrix or vector of unknowsegtot). The variablenegtot stores

the local number of degrees of freedom. The algorithm in Fig. 3 shows how the neces-
sary data is addressed in the local veajaend is sent to the neighbouring processors.
The universal MPI routine MPI_SEND might be changed by more efficient and specific
routines like non-blocking MPI_ISEND, depending on the particular algorithm. In the
presented algorithm, the consistency of local and global ordering of the nodes ensures
that values received from the neighbouringgessor can be directly included into the
assembling matrix or vector using addresses containebdvar. Subroutines of matrix-
vector operations use the described intedgtia arrays for processing double precision
arraysinvar (tot_bnd_var) andoutvar (tot_bnd_var). MPI routines send (receive) infor-
mation stored iroutvar (invar) for the neighbouring processors. The varigiec stores

the global number of the neighbouring processor, while the varidibksandlast are

used for convenient addressing of the amégvar in the loop and help to estimate the
count of sent data. A described algorithm performs inter-processor communication re-
quired for the matrix and vector operations in the GMRES solver.

The GMRES (Saaet al., 1986) is a popular method for iterative solution of linear
equation systems with non-symmetric coefficient matrices. The GMRES(m) solver (De
Sturler and Van der Vorst, 1995) is based on the matrix and vector operations, therefore,
it was parallelised using the algorithm described above (Figs. 2—3). The iteration number
of the GMRES(m) solver depends on a preconditioner. The simple diagonal precondi-
tioner (Haroutuniamt al., 1993) is implemented in the software. The lack of robustness
and universality of the diagonal preconditioieecompensated by the trivial parallel im-
plementation and the negligible amount of inter-processor communication. The need for
better parallel preconditioner which is rattand dramatically reduce the number of iter-
ations while not significantly degrading scalability and parallel performance is a key open
problem for the most PDESs applications. The most appropriate preconditioning strategies
based on the approximate Shur complement (Faathalt, 1994), overlapped Schwarcz
splitting (De Sturler, 1995; Rarino, 2000) omultilevel approacks (Zhang, 2001) re-
quire significant changes in the data structures used in the standard FEM software. The
local ILUT preconditioning (Saaet al., 1999) combined with non-overlapped domain
decomposition is implemented and tested in this work. The sequential version of the
ILUT preconditioner is very efficient solving the Navier—Stokes equations, but the paral-
lel implementation on the distributed memory computers is very complex. Slightly over-
lapping sub-domains combined with local preconditioning produce large increase of the
iteration number and huge inter-processomenunication overhead. This unsuccessful
attempt only confirms the fact, that design of universal and efficient parallel precondi-
tioner for ill-conditioned matdes reveals a great challenge.
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donb =1, nr_of_nb
proc = nb2proc(nb)
first = nb2var_ptr(nb)
last = nb2var_ptr(nb+1) — 1
doi = first,last
outvar (i) = y(nb2var(i))
end do
count = last — first + 1
call MPI_SENDQ(outvar( first), count, MPI_DOUBLE_PRECISION,
proc, mat_exch_tag, comm, ierror)
end do

Fig. 3. The algorithm for inter-processor communication.

4. Numerical Results

The parallel FEMTOOL software presented in this paper has been tested on several par-
allel architectures. The main tests have been performed on three BEOWULF PC clusters:
AMD Athlon BEOWULF cluster (OS Linux, 6 processors, 600 MHz, 256 MB RAM for

a processor, 100 Mbit/s network), PC crisVILKAS (OS Linux, 20 Intel Pentium IlI
processors, 1.4 GHz, 0.5 GB RAM for a processor, 1 Gbit/s network) and Transtec PC
cluster (OS Linux, 32 Intel Xeon processors, 2.2 GHz, 0.5 GB RAM for a processor, 1
Gbit/s network). Each node of clusters is equipped with two processors. Nodes are inter-
connected with a hub running 100 Mbit or 1 Gbit Ethernet. The performance achieved on
the PC clusters is compared with that obtained on the cluster of IBM RISC workstations
(OS AlX, 6 processors, 166 MHz, 96 MB RAM for a processor, 100 Mbit/s network) and
IBM SP2 supercomputer (OS AlX, 4 processors, 120 MHz, 128 MB RAM for a proces-
sor, 360 Mbit/s network). The parallel performance of the developed code is judged by
measurements of speed-fip and the efficiency,:

S,=—, E,=-2; (15)

here,t; is the program execution time for a single processpis the wall clock time

for a given job to execute op processors. Parallel efficiency is measured by fixing the
problem size and increasing the number of processors used. In practice, perfect efficiency
is not naturally attained because of an inhesamtal part of the algorithm, parallel com-
munication overhead and load imbalance.

To demonstrate the capability of the implemented parallel algorithms to handle var-
ious CFD applications, three typical benchmark problems have been considered. These
test examples are described by different PDEs. Various numerical schemes have been
employed and very different numerical models have been obtained solving the consid-
ered test problems in order to test a wide range of actual CFD applications. The first
benchmark problem includes exact solution simulation of the simplified Poisson equa-
tion (k; = 1, ¢ = 0) or the Laplace equation. The computational domain is the unit
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squar€g0.0; 1.0] x [0.0; 1.0] discretised by three meshes of 40000, 90000 and 160000 bi-
linear finite elements (39999, 89999 and 159999 degrees of freedom, respectively). The
Dirichlet boundary conditions arprescribed on the boundarigs= 0.0, ¢ = —10.0

andy = 1.0, ¢ = 10.0. The zero Newmann boundary catiohs are prescribed on the
boundaries: = 0.0 andz = 1.0. The analytical solution of @onsidered problem linearly
varies fromyp = —10.0 to ¢ = 10.0 in they direction.

All test runs of the Laplace equation have been performed on the AMD Athlon BE-
OWULF cluster and the cluster of IBM RISC workstations. The program execution time,
the speed-up gained relative to a serial as a function of the number of processors and
the parallel efficiency are shown in Fig. 4. The unexpected position of efficiency curves
(90000 and 160000 models) on experimental AMD Athlon cluster shows that parallel
processes are better managed on IBM RIfQ&ter. The AMD Athlon processors are
newer and faster, therefore, the program execution time is significantly shorter. When the
number of processors is small, the speed-up is close to linear. The reduction of the effi-
ciency owing to communication overhead is obtained for a larger number of processors.
The communication cost is quite small for relatively large problems (meshes of 90000
and 160000 elements), where a large number of finite elements are used per processor. In
case of benchmark problem with 160000 finite elements, even the super-linear speed-up
was obtained on the IBM RISC cluster. It is caused by occurred advantageous cashing
and by the lack of RAM on a single workstation.

The rotating cone problem is chosen as the second benchmark problem widely used to
illustrate the effectiveness of the algorithms in case of convection dominated flows. The
2D square solution domajr-0.5; 0.5] x [—0.5; 0.5] is discretised by different structural
finite element meshes of 10000, 40000, 90000 and 160000 finite elements (10201, 40401,
90601 and 160801 degrees of freedom, respectively). The concentration cone of radius
0.15 is positioned at{0.25; 0.0). The concentration maximum equals 1.0 in the centre
of the cone and decreases to zero as a sinusoidal curve. The velocity fieldy, v = x
corresponds to a rotational flow with a nature of a solid body. The problem is numerically
difficult to solve not only because of the pumvaction but also because of the numerical
diffusion attributed to the Cartesian grid discretising the rotational flow field.

The performed investigation has showatthe space-time GLS method achieves very
accurate results in the wide range of Courant numbers. The accuracy and the efficiency of
the developed implementation of the GLS method significantly outperform those of other
investigated methods (Kaniauskas, 2003). A position of the rotating cone aftep@-
riod of time is shown in Fig. 5. The parallel tests have been carried out on the Transtec
PC cluster in Innsbruck, PC cluster VILKAS and IBM SP2 supercomputer in the Labora-
tory of Parallel Computing in Vilnius Gediminas Technical University. Fig. 6 shows the
results of the speed-up study on the PC @tstThe processors of Transtec PC cluster
are faster, but the speed of the network is the same as that of the cluster VILKAS. This
is the reason why Transtec PC cluster solves the small problem of 10000 elements with
lower efficiency. The implemented domain decomposition strategy and parallel GMRES
solver are well designed for solving convective transport problems. Fig. 7 illustrates the
superiority of the speed-up achieved solving the convection transport equation in com-
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Fig. 4. Performance tests solving the Laplace eqoatiothe AMD Athlon BEOWULF cluster and the cluster
of IBM RISC workstations: (a) the run time, (b) the speed-up, (c) the efficiency.



374 A. Kateniauskas, P. Rutschmann

-« @ W

LI 1) v o

a1l
LI L RES

Fig. 5. The position of the rotating cone after Beriod of time.

parison with that obtained by solving the problems described by the coupled formulation
of the Navier—Stokes equations.

The fully developed laminar viscous flow in a 2D rectangular channel has been solved
as the third test problem. The considered flow is described by the Navier—Stokes equa-
tions using coupled formulation and thpage-time GLS method (8—14). The solution
domain[0.0;3.0] x [0.0;1.0] is discretised by finite element meshes of 3300, 13200,
22000 and 30000 elements (9800, 39400, 65750 and 89700 degrees of freedom, respec-
tively). The no-slip boundary conditions for the velocity are prescribed on the walls of
the channel. The parabolic velocity profile is defined at the inflow and zero pressure is
fixed at the outflow. The influence of the gravity force is neglected. For this example, the
exact analytical solution for the axial velocity is parabolic throughout the domain. The
axial pressure gradient is constamnd given in the reference (Lewésal., 1995).

The efficiency tests carried out on the IBM SP2 supercomputer and the PC cluster
VILKAS are presented in Figs. 7 and 8. The curves show that the advantages obtained by
parallelism diminish rapidlyas the number of processors exceeds some threshold value.
This behaviour is explained by the fact thag tharallel efficiency is largely determined
by the ratio of local computations over interprocessor communication. As the number of
processors increases, for a fixed probleme sthe communication cost will eventually
become dominant over the local computatiastcafter a certain stage. This high ratio
of communication to computation makes the influence of a further reduction in the local
computation very small on the overall cost of running the application. It is evident that
the discussed threshold value for solving the coupled Navier—Stokes equations is smaller
than that of other problems. It can be explained by the fact that the resulting finite element
coefficient matrices are not well proceedsdterative solvers and GMRES solver needs
a large number of iterations to converge. Thus communication overhead occurred solv-
ing linear equation systems increases and the solution time becomes long in comparison
with the time used for parallel and independent assembling of finite element coefficient
matrices. It dramatically reduces the efficty measured on a fixed size problem. The
last benchmark problem has been the most complicated one. IBM SP2 supercomputer
has managed to solve this problem in faal afficient way despite its slow processors.
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Fig. 6. Performance tests solving thengection transport equation on the Transtec PC cluster and the PC cluster
VILKAS: (a) the run time, (b) the speed-up, (c) the efficiency.
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Fig. 7. Speed-up tests solving the convection trartspguation and the Navier—Stokes equations on the IBM
SP2 supercomputer.
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Fig. 8. Speed-up tests solving the Navier-Stokes equations on the PC cluster VILKAS.

5. Conclusions

In this paper, the development of parallel FEM software based on the domain decom-
position strategy and the iterative GMRES solver has been described. The parallel and
universal FEMTOOL code has been sought to be applicable to various CFD problems of
interest. The universal domain decomposition strategy has been successfully applied to
all types of considered boundary value problems in spite of different numerical models
used. The static load balancing on the homogeneous parallel machines has been ensured
by mesh partitioning code METIS incorporated in the pre-processor of the software. The
iterative GMRES solver has been successfully parallelised developing the data structures
and the communication algorithm particularly suited for distributed memory computers.
The solution of three benchmark problems has illustrated high efficiency of the parallel
algorithms. The performed speed-up analysis has shown that the best results are achieved
solving convective transport problem. This has occurred due to the long time necessary
for assembling GLS finite elemecoefficient matrices. Thienplemented domain decom-
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position has perfectly parallelised this partaasimputations withou&ny inter-processor
communications. The solution of non-linear equation systems requires extensive commu-
nications among processors, which automatically decrease the desirable speed-up. The
favourable time ratio of assembling finite element coefficient matrices to solving linear
equation systems has allowed the achieving of the best efficiency on the distributed mem-
ory BEOWULF clusters.
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Lygiagreti baigtini u elementy metodo programine iranga
skaiCiuojamosios skysiu dinamikos uzdaviniams spesti
Arnas KACENIAUSKAS, Peter RUTSCHMANN

Straipsnyje nagriejamas lygiagr&ios BEM programiis irangosivairiems skatiuojamosios
sky<iy dinamikos uzdaviniams spsti kurimas ir tobulinimas. Srities padalinimo koncepcija ir
lygiagretus iteracinis tiesinilygCiu sisteny sprenéjas GMRES pritaikyti universaliam erég ir
laiko BEM prograny paketui FEMTOOL, kuriame diferenciaés lygtys su daliemis iSvestiemis
realizuojamos minimaliomis pastangomis. Sukurtos duansénuktiros, statinis apkrovos balansas
ir komunikaciy tarp procesod algoritmai puikiai tinka homogeniniams paskirstytos atminties
PK klasteriams. Nagr&gjamu lygiagreiuju algoritmu universalumas patikrintas sprendziant uz-
davinius, nusakomus Bsono, konvekcinio transporto bei Navje ir Stokso lygtimis. Atliekant al-
goritmu efektyvumo analig buvo iSspesti trys testiniai uzdaviniai. Lygiagteiju skatiavimy
pagreigjimas ir efektyvumas buvo iSmatuoti trijuose PK klasteriuose, IBM RISC darkiysto
klasteryje bei IBM SP2 superkompiuteryje.



