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Abstract. This paper develops a representation of multi-model based controllers by using artifi-
cial intelligence typical structures. These structures will be neural networks, genetic algorithms
and fuzzy logic. The interpretation of multimodel controllers in an artificial intelligence frame will
allow the application of each specific technique to the design of improved multimodel based con-
trollers.The obtained artificial intelligence based multimodel controllers are compared with clas-
sical single model based ones. It is shown through simulation examples that a transient response
improvement can be achieved by using multiestimation based techniques.Furthermore, a method
for synthesizing multimodel based neural network controllers from already designed single model
based ones is presented.The proposed methodology allows to extend the existing single model based
neural controllers to multimodel based ones, extending the applicability of thiskind of techniques to
a more general type of controllers.Also, some applications of genetic algorithms and fuzzy logic to
multimodel controller design are proposed. Thus, the mutation operationfrom genetic algorithms
inspires a robustness test which consists of a random modification of the estimates which is used to
select the estimates leading to the better identification performance towards parameterizing online
the adaptive controller. Such a test is useful for plants operating in a noisy environment.The pro-
posed robustness test improves the selection of the plant model used to parameterize the adaptive
controller in comparison to classical multimodel schemes where the controller parameterization
choice is basically taken based on the identification accuracy of each model.Moreover, the fuzzy
logic approach suggests new ideas to the design of multiestimation structures which can be applied
to a broad variety of adaptive controllers such as robotic manipulator controller design.

Key words: multimodel control, artificial intelligence, neural networks, genetic algorithms, fuzzy
logic, switching.

1. Introduction

Adaptive controllers have been broadly studied during the last years since they allow
to design control systems able to modify their behavior according to the characteris-
tics of a changing environment or operation point (VanDoren (Ed.), 2003). Neverthe-
less, adaptive controllers may lead to a poor transient response in terms of plant out-
put deviation from a reference plant one, due to an inadequate estimated plant parame-
ter initialisation.Thus, multi-model based controllers appeared as a way to improve the
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transient response of adaptive systems(Narendra and Balakrishnan, 1994; Gregorcicet
al., 2001; Chang and Davison, 1999; Narendra and Balakrishnan, 1997; Mosca and Ag-
noloni, 2001; Hocherman-Frommeret al., 1998; Ibeaset al., 2003)by considering a set
of parameter estimation algorithms runningin parallel each one being initialised by a
different set of estimated plant parameter values.This mechanism allows to better fit a
bad choice of the initial values of the estimates to start to run the estimation algorithm
due to a convenient parameterization of the adaptive controller by adequate switching
between estimators. A general multimodel based control scheme is composed by a set of
different plant models running in parallel. These models, which may be fixed (Narendra
and Balakrishnan, 1994; Gregorcicet al., 2001; Chang and Davison, 1999) or adaptive
(Narendra and Balakrishnan, 1997; Mosca and Agnoloni, 2001; Hocherman-Frommeret
al., 1998; Ibeaset al., 2003), are different one from each other in what it is concerned with
its structure and/or its parameter values. Thus, each one contains different characteristics
of the controlled process. Then, a higher level switching structure between the various
plant models chooses, at each time instant, which model is used to calculate the control
law at that time instant according to a corresponding closed-loop performance index built
for each estimation algorithm. In (Moscaand Agnoloni, 2001; Hocherman-Frommeret
al., 1998), several performance indexes for that purpose are discussed. Although the spe-
cific form of the performance index is different from one work to another, it is common
to define it based on the difference between the real plant output and each model one,
which is a natural choice since that index reflects how far a specific model is from the
real plant behavior. Thus, the switching law acts as a supervisor of the system behavior
deciding the estimator which will parameterize the adaptive controller in real time. This
kind of control architecture allows to develop control system schemes capable to achieve
a good performance in terms of speed, accuracy and stability for increasingly complex
systems.

The structure and operation of the switching law between the different plant models
have been studied from an artificial intelligence point of view in an expert systems con-
text (de la Senet al., 2004; de la Sen and Almansa, 2002). However, multimodel struc-
tures themselves have always been modeled in a classical control theory frame (Naren-
dra and Balakrishnan, 1994; Narendra and Balakrishnan, 1997; Ibeaset al., 2003).This
paper proposes a possible interpretation of multimodel structures in an artificial intelli-
gence frame. The artificial intelligence structures chosen for such goal have been, arti-
ficial neural networks (ANN), genetic algorithms (GA) and fuzzy logic(Da Ruan (Ed.),
1997; Fausett, 1998; Etxebarria, 1994; Beyers, 1998; Tilli, 1992; Ibeas and de la Sen,
2004).This interpretation will allow the use of specific characteristics of each one to
the design of improved multimodel control schemes. Thus, a method for synthesizing
multimodel-based neural network controllers from pre-designed single model ones is pro-
posed. This methodology will allow the development of multimodel neural controllers
from the original single model based ones in a very easy way extending the applicability
of multimodel controllers.Also, some applications of genetic algorithms and fuzzy logic
to multimodel control design are presented.The genetic algorithm approach will inspire
the incorporation of a robustness measure of each model in the performance index used
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for evaluating the closed-loop behavior of the set of estimation algorithms running in
parallel. Thus, the resulting scheme will be able to improve its behavior in comparison to
the classical multimodel schemes, where this robustness measure is not included, when
the plant is operating in a noisy environment as computer simulations have shown. More-
over a fuzzy logic approach is presented to interpret the architecture of the multiestima-
tion based controllers.This focus can be applied to the design of multimodel controllers
as recent works (Ibeas and de la Sen, 2004; Ibeaset al., 2004) apply to the control of
uncertain robotic manipulators. An adaptive, being more general than that related to the
use of fixed models, formalism is used for making the interpretation. Each representation
will be compared with the traditional single model based adaptive controller in order to
illustrate the usefulness of the proposed schemes.

The paper is organized as follows. In Section 2, a brief description of the multiesti-
mation scheme architecture is given. Section 3 deals with the artificial neural network
representation while Sections 4 and 5 deal with the genetic algorithms and fuzzy logic
ones respectively. Finally, conclusions end the paper.

2. Basic Multiestimation Scheme

In this section, a brief description of the multiestimation scheme used for subsequent
discussion is presented. It has been considered the adaptive case since the fixed one is
included in that as a particular case. Our objective is to design a model reference follow-
ing pole placement based multimodel control for the discrete (the continuous case can
be treated in the same way) time invariant linear SISO plant described by the difference
equation:

A(q−1)yk = B(q−1)uk, (1)

whereuk andyk are the input and the output sequences respectively,q−1 is the one-step
delay operator and

A(q−1) = 1 + an−1q
−1 + an−2q

−2 + · · · + a0q
−n, (2.1)

B(q−1) = bmq−(n−m) + bm−1q
−(n−m+1) + · · · + b0q

−n (bm �= 0), (2.2)

provided thatn � max(m, 1) or m � n = 0 (⇒ A(q−1) = 1 in (2.1)) with (2.2)
changed toB(q−1) = bm +bm−1q

−1 + · · ·+b0q
−m (bm �= 0). Note that in this last case,

the plant is realizable since it can be re-written in terms of the reciprocal polynomials
A∗(q) = qmA(q−1) = qm andB∗(q) = qmB(q−1) = bmqm + bm−1q

m−1 + · · · + b0

leading to the realizable transfer function:

B∗(q)
A∗(q)

=
bmqm + bm−1q

m−1 + · · · + b0

qm
.

Furthermore, note that the Eqs. 1, 2 can be obtained from the more general equation

A(q−1)yk = B(q−1)uk,
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A(q−1) = 1 + ana−1q
−1 + ana−2q

−2 + · · · + a0q
−na ,

B(q−1) = bnb
+ bnb−1q

−1 + · · · + b0q
−nb ,

with na, nb � 0 by takingna = nb = n and making zero an adequate set of coefficients
of B(q−1). The above Eqs. 1, 2 define a linear difference equation which is usually writ-
ten in adaptive control as the inner product of two vectors:

yk = ϕT
k θ = θT ϕk, (3)

where

ϕT
k =

[
−yk−1 −yk−2 · · · −yk−n uk−n+m uk−n+m−1 · · · uk−n

]
is the so calledregressorand

θT =
[
an−1 an−2 · · · a0 bm bm−1 · · · b0

]
symbolises the true plant parameter vector (Ibeaset al., 2003). This plant is an example
of how the presented methodology can be applied in a concrete problem. Furthermore, in
(Ibeas and de la Sen, 2004; de la Senet al., 2003), you can find the development of mul-
timodel controllers to more general types of uncertain dynamical systems. However, in
order to illustrate the application of the artificial intelligence representations to a concrete
problem in an easy way, the above linear difference plant has been chosen (Ibeaset al.,
2004). If the true plant parameter vector is unknown, parameter estimation has to be used.
Thus, an estimated parameter vectorθ̂k is considered at each samplek provided by any
parameter estimation algorithm. The estimated parameter vector generates an estimated
plant output through an equation analogue to (3):

ŷk = ϕT
k θ̂k. (4)

Then, this estimated parameter vector isused for control law calculations at each sam-
ple. If this estimated vector is initialised far from the real plant parameter vector, then
the transient response will have large deviations from the desired output resulting in a
bad performance. This fact motivates the consideration of a set of estimation algorithms
running in parallel, each one with its own estimated parameter vector:

θ̂
(1)
k , θ̂

(2)
k , . . . , θ̂

(Ne)
k , ŷ

(i)
k = ϕT

k θ̂
(i)
k , 1 � i � Ne,

whereNe is the number of total estimators. Each estimated vector is updated at each sam-
ple according to a parameter estimation algorithm (which may be different for each one)
driven by the input and output measurementsof the plant. The multiestimation scheme
block diagram is displayed in Fig. 1.

There existNe estimation algorithms running in parallel (i.e., at each sampling time
tk = kτ, τ being the sampling period, every algorithm gives the estimates parameter
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Fig. 1. Basic multiestimation scheme architecture.

vector θ̂(i)
k and the estimated plant outputŷ

(i)
k , 1 � i � Ne, based on past plant input

and output measurements). Each algorithm is different from each other in what is con-
cerned with the estimated parameter vector initialisation and/or the kind of the estimation
algorithm and integrate the so-called multiestimation scheme. Thus, every identification
algorithm is indexed with only one integer1 � i � Ne. Denote byck the identification
algorithm which parameterises the adaptive controller at timetk. A switching rule based
on the identification errorse(i)

k = yk − ŷ
(i)
k = ϕT

k θ̃
(i)
k , θ̃

(i)
k = θ − θ̂

(i)
k , of theNe es-

timation algorithms chooses at each sampling timetk the individual estimation scheme
(identifier)ck which parameterises theactive controller at timetk. The proposed identi-
fication performance index for each estimation algorithm is

J
(i)
k =

k∑
�=k−M

λk−�
�

[
β1

(
y� − ŷ

(i)
�

)2 + β2

(
û

(ck−1)
� − û

(i)
�

)2
]
,

β1 + β2 = 1, β1, β2 � 0, (5)

whereM is an integer number large enough to give sense to the performance evaluation.
The first addend of the index (5), can be interpreted as a measure of the long-term ac-
curacy of each identification algorithm, where the forgetting factorλ� ∈ (0, 1) (which,
in general, can be sample-dependent) establishes the effective memory of the index in
rapidly changing environments. The second part of the index (5) can be interpreted as
the possible jump in the control law associated to switching between controller param-
eterisations. The supervisory index is built through a convex linear combination of the
previous terms as it is highlighted by Eq. 5. Moreover,the real plant parameter vector is
not used in any calculation since the identification error may be equivalently written as
e
(i)
k = yk − ϕT

k θ̂
(i)
k being a measurable signal since the real plant output is measured.

The switching law must respect a minimumdwellor residence timebetween consecutive
switchings between estimators in order to guarantee closed-loop stability. Furthermore,
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once the supervisory index (5) has been stated, the switching rule for the adaptive con-
troller reparameterisation is obtained from the performance index (5) as follows. If the
elapsed time from the last switching is smaller than the residence time, then switching is
not allowed and the current controller is maintained in operation. On the other hand, if
the elapsed time from the last switching is larger than or equal to the residence time, then
switching is allowed. In this case, the controller chosen from the multiestimation scheme
is such that it has the minimum performance index (5) from all pairs estimator-controller
parameterisation available. If two estimators have the same performance index, then the
selected controller is the one with the minimum index in the ordered set{1, 2, . . . , Ne}.
If π denotes the last sample in which switching between estimators happened, then the
switching mapck at a samplek, (k > π) can be stated as

ck =
{

ck−1, k − π < ND,
j | j = min

{
ζ | J (ζ)

k = min{J (r)
k | r ∈ K}

}
, k − π � ND,

(6)

whereND (positive integer) is the residence number of samples. Then, the selected esti-
mated parameter vectorθ̂

(ck)
k is used by the control algorithm, as an estimation of the real

plant parameters, to calculate the control compensators and to generate the control sig-
nal.Thus, the parallel multiestimation scheme is used to improve the transient response of
single model based adaptive controllers through appropriate switching to a more conve-
nient parameterization of the controller. Furthermore, the proposed control methodology
has been applied to discrete plants with unmodeled dynamics (de la Sen et al., 2003), and
even to continuous nonlinear dynamical systems such as robot manipulators (Ibeas and
de la Sen, 2004). Nevertheless, the artificialintelligence representations are developed
over a linear discrete SISO plant in order to show the representation with clarity and the
application of the representations to the standard multiestimation scheme. The artificial
intelligence structures are proposed as models of representation of the multiestimation
scheme and they will allow the incorporation of ideas inspired in them to the design of
this kind of control schemes.Furthermore, note that since a set ofNe estimation algo-
rithms integrate the parallel multiestimation scheme then, it is obvious the usefulness of
selecting a subset of them that better fit the identification performance(genetic approach).
Also, a convex linear combination of each estimated parameter vector from all the set
of estimators may be formulated by choosing the weights of such a combination from
fuzzy logic rules instead of selecting any of the individual estimates via switches through
time as usual in standard parallel multiestimation schemes. For example, the fuzzy logic
approach has been applied to the design ofmultimodel based controllers for nonlinear
robotic manipulators (Ibeas and de la Sen, 2004). Since the objective of this paper is to
develop an artificial intelligence representation of multi model structures rather than de-
scribing the control scheme, the reader is referred to reference (Ibeaset al., 2003), where a
complete discussion of the stability issues and the pole placement adaptive control design
is available.The switching rule design has been focused from an expert systems formal-
ism in previous works (de la Sen et al., 2004; de la Sen and Almansa, 2002). However, the
multiple models that compose the multiestimation scheme have been always modeled by
classical control theory structures.Thus, the structure of each model is set independently
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of the rest. The objective of this paper is to propose some methods to represent the set
of multiple models in an artificial intelligence frame. This focus will allow to extend the
existing designs of single model based controllers to the design of multimodel based ones
in an easy way as it is shown in the sequel. Therefore, in the next sections an artificial in-
telligence representation of the above multiestimation scheme is given for various typical
artificial intelligence structures (Da Ruan (Ed.), 1997).

3. Artificial Neural Networks

In this section, an artificial neural network (ANN) representation for the multiestimation
based control scheme described in Section 2 is developed, (Fausett, 1998; Wang and
Qing, 2004; Etxebarria and de la Sen, 1996; Melin and Castillo, 2003).

3.1. ANN for Representing Single Estimation Based Schemes

The following two layered ANN is presented as a model for a discrete time single model
based adaptive control in (Etxebarria, 1994). The difference Eqs. 1, 2 is implemented, for
estimation purposes, by the ANN displayed in Fig. 2, where the activation functions are
linear for all neurons.

The ANN output (which plays the role of the estimated plant output) can be written as

ŷk =
n∑

i=1

wi,kyk−i +
m∑

j=0

wn+j+1,kuk−j = wT
k ϕk, (7)

where

wT
k =

[
w1,k w2,k . . . wn+m,k

]
is the network weights vector andϕ is the above defined regressor. Comparing Eq. 6 with
Eq. 4, it can be observed that the network weight vectorwk plays the same role as the

Fig. 2. Single neural network estimator.
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estimated plant parameter vectorθ̂k. Network weights (or equivalently plant parameters)
are updated by using the well knownWidrow-Hoff rule for multiple-input single-output
ANN:

wk = wk−1 +
α (yk − ŷk)ϕk−1

ε + ϕT
k−1ϕk−1

, ε > 0, α ∈ (0, 2), (8)

whereŷk denotes the ANN estimated plant output whileyk denotes the real measured
plant output (Etxebarria, 1994). Thus, network weights are updated by comparing the
network output with the real plant output (which it is the target value). Then, the weights
vector (whose role is represented by the estimated plant parameters vector) is used for
controller design purposes. This network is extended to represent multiestimation struc-
tures in the following section.

3.2. ANN for Representing Multiestimation Schemes

Now, the multiestimation scheme introduced in Section 2 can be represented with an ANN
by increasing the number of neurons in the output layer of the above ANN to a number of
neurons equal to the number of different estimators used in the multiestimation scheme.
Since the output layer has one single neuron in the previous network, a multiestimation
scheme withNe estimators running in parallel will haveNe neurons in its output layer as
Fig. 3 displays for the case ofNe = 2.

Hence, the number of connections between neurons and the number of weights are
increased. Thus, the proposed ANN is a unique structure containing itself theNe esti-

Fig. 3. Multiestimation neural network.
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mated parameter vectors (which are represented by the corresponding weights vectors).
Furthermore, the ANN plant estimated outputs can be written as

ŷ
(i)
k =

n∑
�=1

wi�,kyk−� +
m∑

�=0

wi,n+�+1,kuk−� = wT
i·,kϕk, 1 � i � Ne,

with

wT
i·,k =

[
wi1,k wi2,k . . . wi(n+m),k

]
, 1 � i � Ne.

Note that from the network weight valueswij,k, two estimated plant parameter vectors
may be defined at each samplek by

w1·,k = θ̂
(1)
k , w2·,k = θ̂

(2)
k .

The target vector (with which the ANN is trained) is defined in this case by repeating the
original target value as many times as the number of estimators used. Since the original
target value was the real measured plant output,yk then, in the case with two estimators,
the new target vector is defined by

y∗T
k =

[
yk yk,

]
,

while in the general case withNe estimators, it will be

y∗T
k =

[
yk yk . . . yk︸ ︷︷ ︸

Ne

]
.

Then, the switching logic compares the performance indexes (5) associated to each output
of the ANN and chooses the set of weights (estimated parameter vector) associated with
the best estimated output according to (6) in order to calculate the control signal. The
training rule is the generalization of the aboveWidrow-Hoff single output training rule
(8) to the multiple output case:

wij,k = wij,k−1 +
α
(
yk − ŷ

(i)
k

)
ϕj,k−1

ε + ϕT
k−1ϕk−1

, (9)

ε > 0, α ∈ (0, 2), i = 1, 2, . . . , Ne, j = 1, 2, . . . , n + m + 1,

whereϕj,k−1 stands for thej-th component of the vectorϕk−1. Note that the updating
law for the network weights (or equivalently, the estimated plant parameters vectors) is
formulated for the multiple output ANN as a unique entity as well.

The above idea can be extended to a more general case in which the ANN has a
number of layers greater than two and a number of neurons in the output layer greater
than one with arbitrary (generally nonlinear continuous) activation functions. Thus,the
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following rule is proposed in order to obtain multimodel based ANN controllers from a
pre-designed ANN single model one. Suppose that the single model ANN hasN� layers
andNo neurons in its output layer.Then, if a new ANN is defined for the multimodel
structure as an ANN with the same number of layers as the original one, and a number
of neurons in the output layer equal toN ′

o = NeNo whereNe is the number of estimators
considered, then, the target vector is now built by repeating the original target vector
(from the single model ANN) as many times as the number of estimators considered.
The switching logic acts as an intelligent supervisor deciding the set of weights that will
be used for control purposes at each time instant.In such an easy way, the multimodel
structure can be integrated with conventional neural network based controllers in order
to obtain more general ANN based multimodel structures.The training rule is the same as
in the first ANN, extended to the new weights associated to new connections. The general
multimodel neural network scheme is displayed in Fig. 4.

The Table 1 summarises the way in which a single model based ANN can be extended
to a multiple model based one.

Fig. 4. General multimodel ANN scheme.

Table 1

Table extending the single based ANN to a multimodel based one

Original Neural Network Multimodel Neural Network

Number of models considered 1 Ne

Number of layers N� N�

Number of neurons in the output layer No N ′
o = NeNo

Target vector x x∗ =
[

x x . . . x
]

︸ ︷︷ ︸
Ne
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3.3. Simulation Example for the ANN Representation

In this Section, a simulation example containing two estimation algorithms and the above
training rule (9) for the ANN displayed in Fig. 3 is presented. The switching logic is
assumed to respect a minimum residence number of samples given byND = 2 between
successive switchings between estimation algorithms in order to guarantee closed-loop
stability (Ibeaset al., 2003). The switching law and the controller design (based on a
model following pole placement algorithm) are described with detail in (Ibeaset al.,
2003). The discrete plant has the real plant parameter vector

θT =
[
−1.9 0.73 −0.195 1 −0.6 0.0875

]
,

and the reference model is characterized by the following vector

θT
m =

[
−0.6 0.11 −0.006 1 −0.32 0.0255

]
,

while the estimators are initialised with the following estimated parameter vectors (or
network weights):

wT
1·,0 = θ̂

(1)T
0 =

[
−0.5 0.25 −0.5 0.79 −0.5 0.08

]
,

wT
2·,0 = θ̂

(2)T
0 =

[
−1.5 0.7 −0.2 0.9 −0.5 0.08

]
.

It is takenε = 0.001 andα = 1. The input signal is a unity square wave with a 20
samples period. The performance index to decide switches is given by Eq. 5 withλ =
0.95, β2 = 1; β3 = 0. This choice for the parametersβ indicates that the switching
process only takes care of the identification error in order to choose the estimator which
will parameterise the adaptive controller. The single adaptive control scheme is initialised
with the first estimator. The following simulations comparing both, the single estimation
ANN and the multiestimation one, are obtained:

From Figs. 5 and 6, it can be concluded that a transient response improvement can
be achieved by a using a multiestimation scheme. The transient overshoot is less in the
multiestimation scheme than in the single based one while the real plant output tends to
the desired output smoother in the multiestimation case than in the single based one as
well. It is showed through Figs. 7 and 8 that the system improves its behavior by using the
best weight set at each time (respecting the residence time constraint). The switching map
ck illustrating the switching process between both set of weights (estimated parameter
vectors) is showed in Fig. 7. Fig. 8 displays the real and estimated outputs of the ANN as
well as the combined estimated output defined byŷ

(ck)
k whereck denotes the switching

map. Moreover, Fig. 9 displays the evolution of the combined estimated plant parameter
vectorθ̂(ck)

k = (θ̂(ck)
k,j ) through time. The proposed ANN integrates in a unique structure

the complete set of estimation models running in parallel and the updating equations for
the weights, whose role is represented by the estimated parameter vectors of a classical
multiestimation scheme. Thus, from a designed single model-based ANN, a multimodel
ANN has been designed in an easy way and applied to a concrete problem.
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Fig. 5. Single model based output.

Fig. 6. Multimodel based neural controller.

Fig. 7. Switching map for the multimodel ANN.



Representations of Multi-Model Based Controllers 349

Fig. 8. Estimated outputs for the multimodel ANN.

Fig. 9. Evolution of the combined estimated parameter vector.

4. Genetic Algorithms

In this Section, a genetic algorithm representation for multiestimation based control
schemes is given. Genetic algorithms are usually used as optimisation tools in complex
problems (Wetter and Wright, 2004). However, they have recently been applied to the
intelligent control of dynamic processes (Mwembeshiet al., 2004). The key idea is to
use thenatural selectionand thegeneticsto obtain, at each generation, more accurate
solutions to an original complex problem (Beyers, 1998). First, a codification for the so-
lutions for the proposed problem is decided. The codification process consists of deciding
how the information about our problem has to be managed by the genetic algorithm. The
codification may be formed by binary (formed by 1’s and 0’s) or numeric (natural, inte-
ger, real,. . .) vectors. These vectors are calledchromosomesin the GA context. In the
multiestimation case, thechromosomeswill be vectors of real components containing the
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plant parameter values. Thebestvector is that for which the estimated output (associ-
ated to that parameter vector) is closer to the real plant output. A general description of a
genetic algorithm is given by the Fig. 10.

In the first step, there exists an initial set of (plant parameter) vectors uniformly dis-
tributed over the possible parameter space.This is a typical assumption in the adaptive
control problem: the existence of a convexand compact subset of the parameter space
where the real plant parameter vector is assumed to belong to. These initial vectors are
denoted bŷθ(1)

0 , θ̂
(2)
0 , . . . , θ̂

(Ne)
0 , i.e., they represent the estimated plant parameter vectors.

Once the GA is initialised it starts running.First, one of the above vectors is chosen in
order to generate the control law. The selection is made according to a performance index
which evaluates thequalityof each vector (in the first step the choice may be arbitrarily).
The unique requirements about the performance index (in a GA context) are that it must
be nonnegative and monotonically increasing with quality, i.e., the better vector is that
which has the greater performance index. Thus, the GA selection operator is represented
in the current context by the switching law which chooses the estimation algorithm used
to parameterise the adaptive controller. Moreover, the adaptive counterpart of the cross
over operator may be the updating rule for the estimation algorithms such as the least
squares one or any of its variants for example while the mutation operator is used as an
identification robustness test in the sequel.Once the process has been completed, then,
the algorithm starts again and the process is repeated so on. The parallelism between
multimodel based controllers and genetic algorithms is illustrated by the schematic table
(Table 2).

Note that the GA representation allows to use a broad class of modification rules
for the estimated vectors which may not be driven by a classical parameter updating
equation. Furthermore, the number of different models (the number of chromosomes)
may not be constant during the system operation.This suggests the following interesting
idea for multimodel based controllers.If the system detects that with a reduced number
of models an acceptable system behaviour is achieved, then it may suppress some of the

Table 2

Parallelism between multimodel controllers and genetic algorithms

Genetic Algorithms Multimodel Controllers

Number of individuals Number of estimators

Individual of the GA Estimated parameter vector

Evaluation of the fitness of each Performance index for each estimation algorithm

individual

Selection of the best individuals Selection of thecurrent estimator to parameterise the adaptive
controller

Generation of the offspring Generation of the new estimated vectors by the estimation al-
gorithm updating equations

Replace the population with the Replace the estimated parameter vectors with the new ones

offspring

Next generation Next step
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Fig. 10. General structure of a genetic algorithm.
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models (chromosomes) in order to prune unnecessary computations. Thus, the multiple
models are classified intopriority setsin such a way that models with similar performance
indexes belong to the same set (according to some performance criteria, for example,
all models with their performance indexes inside a prescribed range belong to the same
set).In the context of the current multiestimation scheme, the above idea translates into
eliminating online through time a subset of the identification algorithms that fit worse the
identification performance.The architecture of the multiestimation scheme is displayed
in the Fig. 11, whereσ denotes a permutation of the{1, 2, . . . , Ne} estimation algorithms.
Thus, the sets associated to models with the worst performance may be pruned from the
GA process while those sets containing the most accurate models may be recompensed by
increasing the number of models inside them. Thus, from a general uniformly distributed
different estimation modelsaccording to a swept of the initial conditions, the system is
able to obtain an improved number of estimation models achieving an acceptable system
performance. The genetic algorithm representation has led to new ideas to be incorporated
to the classical multiestimation schemes.

Furthermore, the mutation operation, typical in GA processes can be applied to our
problem in the following concrete way. At each time instant, mutate randomly the set
of estimated parameter vectors{θ̂(1)

k , θ̂
(2)
k , . . . , θ̂

(Ne)
k } to obtain a set of perturbed esti-

mated parameter vectors{δθ̂(1)
k , δθ̂

(2)
k , . . . , δθ̂

(Ne)
k }. This new set is obtained by sum-

ming a gaussian random perturbation withzero mean, variance unity and amplitudeA to

Fig. 11. Priority set diagram for the multi model scheme.
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each component of the estimated plant parameter vector. The amplitude of the mutation
is expressed as a % of the values of the original estimates vector

∣∣∣δθ̂
(i)
kj − θ̂

(i)
kj

θ̂
(i)
kj

∣∣∣ × 100 � A,

where θ̂
(i)
kj is the j-th component of thêθ(i)

k vector. These perturbed estimated plant
parameter vectors are then used to calculate a perturbed estimated plant output
{δŷ(1)

k , δŷ
(2)
k , . . . , δŷ

(Ne)
k } through the equations:

δŷ
(i)
k = ϕT

k δθ̂
(i)
k , i = 1, 2, . . . , Ne. (10)

Thus, the perturbed estimated plant output can be compared with the unperturbed esti-
mated plant one over a time interval in order to evaluate the robustness quality of each
estimator. Then, the proposed performance index is given by

J
(i)−1
k,GA =

k∑
�=k−M

λk−�
�

[
β1

(
y� − ŷ

(i)
�

)2 + β2

(
û

(ck−1)
� − û

(i)
�

)2
]

+β3

k∑
�=k−N

λk−�
�

(
ŷ
(i)
� − δŷ

(i)
�

)2
, (11)

with β1 + β2 + β3 = 1, β1, β2, β3 � 0. Note that the inverse of the index (5) has
been considered in this case since a larger value forJ

(i)
k reveals a worse behaviour of the

corresponding estimator while the GA philosophy states that the chromosomes quality
function must be increasing with quality. Thus, the estimator selected to parameterise the
adaptive controller, once the residence time constraint has been fulfilled, is the one asso-
ciated to the maximum performance indexJ

(i)
k,GA (which is equivalent to select the esti-

mator with the minimum value of theJ (i)−1
k,GA indexes). The proposed evaluation function

(11) has three parts. To the previous defined two ones (5) a measure about the identifi-
cation robustness quality of each estimator has been added. Note that the robustness test
is performed over a window ofN samples size. The inclusion of this term is specially
adequate when the plant is operating in a noisy environment. Thus, the deviation of the
perturbed plant estimated outputs form the estimated unperturbed ones can be interpreted
as a measure of the robustness property of the corresponding estimator and included in
the criteria for switching between estimators.

4.1. Refinement of the Robust System Working

Moreover, the number of estimation algorithms can be decreased through time in order
to reduce the computational cost of the algorithm. Thus, the number of estimation algo-
rithms running in parallel can be pruned according to the following algorithm:
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{
Ne0, ∆Ne > 0, NeThreshold, Ntest �= ND are selected by the designer

}
Ne(0) ← Ne0, klastTest ← 0
for k > 0

if k = klastTest + Ntest then

if Ne(k) > NeThreshold{
θ̂
(σ(1))
k , θ̂

(σ(2))
k , . . . , θ̂

(σ(Ne))
k

}
←DecreasingOrder

({
θ̂
(1)
k , θ̂

(2)
k , . . . , θ̂

(Ne)
k

}
, J

(i)
k,GA

)
{
θ̂
(σ(1))
k , θ̂

(σ(2))
k , . . . , θ̂

(σ(Ne))−∆Ne

k

}
←

{
θ̂
(σ(1))
k , θ̂

(σ(2))
k , . . . , θ̂

(σ(Ne))
k

}
Ne(k) ← Ne(k − 1) − ∆Ne

klastTest ← k

else
Ne(k) ← Ne(k − 1)
end_if

else

Ne(k) ← Ne(k − 1)
end_if

end_for

whereσ represents a permutation of theNe(k) estimation algorithms. When the resi-
dence number of samples for the prune algorithmNtest is fulfilled, then the estimators
are ordered in a decreasing sequence according to the value of their performance indexes
J

(i)
k,GA. Then, those (a number of∆Ne) estimators with the minimum value are pruned for

the estimation process, i.e.,∆Ne of the estimators are eliminated at regular time instants
t = kTsNtest (Ts being the sampling period) wherek is a positive integer number, until
the number of estimators reaches a minimum threshold of estimatesNeThreshold, when
the prune process is stopped. After that, the system is only able to switch between the
rest of the existing estimators. The prune algorithm stops when the number of estimators
reaches a minimum threshold. Then, the samenumber of estimators is maintained. The
main usefulness of the scheme relies on reducing the computational cost of the multies-
timation scheme (in memory requirements basically) removing those estimators with the
worst performance index, as the priority set idea exposed above states. As it is typical in
intelligent control (de la Senet al., 2004; de la Sen and Almansa, 2002), both supervi-
sors have been designed to act with a different rate over the system. This choice avoids
conflictive decisions between both supervisors.

The following simulation example illustrate the working of the proposed schemes.
The simulation compares the working of a single model based adaptive control scheme,
the classical multimodel based adaptive control scheme for whichβ3 = 0, and the genetic
algorithm approach in both schemes: the first one in which the number of estimators
remain impassive through time and the second one in which the number of estimators is
reducing as time grows.
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4.2. Simulation Example

Now, a simulation example comparing the adaptive schemes is presented. We will sup-
pose that the plant input and output are affected by a gaussian random perturbation with
zero mean, unity variance and a maximum amplitude of 4% of the original plant input
and output signals. Note that in order to generate the perturbed plant vectorsδθ̂

(i)
k , a

gaussian random perturbation is summed to the estimated vectors as well. This perturba-
tion is taken into account in the performance index through the perturbed plant outputs
(10). This test over the robustness quality of each estimator is used in the verification
step, when the plant is working under the effect of a noise which will be simulated as
a gaussian random perturbation independentfrom the one used to define the perturbed
plant outputs. In order to make an statistical meaningful interpretation of the proposed
schemes, each scheme has been simulated 75 times affected by the random noise, and
then the results have been averaged. Furthermore, the following performance index is
proposed in order to compare the schemes:

Jm(k) =
k∑

�=1

(y� − ym�)
2
, (12)

whereyk is the real plant output andymk is the desired closed-loop output. The above
index indicates the mean separation of the real plant output from the desired one for each
scheme. Then, the value of this index (12) is averaged 75 times. There are 30 estimators
running in parallel, while the single model basedadaptive control is initialised by the first
one. The estimators are initialised by

θ̂
(i)T
0 =

[
−0.85 0.2 −0.1 0.7 −0.35 0.075

]
+(i − 1) ∗

[
−0.0717 0.0433 −0.0083 0.0433 −0.017 0.0007

]
,

for i = 1, 2, . . . , 30. The amplitude of the test perturbation isA = 5%. Ne0 =
30, ∆Ne = 2, NeThreshold = 4, Ntest = 6 samples. For the standard multiestimation
schemeβ1 = 0.85; β2 = 0.15; β3 = 0 while for the robust schemesβ1 = 0.85;
β2 = 0.05; β3 = 0.1. λ = 0.95 in all cases. The results are obtained in Fig. 12.

It can be concluded that multiestimation based techniques may improve the transient
response of the adaptive system by the convenient parameterisation of the adaptive con-
troller through time. Thus, the performance index (12) is smaller for the multiestimation
schemes than for the single model based one.Furthermore, the robustness term of the
performance index(11)allows to improve the behaviour of the standard multiestimation
scheme in the presence of noise as Fig.12 reveals for the performance index(12) for the
robust multiestimation scheme with a constant number of estimation algorithms.Also, if
a prune over the multiestimation scheme is done, then the scheme improves its behaviour
in comparison to the standard multiestimation one but it gets worse in comparison to
the original genetic algorithm one which incorporates robustness issues. However, in this
case we have pruned some computations and reduce some memory storage requirements
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with the drawback that a worse behaviour than the original genetic algorithm scheme
which maintains the number of estimators constant through time has been achieved.

5. Fuzzy Logic Approach

In this Section, a fuzzy logic approach is given for multiestimation based control schemes.
As it is known, fuzzy set theory is a generalization of the classical set theory (Tilli, 1992).
It allows a class of objects with a continuum grade of membership to a set. Such a set is
characterised by a membership (characteristic) function which assigns to each object its
grade of membership to the set ranging from one to zero. The classical set theory opera-
tions are extended to the fuzzy case as well. Inference relations over fuzzy set objects de-
fine the so calledfuzzy logic. Fuzzy logic, together with artificial neural networks and ge-
netic algorithms, completes the set of techniques used inintelligent control(Liutkevicius,
2003; Wang and Qing, 2004; Mwembeshiet al., 2004; Wetter and Wright, 2004; Feng,
2004; Etxebarria and de la Sen, 1996; Melin and Castillo, 2003). In the multiestimation
scheme presented in Section 2, an estimated parameter vectorθ̂

(ck)
k is chosen from a set

of parameter estimated vectors{θ̂(1)
k , θ̂

(2)
k , . . . , θ̂

(Ne)
k } to parameterise the adaptive con-

troller at each sampling time.However, instead of choosing a single estimated vector, it
is also possible to define a combined estimated vector as

θ̂k = α1,kθ̂
(1)
k + α2,kθ̂

(2)
k + · · · + αNe,kθ̂

(Ne)
k , (13)

where0 � αi,k � 1, 1 � i � Ne and∀k � 0. This linear combination (13), is convex
in the sense that

∑Ne

i=1 αi,k = 1, ∀k � 0. In the standard cases (considered above and
in (Ibeaset al., 2003)), only one coefficientαi,k is different to zero and equal to unity
while the rest of the parameters take a value of zero. However, it is also possible to let
each coefficientαi,k take a value running from zero to unity. Then, we can interpret each

Fig. 12. Comparison between the single model based adaptive control and the multiestimation schemes.
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one as a membership function of the combined estimated vectorθ̂k to the corresponding
estimation algorithm with vector̂θ(i)

k . According to a recent work (Alonso-Quesadaet
al., 2004), the following membership function is proposed in order to clarify the interpre-
tation:

αi,k =
J

(i)−1

k∑Ne

�=1 J
(�)−1

k

, (14)

where theJ (�)
k symbolizes the performance indexes defined above (5) and used for evalu-

ating the quality of each estimation scheme. A larger performance index for an estimation
algorithm leads to a less membership function of the combined estimated vector to the
corresponding estimation algorithm. However, the updating of the membership functions
must respect a minimum residence time in order to guarantee the closed-loop stability.
Thus, the following updating rule is proposed:

αi,k =




J
(i)−1

k∑Ne

i=1
J

(i)−1

k

if k = µND, µ ∈ N,

αi,k−1 otherwise,
(15)

whereND > 0 is the residence number of samples withαi,0 being an arbitrary initialisa-
tion. This kind of combined multiestimation control schemes have been recently applied
to the adaptive control of robotic manipulators as well (Ibeas and de la Sen, 2004). The
Fig. 13 illustrates the diagram of the proposed multiestimation scheme.

The fuzzy logic approach allows that the membership functions may be determined
by linguistic rules as

Fig. 13. Fuzzy Logic inspired multiestimation scheme.
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If f(condition1, condition2, . . . , conditionN) is true
Then modify membership functions as(. . . rules . . .),

wheref(·) is a logical function of its arguments. As an example, it may be possible
to avoid control singularities associated with pole-zero cancellations in pole placement
based control algorithms. Thus, given a set of estimated parameter vectors, add another
vector (or vectors) to the set. This vector (or vectors, which may be fixed or updated at
each sample) represents coprime pole-zero polynomials. If the system is near a control
singularity (condition that can be detected witha prescribed threshold by using the deter-
minant of theSylvestermatrix for example), then modify membership functions in such a
way that singularities in the control law are avoided. Membership functions are modified
in order to make more representative the coprime vectors in such a way that the com-
bined estimated vector remains coprime. Thus, linguistic rules for specifying the system
behavior can be included in the system operation increasing the way in which multimodel
based controllers can be designed. Each estimated parameter vector is updated according
to its corresponding estimation scheme.

5.1. Simulation Example

The following simulations comparing the single model based and the fuzzy logic based
multiestimation scheme show the usefulness of the proposed scheme.The plant, the input
signal and the performance index used in (15) are the same as in the ANN example. The
estimation algorithm is of least squares type for all the estimation algorithms. The least
squares algorithm is described by the following updating equations:

θ̂
(i)
k = θ̂

(i)
k−1 +

P
(i)
k−1ϕk

(
yk − ϕT

k θ̂
(i)
k−1

)
1 + ϕT

k P
(i)
k−1ϕk

,

P
(i)
k = P

(i)
k−1 −

P
(i)
k−1ϕkϕT

k P
(i)
k−1

1 + ϕT
k P

(i)
k−1ϕk

,

whereϕk is the above defined regressor,θ̂
(i)
0 arbitrary and bounded andP (i)

0 = P
(i)T
0 > 0

for i = 1, 2, . . . , Ne. The residence time is 5 samples. There are five estimators running
in parallel and initialized by

θ̂
(1)T
0 =

[
−0.5 0.2 −0.5 0.79 −0.35 0.082

]
,

θ̂
(2)T
0 =

[
−1 0.4 −0.4 0.9 −0.45 0.084

]
,

θ̂
(3)T
0 =

[
−1.5 0.6 −0.3 1 −0.55 0.086

]
,

θ̂
(4)T
0 =

[
−2 0.8 −0.2 1.2 −0.65 0.088

]
,

θ̂
(5)T
0 =

[
−2.5 1 −0.15 1.5 −0.75 0.088

]
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Fig. 14. Classical adaptive control scheme.

Fig. 15. Combined adaptive control scheme.

with P
(i)
0 = 1010I6 for i = 1, 2, . . . , 5. The initial values for the membership functions

are:

α0 =
[
1 0 0 0 0

]
,

and they are updated by Eq. 15 respecting the residence time constraint (withβ2 = β3 =
0). The single adaptive control scheme is initialized by the first estimator. The simulations
are obtained in Fig. 14.

It is shown in Figs. 14–16 that the fuzzy logic based combinedmultiestimation
scheme improves the transient response of the adaptive system. The transient overpeak is
reduced due to switching to a more convenient parameterisation of the adaptive controller
through the convex linear combination of theestimators of the multiestimation scheme
according to the updating rule (15). The transient response improvement is achieved once
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Fig. 16. Membership functionsαi,k .

the residence number of samples constraint is fulfilled since the updating rule is not al-
lowed to modify the weight values until then.

6. Conclusions

In this paper, an artificial intelligence representation of multiestimation based controllers
has been developed. A neural network interpretation of multimodel based controllers
has been given while a method for generating multimodel based artificial neural net-
works controllers from pre designed single model ones has been proposed. A genetic
algorithm and fuzzy logic based approach have been given to represent multiestimation
based schemes. These artificial intelligence techniques have suggested new ideas and
directions to be incorporated into the classical multimodel controllers. The genetic algo-
rithm approach has inspired a robustness test over the set of estimation algorithms which
allows to improve the working of the multiestimation scheme in noisy environments.
Also, the fuzzy logic approach suggests a way in which the estimation algorithms can
be combined to build an estimated parameter vector to parameterise the adaptive con-
troller. Some simulation examples show theusefulness of the proposed multiestimation
structures for improving the transient response of adaptive systems.
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Reguliatori ↪u, grindžiam ↪u daugiamodeli ↪u taikymu, pateiktis dirbtinio
intelekto priemonėmis

Asier IBEAS, Manuel de la SEN

Straipsnyje vystoma daugiamodeli↪u taikymu grindžiam↪u reguliatori↪u pateiktis dirbtinio in-
telekto tipiṅemis strukt̄uromis, kaip antai, neuroniniais tinklais, genetiniais algoritmais bei
neraiškia logika. Atlikta ši↪u strukt̄ur ↪u pagrindu sudaryt↪u reguliatori↪u palyginamoji analiże su
atitinkamais reguliatoriais, gautais taikant klasikinius metodus, naudojančius vienintel↪i tiriamos
sistemos model↪i. Pasīulytas robastiškumo testas, leidžiantis geriau parinkti sistemos model↪i, lygi-
nant su klasikiṅemis parametr↪u ↪ivertinimo schemomis, grindžiamomis daugiamodeliais. Pateikti
modeliavimo ir parametr↪u ↪ivertinimo rezultatai, taikant klasikinius ir dirbtinio intelekto struktūr ↪u
algoritmus.


