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Abstract. The problem of post-processing of a classified image is addressed from the point of
view of the Dempster—Shafer theory of evidence. Each neighbour of a pixel being analyzed is
considered as an item of evidence supporting particular hypotheses regarding the class label of
that pixel. The strength of support is defined as a function of the degree of uncertainty in class
label of the neighbour, and the distance between the neighbour and the pixel being considered. A
post-processing window defines the neighbours. Basic belief masses are obtained for each of the
neighbours and aggregated according to the rule of orthogonal sum. The final label of the pixel is
chosen according to the maximum of the belief function.
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1. Introduction

Colour image processing and analysis is increasingly used in industry, medical appli-
cations and other fields. Quality inspection, process control, material analysis, medical
image processing are a few examples (Onyango and Marchant, 2001; \erilas

2000; Xuet al., 1999). It is obvious that the use of colour image processing in various
fields of human activity will considerably gw in the near feature. Therefore, develop-
ment of efficient computational models for real world problems is of crucial importance.
Image segmentation is one of the most widely used procedures in various applications of
image processing technologies.

Various colour image segmentation techniques have been proposed. The most com-
monly used approaches include: histogram thresholding (Ktral., 2001), feature
/colour space clustering (Li and Yuen, 2000; Tominaga, 1992), edge detection ap-
proaches (Xt al., 1999; Trahanias and Venetsanopoulos, 1996), neural network based
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approaches (Huang al., 2002; Papamarkaoat al., 2000; Verikaset al., 1994; Verikas

et al., 1993), region-based approaches (Cheng., 2002; Tremeau and Borel, 1997),
Markov random fields (Gaet al., 2002) and mixture-of-Gasians modelling (Greenspan

et al., 2001), physics based approaches (Onyango and Marchant, 2001), and combina-
tions of above (Chen and Lu, 2002; Mirhndi and Petrou, 2000). A recent survey of
colour image segmentation methods can be found in (Ckiealg 2001).

All the existing colour image segmentation approaches are strongly application de-
pendent and suffer from different characteristic drawbacks. For example, histogram
thresholding does not consider spatialadlstand does not work well for images with-
out obvious peaks and valleys. Featuraa clustering basemethods daot utilize
spatial information too. How to select features for obtaining satisfactory segmentation re-
sults remains unclear. Region-based approaches are quite expensive in computation time
and sensitive to the examination order of regions and pixels. Edge detection approaches
are quite sensitive to noise and do not work well for images containing ill-defined edges.
Neural network based approaches usually require long training time and initialization
may affect the results. Markov random fields modelling is quite expensive in computa-
tion time.

A segmented image can be viewed as an image of class labels — a pixel-wise clas-
sified image, — where a class label is available for each pixel of the image. To improve
segmentation results various image post-processing procedures are often applied. Post-
processing is a common technique for improving recognition accuracy of strings or im-
ages (Bouchaffrat al., 1999; Cheret al., 1994; Verikas and Malmqvist, 1995; Song
et al., 1995; Verikaset al., 1994). Amongst others, the non-stationary Markov mod-
els (Bouchaffrat al., 1999) and the probabilistic relaxation labelling (Sahgl., 1995)
are two most often used approaches to tathée problem. Both of the approaches are
rather time consuming. For example, the basic idea of the probabilistic relaxation la-
belling algorithm is to make use of contextirgflormation conveyed by the neighbouring
pixels to update iteratively the label prohiitly distribution in each pixel location until
convergence to a consistent assignment of labels is achieved. In this paper, the prob-
lem of post-processing of a segmented image is addressed from the point of view of the
Dempster—Shafer theory of evidence.

The Dempster—Shafer theory of evidence (Shafer, 1976) has been used by several
authors in different applications as a tool for representing and combining items of evi-
dences. Applications can be found in fusion of outputs of several classifierst @{u
1992), analysis of medical images (Bloch, 1996; Chead., 1993), generalization of the
k — NN classifier (Denoeux, 1995), object detection (van Cleynenbresige] 1991),
and remote sensing classification (LeHegarat-Mastchk, 1997; Pinzet al., 1996). We
use the evidence theory to post-process pixel-wise classified colour images. We assume
that for each pixel of an image analyzedfdrmation is available about the degree of
doubt in the class label of the pixel. We consider each neighbour of a pixel being ana-
lyzed as an item of evidence supporting particular hypotheses regarding the class label of
that pixel. A post-processing window defines the neighbours. The items of evidence are
then combined to obtain the fihclass label estimate of the pixel being considered.
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The remainder of the paper is organized as follows. In the next section we briefly
describe the colour space used. Section 3 presents the background information on the
evidence theory. The image post-processing approach proposed is described in Sec-
tion 4. Section 5 presents the results of the experimental investigations. Finally, Section 6
presents conclusions of the work.

2. Colour Space Used

Colour image acquisition equipment such aGD colour camera obtains tHeGB val-

ues, which can be directly used for representing colours iR colour space. How-
ever, different acquisition equipment gives us diffedl@@B values for the same incident
light. One more drawback of tHRGB colour space is that the metrics does not represent
colour differences in a uniform scale, making it difficult to evaluate the similarity of two
colours from their distance in the space.

To meet the requirement of uniformity of distribution of colours the Commission
Internationale de I'Eclairage (CIE) has recommended using one of two alternative colour
spacesL*u*v* or L*a*b* colour space (Hunt, 1991; Wyszecki and Stiles, 1982). It is
common practice to use the a*b* colour space for describing absorbing materials such
as pigments and dyes (Verikasal., 2000). We used thé&*a*b* colour space in this
work.

To map theRGB values into thel.*a*b* colour space, thRGB values are first trans-
formed to theX'Y Z tristimulus values as follows:

X = a11R+a12G+a13B, (1)
Y =a21 R+ a2G + a3 B, (2)
Z = a3z1 R+ a32G + a3z B (3

with the coefficientsu;; being determined by a colourgtric characterization of the
hardware used. Having'Y Z tristimulus values thd.*a*b* colour space is defined
as (Wyszecki and Stiles, 1982):

L=116(Y/Y,)Y3 — 16, if Y/Y, > 0.008856, (4)
L =9033(Y/Y,), if Y/Y, <0.008856, (5)
a* = 500[(X/X,)"* = (Y/Ya) 7], (6)
b* = 200[(Y/Y:)"? = (2/2,)"], (7)

where X,,, Y,,, Z,, are the tristimulus ofX, Y, andZ for the appropriately chosen ref-
erence white. If any of the ration¥/X,,, Y/Y,,, andZ/Z, is equal to or less than
0.008856, it is replaced in the above formulae by:

7.7877f + 16/116, (8)
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wherefis X/X,,,Y/Y,,orZ/Z,, as the case may be (Wyszecki and Stiles, 1982). The
Euclidean distance measure can be used to measure the distaBigdetween the two
points representing the colours in the colour space:
1/2

AE = [(AL*)® + (Aa*)* + (Ab*)?] 9)

3. TheTheory of Evidence

Let © be a finite set of mutually exclusive and exhaustive atomic hypotheses about
some problem domain. The sét = {61,0s,...,60,} is called theframe of discern-

ment (Bloch, 1996). Let2® denote the power set @. A functionm: 2 — [0,1] is
called a basic probability assignment if

m(0) =0, (10)

m(A) = 1. (11)
ACO

The probability theory assigr@obabilities to atomic hypothese;, while a basic
probability number m(A) represents oneselief in a not necessarily atomic hypothe-
sis A. For a compound hypothesis+# 6;, m(A) measures our belief that we are willing
to committoA. The belief cannot be subdivided amongst the subsetsaofd is assigned
to A at the expense of support(6;). The fact of havingn(©) = 1 characterizes the total
ignorance. The belief ial and the belief in its negatioA do not necessarily sum to 1.

A support committed to aompound hypothesid should also be committed to the
hypotheses it implies. Therefore, to obtain the total beliefijrwe must add ton(A)
the basic probability numbers(B) for all subsetsB of A. If m is a basic probability
assignment, then a functidgel: 2° — [0, 1]

Bel(A) = m(B). (12)

BCA

The subsets$3 of © for which m(B) > 0 are called thdocal elements of the be-
lief function. The union of the focal elements is called thee of the belief func-
tion. The belief functions having only one focal element in additiorbtare called
simple support functions. Bel is a simple support function if there exists a focal ele-
mentF C O, Bel(©) = 1 and

s, if FC AandA + @,

Bel(4) = {0, otherwise, (13)

wheres is calleddegree of support of Bel. We use simple support functions in our
application.
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Given two basic probability assignments andm. associated wittBel; and Bels
induced by two different sources of information over the same frame of discerrfnent
can be combined into a single belief function if their cores are not disjoint. The Demp-
ster’s rule of combination asrthogonal sum is a convenient way for performing such
a combination. The orthogonal sum= m; @ ma, m: 2° — [0, 1] is defined as:

m(0) =0, (14)
m(A) =K Z mi(B)mz(D), A#0, (15)
BND=A
where
K= Y mi(B)ma(D). (16)
BND#D

The functionm is a basic probability assignment. The cord®f given bym equals
the intersection of the cores 8fel; andBel,. The combination rule is commutative and
associative, and it may be generalized to combine multiple evidences.

Let F' be a focal element for two simple support functidhd; andBel; with degrees
of supports; ands,, respectively. IfBel = Bel; @ Bel, andm is associated wittBel
then

m(F)=1—(1-s1)(1—s2), a7)
m(©) = (1 —s1)(1 — s2), (18)
m(A) =0, VAec2°\{F 0} (19)

4. The Approach

Suppose we are given a pixel-wise classified colour image. A post-processing window
centered on the pixel being considered, as shown in Fig. 1, defines a set of labelled (classi-
fied) neighbours of that pixel. We consider each member of the set as an item of evidence
supporting particular hypotheses regarding the class label of the pixel being considered.
There are two factors the strength of the support depends on, namely the degree of doubt
in the class label of the member and the distance between the member and the pixel being

Fig. 1. A post-processing window around the pixel of interest
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analyzed. We obtain the basic belief maske each of the members of the set and aggre-
gate them according to the rule of orthogonal sum. The final label of the pixel is chosen
according to the maximum of the basiopability numbers of th atomic hypotheses.

4.1. Defining the Basic Probability Assignment

Let® = {61,6s,...,0)} be a set ofM decision classes — the frame of discernment
of the application. The number of the clasgésis known in advance. In our case, each
class is specified by a set of reference patteobtained from clustering and learning
vector quantization processes (Verilahsl ., 2003).

Assume thak is a pixel of interest andl = {x!,x2?,...,xV} is a set ofl/ nearest
neighbours of the pixel. Associated with thith member of the set are the class label
LI =gq,L =1{1,2,..., M} and the degree of certainty, < [0, 1], with which the label
q was assigned to thgh member during the classification process based on the colour
vector representing the member. We use twoameters to characterize the certainty of
the classification process, nameJ%St — the parameter, which takes into consideration
the distance between the pixel and the closest clasg and ;L;fz”“l — the parameter
depending on the difference between the distances¥/aimthe two closest classes. The
exact definition of the parameters, based on suggestions presented in (Denoeux, 1995),
will be given shortly.

Let's assume that thgth class is represented by, reference patterns — weight vec-
tors. Letd(x/, sz) be the distance — measured according to (9) — between the input pixel
xJ and theith weight vector of thgth class. Suppose thw(;’ is the closest weight vector
to the pixelx’ amongst all the weight vectors representingdtieclass:

k::argi:fginN cl(Xj,Wf])7 q=1,2,..., M. (20)

We assume that the distance between pixeind the clas8, is given byd(x’, WZ) —the
distance between the pixel and the closest weight vectmg’ representing the clags.
Suppose thaj andp are the indices of the closest and tiext closest class, respectively,

to the pixelx’. The parameterg?:** and.;:v*! we then define as:

pigt = 05" exp { — agtd(x’, wy)}, (21)

et =1 = gyeetexp { — aget[a(xd wh) — dd, wh)] }, (22)
whereadist qrival | gdist andggivel are parameters and the indiggandp are given by

4= ate { l—1H2nn,M [z:1n2uan d(xj’ Wf)] }’ (23)

min _ d(x’, w})] } (24)

p = ar { min
& 1=1,2,...,M, l#q [i:1,2,...,Nl

whereN; is the number of reference patterns — weight vectors — representitty ttiass.
Heuristics for choosing the parameterS*', a7, 3, and g™ will be discussed
shortly.
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Foranyx’/ € X, including thex” itself, the knowledge that’ = ¢ can be considered
as a support of the hypothesis thétbelongs tod,. However, the belief in hypothesis
that L- = ¢ contains some degree of uncertainty. We find it reasonable to assume that

the degree of uncertainty dreases with the decrease ;ra;f;st and u}'};’al or with the
increase of the topological distandév, j) between pixels, and j. Since we use the
simple support functions for representing evidence, we distribute the evidence obtained
from the knowledge betweef), and the frame of discernmegt. Let us assume that

L7 = p. The following basic probability assignment”’ is then used for representing

the evidence:

m*(0,) = B;, (25)
m*(0)=1- 3, (26)
m“(A) =0, VAc2°\{0,,0}, (27)
Bi = BpgT [T{M%St, ;L}'f;’al}, exp { - apd(y,j)}} , (28)

whereT' stands for thé'-norm operator) < 3,, < 1, anda,, > 0. From (28) follows
that0 < 3; < 1. The coefficient,, expresses our initial certainty that a pixel assigned to
classq in the initial classification process has value for post-processing a pixel assigned
to classp. The use oty, specific for each class indicatesitlthe influence of the distance
d(v, j) may depend on the class of a pixel being analyzed.

For each of thé” neighbours of pixek” from the post-processing window the basic
probability assignment is defined. Next the basic probability assignments are combined
using the Dempster’s rule of combination.

4.2. Combining Evidence

Let V7 denote the number of neighboursxf belonging to the clasg,. Assuming
that V; 7é 0 and applqug a7) apq (18),_ we then obtain the following result of the
combination of thé/;” basic probability assignments:

my(6,) =1- [] (1-8), (29)
Li=q
my(©) =[] (1 - B). (30)
Li=q

If V; =0, thenmy (6,) = 0 andm; (©) = 1. Following (Denoeux, 1995), we obtain
the following result of the combination of all the basic probability assignments in the
post-processing window:

m”(0,) = %mZ(Gq)Hmé’(@), g=1,..., M, (31)
i#q
1 M
m” () = EHm;f(e), (32)
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where the normalizing factdk’ is given by

M M
K =3 om0y [[mi(©) + [[mi(©). (33)
q=1 i#q i=1

The final decision about the class lah&lof the pixelx” is obtained from the basic
probability nunbers of the atomic hypotheses:

¢” =arg max_m"(0;). (34)

i=1,...,

5. Experimental Tests

We applied the post-processing technique for analyzing colour images taken from pulp of
recycled paper. Fig. 2 presents two examplesich images. The aim of the analysis is to
detect specks in the images and sort out theimseveral categories of sizes and colours,
namelyCyan (C), Magenta (M), Yellow (Y), Green (G), andBlack (B). Such an analysis

is utilized in the paper recyiag process to characterize the quality of secondary pulps
regarding the amount of rest ink particles.

Since there are five colour classes of speduring the image segmentation process
each pixel of the images is assigned into onsixtolour classes iteding the aforemen-
tioned five and the background colour clasgvite (17). The pixel-wise classification
is based on the minimum distance classifier, having the colour classes represented by
several reference patterns — weight vectors. After the segmentation the post-processing
approach developed is applied to improve the segmentation results.

In total, N = Zgi 1 Ny = 49 reference patterns have been used to represent the six
colour classes. This number is given bg/a self-organizing mapJOM) of 7 x 7 = 49
nodes used to represent the chromaticity of pixels found in a representative set of colour
images analyzed (Verikasal., 2000). There werd/c = 9, Ny = 9, Ny =8, Ng = 5,

Np = 8, andNy = 10 reference patterns represemgtitne six aforementioned colour

Fig. 2. Two examples of images taken from different pulp samples.
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classes. These numbers were determined by analyzirf@tieand the average lightness
L* of pixels mapped onto the nodes of the map (Veritas., 2000).

5.1. Parameter Settings

The parameters*!, a7ival, gist, ggival, 3, anday, have to be fixed for determining

the basic probability assignments. Different heuristics have been tested to fix the param-
eters. Forgdist, gyivel and 3,, a good choice waggi*'= gyivel = 0.95, B,, = 0.9

if p=gqgandg,, = 0.8, if p # ¢. The parameters affect the subdivision of our belief
obtained from some knowledge between the atomic hypottesew the frame of dis-
cernmen®. The same value of the parametgrhas been used for all the colour classes
considered. The parameter controls the influence of the dist®#ncg) on the basic prob-
ability numbers. We used the Euclidean distance measure to measure the distance. To
determine the parametag”st, we used the heuristic presented in (Denoeux, 1995). The
parametersl’s* and«; %! were determined separately for each clags;’ = 1/dd'!
anda;i”‘” =1/ d;i”‘”, Wheredgist is the average distance between two training vectors
belonging to clas§,, andd;i”‘” is given by the difference between the average distances
d(x, wh) andE(x,w’;), WhereE(x,w’;) is the average distance of vectors coming from
the clasd, to the nearest reference vectepresenting the clagg, andd(x, w) is the
average distance of vectors coming from the ctys® the nearest reference vector rep-
resenting the class other thén

5.2. Post-Processing Results

Fig. 3 displays two examples of segmented and post-processed pulp images. The seg-
mentation was obtained through pixel-wise classification based on a minimum distance
to a reference pattern classifier. Image pixels assigned to the background dhgs —
— are assumed to be transparent in the visualization adopted in Fig. 3 and, therefore,
left unaltered if compared to the original images. Image pixels assigned to the classes
Cyan, Magenta, Yellow, Green, andBlack are highlighted and repsented by colour cor-
responding to the class name. The speck detection results shown in Fig. 3 can be a point
of contention, since some specks seem not to be detected. However, observe that the sen-
sitivity of the speck detection system wadjusted so, that only the specks located on
the top of the test sample are detected. Due to the light scattering in the test sample,
shadows of some specks located inside &8 samples also appear in the images. The
original image of the one shown on the right-hand side of Fig. 3 is the image presented
on the right-hand side of Fig. 2. Thus, one can contrast the images and examine the speck
detection results.

It is obvious that it is not an easy task to assess the classification results for such im-
ages. Only careful visual inspection candgplied. Such an inspection has shown that
the post-processing teclupie developed improves clafsation accuracy of the colour
images. The post-processing results depend, to some extent, on the size of the post-
processing window. We varied the size of the window frdm 3 to 7 x 7 pixels. For the
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Fig. 3. Two examples of segmented and post-processed pulp images.

pulp images, the best results — as judged by the visual inspection — were obtained using
the3 x 3 window.

Fig. 4 presents an image of an enlarged view of a multi-coloured speck before and
after the post-processing. The size of the post-processing window was %et foin
this example. As it can be seen from Fig. 4, even a single pixel, entirely surrounded by
neighbours from a different class, may retain its class label during the post-processing.
Such a post-processing result occurs, if the neighbours of the pixel being considered are
quite uncertain about the class label they possess, while high certainty was observed when
assigning a label to the pixel being considered. Such an adaptivity is the characteristic
feature of the post-processing technique developed.

Concerning the influence of the parametg§é, g5%, 3,,, anda, on the post-
processing results, it should be observed, that these parameters have trade-off relations
between each other. The parametgfs?, 3;v%, andj3,, affect the subdivision of our
belief obtained from some classification result between the atomic hypothessd the
frame of discernmen®. The fact of using values of these parameters less than unity
indicates that, even in the case pEffect match” there is some uncertainty that the pixel
being analyzed’ belongs to the matching clags. By the perfect match we mean here
a zero minimum distancé(x”, w’;).

Fig. 4. Left: An example of a speck image before the post-processtight: The same image after the
post-processing.



The Evidence Theory Based Post-Processing of Colour Images 325

When using a 2 GHz PC and the post-processing windawo8 pixels, the average
processing time of about 1 second was observed for an imagsof 576 pixels. Such
a processing speed is acceptable for the application at hand.

6. Conclusions

We presented an approach based on the evidence theory to post-processing of pixel-wise
classified images. Each neighbour of a pixel being analyzed is considered as an item
of evidence supporting particular hypotheses regarding the class label of that pixel. Basic
belief masses are obtained for each of thghkours and aggregated according to the rule

of orthogonal sum. The final label of thexpi is chosen according to the maximum of

the belief function. The technique allows exploiting information from both the original
image and the classified image, and takes into account uncertainty, with which labels
to pixels of the classified image were assigned. The characteristic feature of the post-
processing technique developed is its adaptivity. Even a single pixel, entirely surrounded
by neighbours from a different class, may retain its class label during the post-processing.
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Akivaizdumo teorija gristas spalvoty vaizdy analize budas
Marija BACAUSKIENE, Antanas VERIKAS

Pateikiamas Dempster—Shafer akivaizdumo teoriistas ludas spalvoto klasifikuoto vaizdo
kontekstinei analizei. Tariama, kad kiekvienas analizuojamo vaizdo pikselio kaimynas suteikia
porcija informacijos palaikatios hipoter apie pikselio priklausymtam tikrai klasei. Palaikymo
stiprumas apil@ziamas kaip priklausymo klasei abepsnlaipsnio bei atstumo tarp naggjamo
pikselio ir kaimyno funkcija. Pikselio kaimynai ap#fiami kontekstias analies langu. Pikselio
kaimyry suteikta informacija apjungiama pagal ortogonalios sumos t&sykiaudojama galu-
tiniam sprendimui apie pikselio priklausyntam tikrai klasei priimti.



