
INFORMATICA, 2004, Vol. 15, No. 3, 295–302 295
 2004Institute of Mathematics and Informatics, Vilnius

Efficient Adaptive In-Place Radix Sorting

Amer AL-BADARNEH
Computer Information Systems Department, Jordan University of Science and Technology
P.O. Box 3030, Irbid 22111, Jordan
e-mail: amerb@just.edu.jo

Fouad EL-AKER
Computer Science Department, New York Institute of Technology
P.O. Box 940650, Amman 11194, Jordan
e-mail: elaker_fouad@yahoo.ca

Received: January 2004

Abstract. This paper presents a new in-place pseudo linear radix sorting algorithm. The proposed
algorithm, called MSL (Map Shuffle Loop) is an improvement over ARL (Maus, 2002). The ARL
algorithm uses an in-place permutation loop of linear complexity in terms of input size. MSL uses
a faster permutation loop searching for the next element to permute group by group, instead of ele-
ment by element. The algorithm and its runtime behavior are discussed in detail. The performance
of MSL is compared with quicksort and the fastest variant of radix sorting algorithms, which is the
Least Significant Digit (LSD) radix sorting algorithm (Sedgewick, 2003).

Key words: sorting, radix sort, quicksort, straight radix, in-place sorting, LSD, MSD, ARL, MSL.

1. Introduction

Sorting is a computational process of arranging a collection of data items into a prede-
termine order and it is the most heavily activity performed frequently in computers. This
subject has been investigated and studied for many years and several books are written
on this subject (Ahoet al., 1974; Knuth, 1973; Mehlhorn, 1984; Sedgewick and Flajo-
let, 1996). Sedgewick in his book “Algorithms in Java” (Sedgewick, 2003) presents a
thorough, up-to-date treatment of the entire topic of sorting algorithms.

Sorting algorithms can be classified into sorting by data partitioning and sorting by
comparison algorithms (Lau, 1992). Data partitioning sorting algorithms basic operation
is mapping a key value to the subset it belongsto. The distributive partitioning sorting
algorithm (Dobosiewicz, 1978) is the first data partitioning sort algorithm. The distribu-
tive partitioning sorting algorithm executes in linear runtime when the data distribution is
uniform.

Radix sorting algorithms (McIlroyet al., 1993) have a pseudo linear running time.
They use a subsequence of the key bits, called a component or a digit, to directly index the
bucket where the key belongs. The number of buckets is decided based on thedigit-size by



296 A. Al-Badarneh, F. El-Aker

the algorithm. The number of buckets is the same as the number of integers representable
by the bits making up the digit.

The second important class of sorting algorithms is sorting by comparison. The basic
operation in such algorithms is a comparison operation between two different keys, using
all the bits in the two keys. Sorting by comparison average case is O(N log N), whereN
is the input size. An example of sorting by comparison is quicksort (Hoare, 1962).

Quicksort is said to sort adaptively because it selects the pivot from the input data
array. By comparison, adaptive radix sorting algorithms set thedigit-size according to the
input array size or a subgroup size, at least once. Adaptive radix sorting algorithms may
use the samedigit-size throughout the sorting process, or vary thedigit-size per subgroup.

The proposed algorithm MSL (Map Shuffle Loop) is an adaptive radix sorting algo-
rithm, which uses a possibly differentdigit-size for different calls. The rest of the paper is
organized as follows. Section 2 gives a background of radix sorting algorithms. Section 3
describes MSL algorithm. In Section 4, we present the analytical comparison of MSL and
its competitive algorithms. Section 5 presents experimental comparison results. Finally,
Section 6 gives conclusion and future work.

2. Background

Radix sorting algorithms fall into two major categories, depending if they process the
keys forward, from left to right, or backward, from right to left. The forward scanning al-
gorithm is called top down radix sort, or left radix sort. The backward scanning algorithm
is called bottom up radix sort, or right radix sort.

MSD (Most Significant Digit) is a left radix algorithm, which splits the keys into
subgroups. The algorithm is applied recursively for each subgroup separately, with the
first digits removed from consideration. After theith step of the algorithm, the input keys
will be sorted according to their firsti digits.

LSD (Least Significant Digit) is a right radix algorithm, which splits the keys into
groups according to their last digits, with the last digits removed from consideration after
the ith iteration. LSD is non-recursive and must use a stable loop to rearrange the keys.
MSD needs only to scan the distinguishing prefixes, while the entire key is scanned in
LSD. There is no way to inspect fewer digits in MSD and still be sure that the keys are
correctly sorted.

ARL (Maus, 2002) is a new in-place left radix sorting algorithm. It removes the extra
space requirement of MSD and uses a different loop than MSD to rearrange the keys.
This loop is called the permutation loop in ARL. ARL also uses an adaptivedigit-size.

LSD does not partition the input array and therefore it cannot call a different sorting
algorithm for small subgroups. Switching to insertion sorting is performed to achieve
speed up. Insertion sorting is faster than radix sorting algorithms for small size arrays.
We use the size of 25.



Efficient Adaptive In-Place Radix Sorting 297

3. The MSL Algorithm

MSL is a modification of the ARL algorithm. ARL permutation loop inserts each key
into its destination group. MSL permutation loop searches for the next element to insert
group by group, instead of one element at the time, as ARL.

ARL uses a loop ofN steps to find the next element to permute, while MSL uses a
loop ofK steps to find the next element to permute, whereN is the input array size and
K is the number of groups.

Thedigit-size passed to MSL is used by an initial step that computes the shift value
and the mask value. The shift value is used for right shifting keys. The mask value is
used to extract the group (bucket) number from the key. Masking is done after shifting.
On recursive calls, the mask value changes, since we use an adaptivedigit-size, while the
shift value is always decreased in recursive calls, in order to get the next digit.

MSL permutation loop places keys into their respective subgroups, where the start
and the end addresses of each subgroup are already calculated. During the permutation
loop, the left most subgroup that does not have all its key elements inserted is called the
origin-group.

The first element in theorigin-group is selected by MSL to root a permutation cycle
(a cycle of exchanges). Every permutation cycle begins and ends at acurrent-root-key,
which is the first element in theorigin-group not in its correct position. At each step of
the permutation cycle, an exchange takes place. The current key is exchanged with the
element that is in the correct position of the current key. Initially the current key is the
same as thecurrent-root-key.

A condition tests if the current key destination address is in theorigin-group. The
array element at the root key initial address is not valid once the permutation cycle has
started. Therefore, the current key and the element at the root key initial address cannot
be exchanged, when the above condition is true.

At this time, a permutation cycle is done, and the algorithm attempts to find a new
origin-group, to restart a new permutation cycle. If the search for a neworigin-group
fails, the permutation loop terminates (Program 1).

4. Analytical Study

MSL uses extra space for groups (buckets). For each group, MSL computes and stores
the boundary or the limit addresses. Each group has a lower limit address, and an upper
limit address. The group’s sizes are computed beforehand and are used to compute group
boundary addresses. No extra space is used for the group’s sizes, where the upper limit
address array is used temporarily instead for this purpose. The formula used for comput-
ing the number of groups is 2digitsize. Thedigit-size in bits parameter is set prior to any
call to MSL.

The ARL and the MSL algorithms contribute to radix sorting algorithms, by adding
a new category, which we call in-place radix sorting. LSD andMSD are not in-place.



298 A. Al-Badarneh, F. El-Aker

Program 1: Pseudo code for MSL algorithm

Initial Step: Compute shift and mask values

Step 1: Initialize boundary addresses to Zero
for (all used buckets k){
group_lower_bound[k] = group_upper_bound[k] = 0;}

Step 2: Compute group sizes
for (all input array elements, i){
// Use the upper address memory cell for each bucket to hold the size
// information. This step also keeps track of the smallest used bucket
// number (minGroup) and the largest used bucket number (maxGroup)
// for speed up reasons.

int k = (InputArray[i] »> bkt_shiftValue) & bkt_maskValue);
group_upper_bound[k]++;
if (k > maxGroup) maxGroup = k;
if (k < minGroup) minGroup = k;}

Step 3: Compute group lower and upper bounds
int i_start = bkt_left ;
for (group k, in range of groups : minGroup to maxGroup){
// group_lower_bound[k] point to group k start address

group_lower_bound[k] = i_start;
//group upper bound[k]pointtogroupk + 1startaddress

i_start += group_lower_bound[k];
group_upper_bound[k] = i_start;}

Step 4.1: Set originGroup initially to minGroup

Step 4.2: Update origin-group
while(originGroup < maxGroup && group_lower_bound[originGroup] ==
group_upper_bound[originGroup])

originGroup++; //advance originGroup

Step 4.3: if(originGroup == maxGroup) go toStep 5;

Step 4.4: Set information for initial key
current_key=initial_key=InputArray[group_upper_bound[originGroup] – 1];
// Compute address of initial key
initial_key = group_upper_bound[originGroup] – 1;
// Compute destination address of current key
current_key = group_upper_bound[dest_group(initial_key)] – 1;

Step 4.5: Permutation/rearrangement loop
exchange(current_key, InputArray[dest_address(current_key)];
Compute destination group ofcurrent_key
// Compute destination address ofcurrent_key
current_key = –group_upper_bound[dest_group(current_key)];
if(dest_address(current_key) == dest_address(initial_key))

then go toStep 4.2 // to find a neworigin-group
else repeatStep 4.5;

Step 5: Process subgroups
For all subgroups with size less than 25, use insertion sort,
otherwise call MSL recursively. Use the lower bounds array to
get group’s left and right addresses (bound addresses).



Efficient Adaptive In-Place Radix Sorting 299

Table 1

A general comparison

Algorithm In-place Stable Recursive Adaptive

LSD No Yes No No

MSD No No Yes No

ARL Yes No Yes Yes

MSL Yes No Yes Yes

A general comparison of MSL with the three competitive radix sorting algorithms LSD,
MSD, and ARL is shown in Table 1.

MSD and LSD are usingN extra space. ARL and MSL solve the extra space require-
ment of LSD and MSD. ARL and MSL use extra space for holding groups information
and do not need extra space for holding any keys. MSL is an in-place sorting algorithm,
like ARL, however it uses more extra space, as the initialdigit-size used in MSL is larger
thandigit-size s used by ARL. This extra space is small compared to the input array size.
ARL and MSL set thedigit-size adaptively to save time.

Out of the four algorithms, only the LSD algorithm is stable. Otherwise, the LSD
algorithm will not sort the input array correctly. Unlike LSD, the algorithms MSD, ARL,
and MSL recursively sort subgroups and may use simpler methods for this task when a
subgroup size is small. Using simpler methods to sort small subgroups is used often to
save time.

Regarding the time analysis, MSL is expected to be faster than ARL because MSL
uses a faster permutation loop. The pointer to the next array element to use when re-
starting the permutation loop is advanced group by group instead of element by element.
Sorting an array withN keys andK groups, ARL uses a loop ofN steps to locate the
next element to permute, while MSL uses a loop ofK steps. The worst case forK is N ,
and the best case is 1. The number of groups is usually much smaller than the input size
therefore the time saved by MSL is an order ofN .

5. Experimental Results

All the tests performed take the average of five runs. The results display the run time for
input sizes 500 000 to 4 000 000. We have also performed initial tests that show that the
same algorithm gives the same results, withina small percentage, when ran against many
arrays with the same characteristic distributions. The machine used in the tests is Pentium
III, with 128 MB RAM.

The digit-size value used by MSL is set before every call to MSL. Thedigit-size
setting depends initially on the input sizeN and on group sizes after the initial call. The
initial digit-size is set differently in the algorithm. Thedigit-size value used on the initial
call is 15 for MSL. The data sorted is 31-bits Java positive integers. The following is the
code used for setting thedigit-size in the MSL algorithm.



300 A. Al-Badarneh, F. El-Aker

if (group-size� 25) call insertion sort;
else if (group-size� 500) DIGITSIZE = 4;
else if (group-size� 5000) DIGITSIZE = 8;
else DIGITSIZE = 12.

Table 2 compares LSD, MSL, as well as quicksort. Quicksort is included because it
is a popular fast sorting method used commonly in computer applications. The javaAr-
rays.sort() method, which is a tuned quicksort, is used in the tests. We note from these
results that MSL is better than the two algorithms, LSD and tuned Java quicksort. U/x

means that the uniform distribution is on the range U[0...Max_Java_Int/x]. We used dif-
ferent uniform distributions with varying density, since the run time of MSL is affected
by the range of values. We use these distributions described because any distribution in
general can be expressed as a mix of distributions U/x. For example, the input array can
be divided intoz sub-lists, each filled with data from one of the distributions U/x. In

Table 2

A comparison shows MSL outperforms LSD & Java tuned quicksort

Size×106 Distr. 0.5 1 1.5 2 2.5 3 3.5 4

LSD 372 770 1156 1550 1946 2340 2734 3130
QSort U/1 614 1352 2102 2868 3670 4460 5266 6064
MSL 328 724 1064 1428 1758 2144 2526 2880

LSD 372 746 1110 1480 1844 2240 2616 2988
QSort U/2 658 1352 2118 2876 3634 4450 5250 6054
MSL 320 628 948 1300 1658 2020 2418 2822

LSD 330 660 1002 1338 1704 2034 2384 2702
QSort U/10 670 1360 2112 2866 3626 4448 5248 6046
MSL 272 646 958 1078 1360 1628 1900 2176

LSD 304 600 912 1210 1526 1856 2164 2482
QSort U/100 604 1364 2144 2892 3646 4406 5206 6208
MSL 230 502 836 1118 1382 1648 1900 2166

LSD 306 604 902 1204 1494 1810 2088 2426
QSort U/1000 636 1330 2064 2778 3538 4272 4998 5734
MSL 276 520 826 1154 1506 1814 2110 2372

LSD 300 590 890 1196 1486 1804 2086 2410
QSort U/10000 592 1220 1832 2408 3024 3614 4208 4822
MSL 296 582 868 1110 1428 1702 2000 2294

LSD 252 518 746 988 1264 1504 1792 2022
QSort U/100000 452 978 1428 1924 2438 2968 3440 3924
MSL 200 416 646 880 1100 1318 1562 1770

LSD 198 406 614 808 988 1240 1482 1670
QSort U/1000000 372 750 1152 1528 1934 2362 2780 3196
MSL 230 374 550 750 936 1098 1296 1486



Efficient Adaptive In-Place Radix Sorting 301

general, the fact that MSL performs better than other algorithms on these distributions is
quite valuable.

6. Conclusion and Future Work

Well known radix sorting algorithms, MSD and LSD are not in-place. A new radix sorting
category is added, this category is in-place radix sorting algorithms, which includes the
ARL and the MSL algorithms. The run time of the in-place radix sorting algorithms is
as fast as other radix sorting algorithms. From the results, MSL is faster than all the
algorithms compared against, for the test cases, and array sizes used.

In addition, the followings are two important tradeoffs to remember. When setting the
digit-size as a function of the size of subgroups, it is good to select thedigit-size as small
as possible, since the larger thedigit-size is, the more time MSL takes. On the other hand,
setting thedigit-size to a higher value is also desirable. This is because the partitioning
may not be enough, and generated subgroups may still require more partitioning. In this
case, MSL body execution is repeated once per group. The adaptivedigit-size setting has
to be set accurately compromising the MSLiteration speed and amount of partitioning.

Future work on in-place radix sorting algorithms includes: (1) Designing and testing
new in-place radix sorting strategies. In-place radix sorting algorithms are important since
very fast sorting is done with no extra space requirements. (2) A comparison of MSL
against ARL should be done. ARL is a new algorithm and its code is not available at the
time when this paper is published. Later work will compare ARL and MSL.

References

Aho, A., J. Hopcroft and J. Ullman (1974).The Design and Analysis of Computer Algorithms. Addison-Wesley
(Reading, Massachusetts).

Anderson, A., and S. Nilsson (1998). Implementing radixsort.ACM Journal of Experimental Algorithmics,
3(7).

Dobosiewicz, W. (1978). Sorting by distributive partition.Information Processing Letters, 7(1), 1–6.
Hoare, C. (1962). Quicksort.Computer Journal, 5(1), 10–15.
Knuth, D.E. (1973).The Art of Computer Programming, vol. 3, 2nd. ed. Addison-Wesley (Reading, Mas-

sachusetts).
Lau, K.K. (1992). Top-down synthesis of sorting algorithms.The Computer Journal, 35, A001–A007.
Maus, A. (2002). ARL: a faster in-place, cache friendly sorting algorithm. InNorsk Informatik konferranse

NIK’2002. pp. 85–95.
McIlroy, P., K. Bostic and M. McIlroy (1993). Engineering radix sort.Computer Systems, 6(1), 5–27.
Mehlhorn, K. (1984).Data Structures and Algorithms 1: Sorting and Searching. Springer-Verlag.
Sedgewick, R. (2003).Algorithms in Java, Parts 1–4, 3rd. ed. Addison-Wesley (Reading, Massachusetts).
Sedgewick, R., and P. Flajolet (1996).An Introduction to the Analysis of Algorithms. Addison-Wesley (Reading,

Massachusetts).



302 A. Al-Badarneh, F. El-Aker

A. Al-Badarneh received his BSc degree (1987) in computer science from Yarmouk
University (Jordan), MSc (1995) and PhD (1999) degrees in computer science from
Wayne State University (USA). He worked in the University of Jordan (1990–1992) as
a teaching assistant at the Department of Computer Science. In May 2000, he joined the
Department of Computer Science and Information Systems at Jordan University of Sci-
ence and Technology, Jordan, where he is currently an assistant professor and a chairman
of the Department of Computer Information Systems. His research interests include: data
mining, sorting and graph algorithms, and parallel heuristic search

F. El-Aker received his BSc degree (1986) in computer science from Kuwait Univer-
sity (Kuwait), MSc (2003) honors degree in computer science from N.Y.I.T. (USA). He
worked at several software engineering andinternet companies in development and de-
sign of software. His current research interests are sorting, divide and conquer algorithms,
building fast efficient software, graph algorithms, TSP, and parallel algorithms.

Adaptyvus skiltinio rikiavimo algoritmas

Amer AL-BADARNEH, Fouad EL-AKER

Pateikiamas naujas skiltinio rūšiavimo (rikiavimo) algoritmas, pavadintas MSL, kur↪i taikant
daugel↪i kart ↪u surikiuojamas duomen↪u rinkinys. Jis yra pseudotiesinis. Tai žinomo skiltinio rikia-
vimo algoritmo, vadinamo ARL, kuriame pradedama rikiuoti nuo vyriausiosios skaičiaus skilties,
modifikacija, gauta jungiant perkeliamus duomen↪u elementus↪i grupes. Ḋel to MSL algoritmas
spartesnis už kitus žinomus algoritmus. Pateikiamas efektyvumo palyginimas su kitais panašiais
algoritmais esant↪ivairiems rikiuojamo duomen↪u rinkinio dydžiams.


