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Abstract. We consider a problem of nonlinear stochastic optimization with linear constraints. The
method ofε-feasible solution by series of Monte-Carlo estimators has been developed for solving
this problem avoiding “jamming” or “zigzagging”. Our approach is distinguished by two peculiar-
ities: the optimality of solution is tested in a statistical manner and the Monte-Carlo sample size is
adjusted so as to decrease the total amount of Monte-Carlo trials and, at the same time, to guarantee
the estimation of the objective function with an admissible accuracy. Under some general condi-
tions we prove by the martingale approach that the proposed method converges a.s. to the stationary
point of the problem solved. As acounterexample the maximization of the probability of portfolio
desired return is given, too.
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1. Introduction

Optimal decisions in business and finance are frequently provided by solving nonlinear
stochastic programming problems with linear constraints:

F (x) ≡ Ef(x, ξ) → max
x∈X

, (1)

where the objective function is an expectation of a random functionf : �n × Ω → �
depending on a random vectorξ ∈ Ω from a certain probability space(Ω, Σ, P ), and the
feasible setx ∈ X ⊂ �n is a bounded and convex linear set in general:

X = {x|Ax = b, x � 0} , (2)

b ∈ Rm, A is then × m-matrix,X �= ∅.
The methods of stochastic approximation were first proposed to solve stochastic op-

timization problems. The convergence in stochastic approximation is ensured by varying
certain step-length multipliers in a scheme of stochastic gradient search (Mikhalevitch
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et al., 1987; Kushner, 1997; Han-Fu-Chen, 2002; Ermolievet al., 2003; etc.). However,
the rate of convergence of stochastic approximation slows down for constrained problems
(Polyak, 1987; Uriasyev, 1990), besides, the gradient-type projection method, usually ap-
plied here, can no converge when constraints are linear due to “zigzagging” or “jamming”
(Bertsekas, 1982; Polyak, 1987; etc.).

The Monte-Carlo method is a tool also applied very often in solving problems of
stochastic optimization appearing here, particularly, in that of stochastic linear program-
ming (Prekopa, 1999; Ermolievet al., 2003). Kjellstrom (1969) was the first who sug-
gested using series of Monte-Carlo estimators for the iterative improvement of conver-
gence behavior in nonlinear stochastic optimization. Further this approach has found ap-
plications to technical design of electronic devices (Beliakovet al., 1985; Sakalauskas,
1997). Application of this method in stochastic optimization is based on replacement of
the objective function, being mathematical expectation, by averaged means, provided the
during Monte-Carlo simulation (see, e.g., Shapiro, 1989). The issues remain important
in approaching such programs to stochastic optimization related with a great amount of
computations usually required for the performance, and in the evaluation of uncertainty
of the Monte-Carlo estimators obtained. On the other hand, the Monte-Carlo approach
also has some properties that could be helpful for enhancement of stochastic programs,
namely, via the Monte-Carlo simulation rather often we can estimate both functions with
their derivatives without essential additional costs (see, i.e., Rubinstein, 1983; Shapiro,
1986; Sakalauskas, 2002), besides, sampled Monte-Carlo estimators usually have the
Gaussian distribution in asymptotic (Bentkus and Gotze, 1999) that offers a way of apply-
ing the standard theory of normal statistics (Krishnajah and Lee, 1988) to a simple com-
putation of confidence intervals of estimators and testing of optimality hypotheses, etc.

The properties mentioned have been used in the development of the approach to
unconstrained stochastic optimization by Monte-Carlo estimators (Sakalauskas, 2000),
where the optimality of portfolio is tested in a statistical manner and the rule for Monte-
Carlo sample size adjustment has been introduced in order to decrease the total amount
of Monte-Carlo trials and, at the same time, to guarantee the solution of an optimization
task with an admissible accuracy. Further this approach was extended to constrained op-
timization with one probabilistic constraint using the method of the Lagrange function
(Sakalauskas, 2002). However, in many applications the stochastic optimization with lin-
ear constraints is connected with a strict validity of constraints in each iteration, which
pose the above mentioned problems of “jamming” or “zigzagging”. In this paper, we
develop a method for stochastic optimization with linear constraints by Monte-Carloε-
feasible estimators, which avoids the later problem and focuses on a rational performance
of computations as well as on the control of computational error.

The paper is organized as follows. In the next section we describe the stochastic op-
timization procedure and analyze its convergence. The termination rules based on the
asymptotic properties of Monte-Carlo estimators are introduced in Section 3, and a coun-
terexample of portfolio VAR optimization with log-normal returns is considered in Sec-
tion 4.
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2. Optimization Procedure and Convergence Analysis

For simplicity, assume the distribution of market uncertainty factors to be absolutely
continuous and described by the density functionp: Ω → �+ that are supposed to be
smoothly differentiable,p(0) > 0. Thus the objective function can be expressed as a
multivariate integral:

F (x) =
∫

Rn

f(x, y) · p(y) dy. (3)

The differentiability of integrals of this kind has been studied rather well, and there
exists a technique for stochastic differentiation to express such an objective function
and its gradient both together as expectations in the same probability space (Rubin-
stein, 1983; Prekopa, 1999; Ermolyevet al., 2003; Uriasyev, 1994; etc.):∇F (x) =∫

Rn g(x, y) · p(y) dy, whereg: �n × � × Ω → �n is a certain function (for explicit
formulas see in the given above references). Thus, differentiability of the objective func-
tion (3) can be assumed for a wide class of optimization problems and, consequently, both
the objective function and its gradient can be estimated using the Monte-Carlo method.
Thus a gradient-type nonlinear optimization method by Monte-Carlo estimators can be
developed, usingε-feasible solutions as the standard way to guarantee the validity of
linear constraints in each iteration and avoid “jamming”or “zigzagging”.

Following the standard approach to determine the optimality condition, let us define
a set of feasible directions for some solutionx ∈ X as:

V (x) = {g ∈ �n|Ag = 0, ∀1�i�n(gj � 0, if xj = 0)} . (4)

Further we denote the projection of the vectorg to a certain setQ by gQ.
Thus the necessary condition of optimality (Bertsekas, 1982) for the solutionx ∈ X

is written now as

∇F (x)V = 0. (5)

Assume a certain multiplier̂ρ > 0 to be given. Let us define the functionρx: V (x) →
�+

ρx(g) =


 min

{
ρ̂, min

gj<0,

1�j�n

(
− xj

gj

)}
, g �= 0,

ρ̂.

(6)

Thusx + ρ · g ∈ X , whenρ = ρx(g), for anyg ∈ V , x ∈ X .
Let a certain small valuêε > 0 be given. Now, let us introduce anε-feasible set

Vε(x) =
{
g|Ag = 0, ∀1�i�n

(
gj � 0, if

(
0 � xj � εx(g)

))}
, (7)

where the functionεx: V (x) → �+ is denoted asεx(g) = ε̂ ·max 1�j�n
gj�0

{
min{xj ,−ρ̂ ·

gj}
}

, ∀x ∈ X .
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It is a well-known fact that in stochastic optimization only the first order proce-
dures are working and ensuring the best rate of convergence (Polyak, 1987; Ermolyev,
2003; etc). On the other hand, it has been also theoretically studied that a stochastic
method of the first order method should converge if the variance of the stochastic er-
ror of the gradient estimate is proportional to the square norm of the gradient (Polyak,
1987; Sakalauskas, 2000). Since the error of Monte-Carlo estimators depends, first of all,
on the sample size, we confine ourselves to the gradient-type methods introducing the
corresponding rule for size regulation in Monte-Carlo estimators.

Thus, let the initial approximation of the solutionx0 ∈ X , some initial Monte-Carlo
sample sizeN0 be given and Monte-Carlo estimators of the objective function and the
gradient would be computed. We define the sequence{xt, N t}∞0 in an iterative way by
setting

xt+1 = xt + ρt · G̃t, (8)

N t+1 � ρ̂ · C
ρt · |G̃t|2

, (9)

whereC > 0 is a certain constant,ρt = ρxt(Ĝt), G̃t is anε-feasible direction at the
pointxt (i.e., projection of the gradient estimate to theε-feasible set (4)). The following
theorem provides conditions for the convergence of the method (8), (9).

Theorem 1. Let the function F : X → � be differentiable, the gradient of this function
be Lipshitzian with the constant L > 0, supx∈X |∇F (x)| < ∞, supx∈X F (x) < ∞.

Assume the set X = {x ∈ �n|Ax = b, x � 0} to be bounded and having more than
one element, b ∈ Rm, A is the n × m-matrix.

Let it be possible to generate Monte-Carlo samples and corresponding estimates
1
N

∑N
j=1 nj , 1

N

∑N
j=1 γj to compute for any size N > 1, when Eηj = F (x), Eγj =

∇F (x), E|ηj | < ∞, E|γj | < ∞, E|γj −∇F (x)|2 < K , ∀x ∈ X .
Then, starting from any initial approximation x0 ∈ X and N0 > 1, formulae (8), (9)

define the sequence {xt, N t}∞0 so that xt ∈ X , and there exist values ρ̄ > 0, ε0 > 0,
C > 0 such that

lim
t→∞

∣∣∇F (xt)V t

∣∣2 = 0(mod(P )), (10)

for 0 < ρ̂ � ρ̄, 0 < ε � 0, C � C.

The proof of the theorem is given in Appendix.
Thus, we see that the application of anε-feasible solution enables us to avoid “jump-

ing” due to the statistical nature of Monte-Carlo estimators.
Note that for numerical implementation, the next rule similar to (8) is sometimes

rather convenient:

N t+1 =
ρ̂ · Φγ

ρt · G̃t · (Qt)−1 · G̃t
, (11)
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whereQt is the sampling matrix of vectorsγj andΦγ is the corresponding quantile of
Fisher’s distribution (see, also Sakalauskas, 2002).

The Monte-Carlo sample size regulationaccording to (8) enables us to construct rea-
sonable, from the computational standpoint, stochastic methods for stochastic optimiza-
tion. Namely, the method can start from a small initial sizeN0 = 20 − 50, because
there is no great necessity to evaluate estimators with a high accuracy at the beginning of
optimization, when it suffices only to estimate an approximate direction leading to the op-
timum. Further the sample size is increased with respect to (8) or (11), gaining the values,
sufficient to evaluate the estimators with anadmissible accuracy only at the final stage of
optimization, when the gradient becomes small in the neighbourhood of optimum. The
numerical experiments and testing corroborate such a conclusion.

3. Termination Procedure

It is convenient to use the fact of asymptotic normality of Monte-Carlo estimators to
evaluate the uncertainty of estimators and test the hypotheses of optimality (Sakalauskas,
2002). Thus, iteration by (8)–(9) or (8)–(11) should be terminated when:

a) the statistical criterion does not contradict the hypothesis on the criticality of the
point of the current iteration (9) with the significance1 − σ:

(N t − nt)(∇̃F t)′ · (Qt)−1 · ∇̃F t � Φσ, (12)

whereQt is the covariance sampling matrix of vectorsγj , Φσ is the quantile of the
Fisher distribution with degreesN t − nt, andnt, nt is the dimension of the
ε-feasible set;

b) the objective function has already beenevaluated with an admissible confidence
intervalδ:

2ηβ · D̃t

√
N t

� δ, (13)

whereηβ is the normalβ-quantile andD̃t = D̃(xt, R) is the sampling standard
deviation of sampleηj .

4. Counterexample

Financial planning in the case of uncertainty is often reduced to stochastic nonlinear
optimization with linear constraints (Duffie and Pan, 1997; Mansiniet al., 2003). Let us
to consider an application of the developed approach to the optimization of portfolio of
the Lithuanian Stock Market withn = 4 securities.

We make the analysis for daily returns of the following assets:
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Table 1

ENRG MAZN ROKS RST
µi σi

Correlations

ENRG 1 0.0120 0.0010 0.1621 0.5029 0.7439

MAZN 0.0120 1 −0.0310 0.0954 0.4447 0.6414

ROKS 0.0010 −0.031 1 0.0572 0.2609 0.3320

RST 0.1621 0.0954 0.0572 1 0.3327 0.3555

• ENRG – joint stock company “Lietuvos energija” (power industry);
• MAZN – joint stock company “Mazeikiu Nafta” (oil refinery);
• ROKS – joint stock company “Rokiskio suris” (dairy products);
• RST – joint stock company “Rytu skirstomieji tinklai” (power industry).

A brief description of the data is given in Table 1, where empirical data were fitted by
a lognormal model according to the Kolmogorov–Smirnov criterion. The data source is
www.nse.lt/nvpb/index_en.php, time period – 2002.01–2003.10.

Thus, the portfolio return function is as follows,

r(x, ξ) =
n∑

i=1

xi · eξi ,

ξ � N(µ, Σ), µ = (µ1, µ2, ..., µn), Σ = [σij ]n1 . Selection of portfolio weighs has been
considered to maximize a probability of portfolio return to exceed the desired thresh-
old R:

F (x) = P
(
r(x, ξ) � R

)
→ max

x∈X
, (14)

subject to a simple set of constitutional constraintsX =
(
x|xi � 0,

∑n
i=1 xi = 1

)
.

Selection of portfolio according to this objective function by the method developed
is shown in Table 2. The gradient of the objective function (14) was expressed, using the
transformation to polar variables described by Sakalauskas (1998). The parameters of the
method were as follows:ρ = 2.0, δ = 1%, γ = σ = β = 0.95, ε = 0.7.

We see that, aftert = 10 iterations and total 17753 Monte-Carlo trials, the probability
of the desired portfolio increased from 78.12% (67.92 87.33) to 84.29% (83.79 84.79)
(third column), changing the strategies of portfolio sharing with respect to (8) (second
column) and choosing the Monte-Carlo sample size with respect to (11) (last column).
The total amount of trials

∑t
i=1 Ni exceeded the Monte-Carlo sample sizeNt at the time

of the stopping decision only by 1.79 times.
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Table 2

t x1 x2 x3 x4
EstimateF̃t

(Confidence)
Hotelling statistics (12)

(Fisher quantileFσ)
Nt

1 25.0 25.0 25.0 25.0 78.12% (68.92 87.33) 2.04 (2.57) 50

2 39.6 28.1 18.7 13.6 80.83% (73.59 88.08) 2.21 (2.53) 63

3 35.5 42.2 12.4 9.9 78.50% (71.39 85.61) 0.20 (2.51) 72

4 37.3 44.8 11.2 6.7 82.94% (81.14 84.73) 5.55 (2.38) 870

5 40.2 46.1 8.8 4.9 85.12% (82.58 87.67) 1.96 (2.40) 376

6 41.6 48.8 7.3 2.3 83.66% (81.25 86.07) 3.46 (2.39) 459

7 44.3 50.4 5.3 0.0 82.84% (79.92 85.76) 2.58 (2.63) 319

8 49.3 47.7 0.3 0.0 83.14% (80.28 86.00) 0.16 (2.63) 326

9 50.3 49.2 0.5 0.0 84.00% (83.30 84.69) 0.84 (2.61) 5318

10 50.7 49.3 0.0 0.0 84.29% (83.79 84.79) 0.18 (3.00) 9900

ΣNt = 17753

5. Conclussion

The method for stochastic programming with linear constraints byε-feasible Monte-
Carlo estimators has been developed. The method distinguishes itself by two peculiar-
ities: the optimality of the solution is tested with respect to statistical criteria and the
Monte-Carlo sample size is adjusted in an iterative way so as to guarantee the estimation
of the objective function with an admissible confidence after a finite number of series.
The theoretical study and a counterexample demonstrate the applicability of the approach
proposed in the stochastic portfolio optimization.

Appendix

We need several lemmas to prove the theorem.

Lemma 1. Let g ∈ V (x), x ∈ X . Denote ε = εx(g) according to (7) and by gε the
projection of the vector g to an ε-feasible set. Then

A) each nonzero vector g contains negative components; moreover, there exists a
value a < ∞ such that uniformly

|g|
max 1�k�n

gk<0
{|gk|}

� a, g ∈ V (x), x ∈ X ;

B) g �= 0 ⇒ ε > 0;
C) g = 0 ⇔ gε = 0;
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D) if j is such that xj

|gj | = min 1�i�n
gi<0

(
− xi

gi

)
, then

|gj | � ε̂ · max
1�k�n
gk<0

{|gk|} .

Proof. Note thatX is a bounded convex and closed set from some linear space of nonzero
dimensions andV (x) are convex closed cones (Rockafellar, 1996). It is easy to get sure
that every nonzero vectorg ∈ V contains negative components. Indeed, in the opposite
case, we have thatx + ρ · g ∈ X for anyρ � 0, which contradicts the assumption on
the finiteness of the set of institutional restrictionsX . The estimate in A follows from the
closeness and finiteness ofX , too.

We have that{g ∈ V ∩ g �= 0} ⇒ ∃1�j�n(gj < 0 ∩ xj > 0) by definition of the
feasible set, because all the components of anyx ∈ X cannot be zero at the same time
and any nonzero vectorg ∈ V contains negative components. This implies B.

Let us study the structure of anε-feasible set (7). According to the definition, this set
is an intersection of a finite number of linear half-spaces. It is concave, because

max
1�j�n

{
min

{
xj , max(0,−λ · ρ̂ · g1

j )
}}

+ max
1�j�n

{
min

{
xj , max(0,−(1 − λ) · ρ̂ · g2

j )
}}

� λ max
1�j�n

{
min

{
xj , max(0,−ρ̂ · g1

j )
}}

+(1 − λ) max
1�j�n

{
min

{
xj , max(0,−ρ̂ · g2

j )
}}

,

when0 � λ � 1, ∀x ∈ X . Theε-feasible setVε(x) is a subset of the feasible setV (x).
It is easy to get convinced that it contains the zero vectorg = 0 in a close vicinity from
V (x). The latter conclusions imply proposition C.

Now let the indexj be such thatxj

|gj | = min gi<0,

1�i�n

(
xi

|gi|
)
, g ∈ Vε. Then

|gj | � |gi|
xj

xi
� ε̂ · |gi|

max 1�k�n

xk+ρ̂·gk�0

{xk}

xi
� ε̂ · |gi|, ∀1�i�n(xi + ρ̂ · gi � 0).

However,

|gj | � xj

ρ̂
� ε̂ max

1�k�n

xk+ρ̂·gk>0
gk<0

{|gk|}, ∀1�i�n(xi + ρ̂ · gi > 0, gi < 0), too.

Both last estimates imply D.
The lemma is proved.

Lemma 2. If vectors g and g1 are ε-feasible at the point x ∈ X , then for a certain a > 0

∣∣ρx(g1) · g1 − ρx(g) · g
∣∣ � ρ̂ ·

(a

ε̂
+ 1

)
· |g1 − g|.
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Proof. Denote indicesj and i such that xj

|g1
ε,j

| = min 1�k�n

g1
ε,k

<0

(
xk

|g1
ε,k

|
)

and xi

|gε,i| =

min 1�k�n
gε,k<0

(
xk

|gε,k|
)
. Let, for the sake of simplicity,ρx(g1) � ρx(g). Then

ρx(g1) − ρx(g) = min
(
ρ̂,

xj

|g1
j |

)
− min

(
ρ̂,

xi

|gi|
)

�
∣∣∣ xi

|g1
i |

− xi

|gi|

∣∣∣
� ρx(g1) ·

∣∣∣g1
i

gi
− 1

∣∣∣ � ρ̂ · |g
1 − g|
gi

.

Thus, by virtue of A and D of Lemma 1:

∣∣ρx(g1) · g1 − ρx(g) · g
∣∣ =

∣∣∣ρx(g1) · (g1 − g) +
(
ρx(g1) − ρx(g)

)
· g

∣∣∣
� ρ̂ · |g1 − g| ·

(
1 +

|g|
gi

)
� ρ̂ · |g1 − g| ·

(
1 +

max gi<0
1�i�n

|g|

gi
· |g|
max gi<0

1�i�n
|g|

)

� ρ̂ · |g1 − g| ·
(
1 +

a

ε̂

)
.

The lemma is proved.

Lemma 3. Assume the conditions of theorem to be valid and let ρ̂ > 0 and ε̂ > 0 be
some small values. Then:

EF (x + ρ̃ · G̃)�F (x) + E
(
ρ̃ · |G̃|2

)
·
(
1 − ρ̂ · L

2

)
−

ρ̂ ·
(
1 + a

ε̂

)
· K

N
, ∀(x∈X),

where G̃ is the projection of the estimate ∇̃F to the ε-feasible set, ρ̃ = ρx(G̃) is the
corresponding step length chosen according to (6).

Proof. We have from the Lagrange formula (Diedonne, 1960) that

F (x + ρ̃ · G̃) = F (x) + ρ̃ · G̃′ ·
∫ 1

0

∇F (x + ρ̃ · τ · G̃) dτ

= F (x) + ρ̃ · G̃′ · ∇̃F − (ρ̃ · G̃ − ρ · G)′ · (∇̃F −∇F )

+ρ·G′ ·(∇̃F−∇F ) +ρ̃·G̃′ ·
∫ 1

0

(∇F (x + ρ̃ · τ · G̃) −∇F (x)) dτ,

whereρ = ρx(G), G is theε-feasible projection of gradient∇F . Thus, the proof of the
lemma is complete taking the expectation of both sides of this expression and applying
further the Lipshitz condition and Lemma 2.

The lemma is proved.
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Proof of Theorem 1

Denote a stream ofσ-algebras generated by the sequence{xt, N t}∞t=0 by {�t}∞t=0. Let
us introduce a random sequence

Xt = F (xt, R) −
ρ̂ ·

(
1 + a

ε̂

)
· K

N t
.

Assume0 < ρ̂ � ρ̄ = 1
L . Then by virtue of Lemma 3 we have that

E(Xt+1|�t−1) � Xt +
(
1 − ρ̂ · L

2

)
· E

(
ρt · |G̃t|2|�t−1

)
−ρ̂ ·

(
1 +

a

ε̂

)
· K · E

( 1
N t+1

∣∣�t−1

)

� Xt +
(

1
2
−

(
1 + a

ε̂

)
· K

C

)
· E

(
ρt · |G̃t|2|�t−1

)
, t = 1, 2, . . . . (1A)

It follows thatXt is a submartingale forC >

(
1+ a

ε̂

)
·K

4·L .
By summing up unconditional expectations on both sides of inequality (1A) and set-

ting C � C =

(
1+ a

ε̂

)
·K

4·L , one can get:

1
4

t∑
k=0

E
(
ρk ·

∣∣G̃(xk)
∣∣2) � EF (xt+1) − F (x0) + ρ̂ ·

(
1 +

a

ε̂

)
· K. (2A)

The left-hand side of this inequality is bounded, and therefore the series on the left
converges ast → ∞.

Now, saylimt→∞ |G̃(xt)|2 �= 0. Then a certain small valueδ2 > 0 could be found
that a converging infinite subsequence{xtk}∞k=0 exists such that|G̃tk |2 > δ2 for any
term of this subsequence. Denote the limit of this subsequence byŵ. Let us fix a vicinity
of ŵ such that|G̃tk |2 > δ2

2 for all points of the subsequence from this vicinity. It follows
by virtue of B) of Lemma 1 and the continuity ofεx(·) that there exists a certainε1 so
thatεtk � ε1 > 0 for all points of the subsequence hitting this vicinity. Hence, by virtue
of (15), we have:ρtk · |G̃tk |2 � min

(
ρ̂, ε1

|G̃t|

)
· |G̃t|2 � min(ρ̂, ε1) · δ

2 . Consequently,

we should have an infinite number of terms in (2A) exceedingmin(ρ̂, ε1) · δ
2 > 0 which

contradicts the convergence in (2A). This implies:

lim
t→∞

∣∣G̃(xt)
∣∣2 = 0 (mod(P )). (3A)

Next, by virtue of (19), (3A), we obtain

lim
t→∞

1
N t

= 0 (mod(P )). (4A)
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Further

lim
t→∞

|Gt|2 � lim
t→∞

∣∣G̃t
∣∣2 + lim

t→∞

∣∣G̃t − Gt
∣∣2 = 0 (mod(P )),

becauselimt→∞ |G̃t − Gt|2 = 0 by virtue of (4A) and the law of large numbers. It
remains to apply the proposition C of Lemma 1 to establish (10).

The proof of the theorem is completed.
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Monte-Karlo metodo taikymas netiesiniam stochastiniam
programavimui su tiesiniais ribojimais

Leonidas SAKALAUSKAS

Darbe nagriṅejama stochastinio netiesinio programavimo su tiesiniais ribojimais problema.
Sukurtas leistin↪u sprendini↪u metodas šiai problemai spr↪esti panaudojus Monte-Karlo im̌ci ↪u seri-
jas, kuris leidžia išvengti “užsikirtimo” arba “zigzagavimo”. Metodas pasižymi dviem pagrindinėm
savyḃem: sprendinio optimalumas yra testuojamas pasinaudojus statistiniais kriterijas bei Monte-
Karlo imči ↪u tūris yra reguliuojamas taip, kad sumažinti skaičiavim ↪u apimt↪i, reikaling ↪a uždaviniui
išspr↪esti, bei užtikrinti metodo konvergavim↪a. Pritaikius martingal↪u metod↪a prie gana bendr↪u s↪alyg ↪u

↪irodytas sukurto optimizavimo metodo konvergavimas b.v.↪i stacionar↪u sprendžiamos problemos
tašk↪a. Skaitmeninio vertybini↪u popieri↪u portfolio optimizavimo pavyzdys pateikiamas metodo
veikimui pademonstruoti.


