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Abstract. We consider a problem of nonlinear stochastic optimization with linear constraints. The
method ofe-feasible solution by series of Monte-Carlo estimators has been developed for solving
this problem avoiding “jamming” or “zigzagging”. Our approach is distinguished by two peculiar-
ities: the optimality of solution is tested in a statistical manner and the Monte-Carlo sample size is
adjusted so as to decrease the total amount of Monte-Carlo trials and, at the same time, to guarantee
the estimation of the objective function with an admissible accuracy. Under some general condi-
tions we prove by the martingale approach that the proposed method converges a.s. to the stationary
point of the problem solved. As@unterexample the maximizatiof the probability of portfolio

desired return is given, too.
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1. Introduction

Optimal decisions in business and finance are frequently provided by solving nonlinear
stochastic programming problems with linear constraints:

F(x) = Ef(z,6) — max, (1)
where the objective function is an expectation of a random funcgtio®” x Q — R
depending on a random vectpe 2 from a certain probability spadé€, 3, P), and the
feasible set: € X C R" is a bounded and convex linear set in general:

X ={z|Ax =b, x > 0}, (2)

b e R™, Aisthen x m-matrix, X # &.

The methods of stochastic approximation were first proposed to solve stochastic op-
timization problems. The convergence in stochastic approximation is ensured by varying
certain step-length multipliers in a scheme of stochastic gradient search (Mikhalevitch
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et al., 1987; Kushner, 1997; Han-Fu-Chen, 2002; Ermoéesl., 2003; etc.). However,

the rate of convergence of stochastic approximation slows down for constrained problems
(Polyak, 1987; Uriasyev, 1990), besides, the gradient-type projection method, usually ap-
plied here, can no converge when consitsare linear due to “zigzagging” or “jamming”
(Bertsekas, 1982; Polyak, 1987; etc.).

The Monte-Carlo method is a tool also applied very often in solving problems of
stochastic optimization appearing here, particularly, in that of stochastic linear program-
ming (Prekopa, 1999; Ermoliest al., 2003). Kjellstrom (1969) was the first who sug-
gested using series of Monte-Carlo estimators for the iterative improvement of conver-
gence behavior in nonlinear stochastic optimization. Further this approach has found ap-
plications to technical design of electronic devices (Beliakoal., 1985; Sakalauskas,
1997). Application of this method in stochizsoptimization is based on replacement of
the objective function, being mathematical exfation, by averaged means, provided the
during Monte-Carlo simulation (see, e.g., Shapiro, 1989). The issues remain important
in approaching such programs to stochastic optimization related with a great amount of
computations usually required for the performance, and in the evaluation of uncertainty
of the Monte-Carlo estimators obtained. On the other hand, the Monte-Carlo approach
also has some properties that could be helpful for enhancement of stochastic programs,
namely, via the Monte-Carlo simulation rather often we can estimate both functions with
their derivatives without essential additidrcasts (see, i.e., Rubinstein, 1983; Shapiro,
1986; Sakalauskas, 2002), besides, sampled Monte-Carlo estimators usually have the
Gaussian distribution in asymptotic (Bentkus and Gotze, 1999) that offers a way of apply-
ing the standard theory of normal statistics (Krishnajah and Lee, 1988) to a simple com-
putation of confidence intervals of estimat@nd testing of optimality hypotheses, etc.

The properties mentioned have been used in the development of the approach to
unconstrained stochastic optimization by Monte-Carlo estimators (Sakalauskas, 2000),
where the optimality of portfolio is tested in a statistical manner and the rule for Monte-
Carlo sample size adjustment has been introduced in order to decrease the total amount
of Monte-Carlo trials and, at the same time, to guarantee the solution of an optimization
task with an admissible accuracy. Furthasthpproach was extended to constrained op-
timization with one probabilistic constraint using the method of the Lagrange function
(Sakalauskas, 2002). However, in many applications the stochastic optimization with lin-
ear constraints is connected with a striclididy of constraints in each iteration, which
pose the above mentioned problems of “jamming” or “zigzagging”. In this paper, we
develop a method for stochastic optimization with linear constraints by Monte-Earlo
feasible estimators, which avoids the latesigem and focuses on a rational performance
of computations as well as on the control of computational error.

The paper is organized as follows. In the next section we describe the stochastic op-
timization procedure and analyze its corgemce. The termination rules based on the
asymptotic properties of Monte-Carlo estimators are introduced in Section 3, and a coun-
terexample of portfolio VAR optimization with log-normal returns is considered in Sec-
tion 4.
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2. Optimization Procedure and Conver gence Analysis

For simplicity, assume the distribution of market uncertainty factors to be absolutely
continuous and described by the density functiorf? — R, that are supposed to be
smoothly differentiablep(0) > 0. Thus the objective function can be expressed as a
multivariate integral:

F(z) = - f(z,y) - ply) dy. ®3)

The differentiability of integrals of this kind has been studied rather well, and there
exists a technique for stochastic differentiation to express such an objective function
and its gradient both together as expectations in the same probability space (Rubin-
stein, 1983; Prekopa, 1999; Ermolyet/al., 2003; Uriasyev, 1994; etc. NV F(z) =
fm g(z,y) - p(y) dy, whereg: R* x R x Q — R™ is a certain function (for explicit
formulas see in the given above references). Thus, differentiability of the objective func-
tion (3) can be assumed for a wide class of optimization problems and, consequently, both
the objective function and its gradient can be estimated using the Monte-Carlo method.
Thus a gradient-type nonlinear optimization method by Monte-Carlo estimators can be
developed, using-feasible solutions as the standard way to guarantee the validity of
linear constraints in each iterationchavoid “jamming”or “zigzagging”.

Following the standard approach to detarenthe optimality condition, let us define
aset of feasible directions for some solutiorr € X as:

V(z) ={g9 € R"|Ag =0, Vicicn(g; =0, if z; = 0)}. (4)

Further we denote the projection of the veajdo a certain se) by g¢.
Thus the necessary condition of optiliha(Bertsekas, 1982) for the solutiane X
is written now as

VF(z)y = 0. )
Assume a certain multiplief > 0 to be given. Let us define the functipp: V(z) —

Ry

min{ﬁ, min (—x—J)}, g #0,
pa(g) = N (6)

p.

Thusz + p- g € X, whenp = p,.(g),foranyg e V,z € X.
Let a certain small valugé > 0 be given. Now, let us introduce arfeasible set

Ve(x) = {g]Ag = 0, Yici<n (95 2 0, if (0 < zj <ea(9)))}, (7

where the functios,: V(z) — R is denoted as, (g9) = - maxi<j<. { min{z;, —p-
95 <0
gj}}, Vo € X.
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It is a well-known fact that in stochastic optimization only the first order proce-
dures are working and ensuring the best rate of convergence (Polyak, 1987; Ermolyev,
2003; etc). On the other hand, it has been also theoretically studied that a stochastic
method of the first order method should converge if the variance of the stochastic er-
ror of the gradient estimate is proportional to the square norm of the gradient (Polyak,
1987; Sakalauskas, 2000). Since the error of Monte-Carlo estimators depends, first of alll,
on the sample size, we confine ourselves to the gradient-type methods introducing the
corresponding rule for size regulation in Monte-Carlo estimators.

Thus, let the initial approximation of the solutiafi € X, some initial Monte-Carlo
sample sizeV® be given and Monte-Carlo estimators of the objective function and the
gradient would be computed. We define the sequdnéeN’}° in an iterative way by
setting

o =gt 4 py - G, (8)
Nt PO 9)
Pt |G

whereC' > 0 is a certain constang’ = p,:(G'), G' is ane-feasible direction at the
pointz® (i.e., projection of the gradient estimate to théeasible set (4)). The following
theorem provides conditions for the convergence of the method (8), (9).

Theorem 1. Let the function F: X — R be differentiable, the gradient of this function
be Lipshitzian with the constant L > 0, sup,¢ x |VF(z)| < 00, sup,cx F(z) < oo.

Assumetheset X = {x € R"|Ax = b, = > 0} to be bounded and having more than
oneelement, b € R™, Aisthen x m-matrix.

Let it be possible to generate Monte-Carlo samples and corresponding estimates
3 i nj, £ 30, v, to compute for any size N > 1, when En; = F(x), Ev; =
VFE(x), Eln;| < 0o, E|lyj| < 0o, Ely; — VF(z)|*> < K,Vz € X.

Then, starting from any initial approximation z° € X and N° > 1, formulae (8), (9)
define the sequence {z*, N*}$° so that ! € X, and there exist values p > 0, g9 > 0,
C > 0 suchthat

lim [VF(a')ye|* = 0(mod(P)), (10)
for0<p<p,0<e<0,C>=C.

The proof of the theorem is given in Appendix.

Thus, we see that the application of afeasible solution enables us to avoid “jump-
ing” due to the statistical nature of Monte-Carlo estimators.

Note that for numerical implementation, the next rule similar to (8) is sometimes
rather convenient:

Nt — _ PPy _ (11)
pt . Gt . (Qt)fl . Gt
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where@' is the sampling matrix of vectorg; and®., is the corresponding quantile of
Fisher’s distribution (see, also Sakalauskas, 2002).

The Monte-Carlo sample size regulatiaccording to (8) enables us to construct rea-
sonable, from the computational standpoint, stochastic methods for stochastic optimiza-
tion. Namely, the method can start from a small initial si¥é = 20 — 50, because
there is no great necessity to evaluate eators with a high accuracy at the beginning of
optimization, when it suffices only to estimate an approximate direction leading to the op-
timum. Further the sample size is increased with respect to (8) or (11), gaining the values,
sufficient to evaluate the estimators withatmissible accuracy only at the final stage of
optimization, when the gradient becomes small in the neighbourhood of optimum. The
numerical experiments and testing corroborate such a conclusion.

3. Termination Procedure

It is convenient to use the fact of asymptotic normality of Monte-Carlo estimators to
evaluate the uncertainty of estimators arst the hypotheses of optimality (Sakalauskas,
2002). Thus, iteration by (8)—(9) or (8)—(11) should be terminated when:

a) the statistical criterion does not coriet the hypothesis on the criticality of the
point of the current iteration (9) with the significante- o:

(N' = ny)(VFYY - (Q) ! VF' < By, (12)

whereQ" is the covariance sampling matrix of vectats @, is the quantile of the
Fisher distribution with degred§! — n;, andn,, n; is the dimension of the
e-feasible set;

b) the objective function has already bemmluated with an admissible confidence
intervald:

Dt
% ——— < 6, 13
N \/ﬁ ( )
wherer; is the norma3-quantile andD? = D(z, R) is the sampling standard
deviation of sampley;.

4. Counterexample

Financial planning in the case of uncertainty is often reduced to stochastic nonlinear
optimization with linear constraints (Duffie and Pan, 1997; Manatiai., 2003). Let us
to consider an application of the developed approach to the optimization of portfolio of
the Lithuanian Stock Market with = 4 securities.

We make the analysis for daily returns of the following assets:
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Table 1
ENRG MAZN ROKS RST
Hi a;
Correlations
ENRG 1 0.0120 0.0010 0.1621 0.5029 0.7439
MAZN 0.0120 1 —0.0310 0.0954 0.4447 0.6414
ROKS 0.0010 —0.031 1 0.0572 0.2609 0.3320
RST 0.1621 0.0954 0.0572 1 0.3327 0.3555

ENRG - joint stock company “Lietuvos energija” (power industry);
MAZN - joint stock company “Mizeikiu Nafta” (oil refinery);

ROKS — joint stock company “Rokiskio suris” (dairy products);

RST — joint stock company “Rytu skirstomieji tinklai” (power industry).

A brief description of the data is given in Table 1, where empirical data were fitted by
a lognormal model according to the Kolmoges&mirnov criterion. The data source is
www. nse. | t/ nvpb/i ndex_en. php, time period — 2002.01-2003.10.

Thus, the portfolio return function is as follows,

r(z,§) = zn:l’z et
=1

&= N(w,2), p = (1, p2, ..., in), & = [045]7. Selection of portfolio weighs has been
considered to maximize a probability of portfolio return to exceed the desired thresh-
old R:

F(z) = P(r(z,€) > R) — max, (14)

rzeX

subject to a simple set of constitutional constraikits- (Jc|xi >0, >0 2= 1).

Selection of portfolio accoidg to this objective functin by the method developed
is shown in Table 2. The gradient of the objective function (14) was expressed, using the
transformation to polar variables described by Sakalauskas (1998). The parameters of the
method were as followgi = 2.0, 6 = 1%,y =0 = § = 0.95,¢ = 0.7.

We see that, after= 10 iterations and total 17753 Montearlo trials, the probability
of the desired portfolio increased from 78.12% (67.92 87.33) to 84.29% (83.79 84.79)
(third column), changing the strategies of portfolio sharing with respect to (8) (second
column) and choosing the Monte-Carlo sample size with respect to (11) (last column).
The total amount of trial§"'_, N; exceeded the Monte-Carlo sample si¥gat the time
of the stopping decision only by 1.79 times.
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Table 2
EstimateF, Hotelling statistics (12)

Ni
t . 2 s T (Confidence) (Fisher quantilefiy;) ¢
1 250 250 250 25.0 78.12% (68.92 87.33) 2.04 (2.57) 50
2 396 281 187 13.6 80.83% (73.59 88.08) 2.21(2.53) 63
3 355 422 124 99  78.50% (71.39 85.61) 0.20 (2.51) 72
4 373 448 112 6.7 82.94% (81.14 84.73) 5.55 (2.38) 870
5 402 46.1 88 49  85.12% (82.58 87.67) 1.96 (2.40) 376
6 416 488 7.3 2.3  83.66% (81.25 86.07) 3.46 (2.39) 459
7 443 504 53 0.0  82.84% (79.92 85.76) 2.58 (2.63) 319
8 493 477 03 0.0 83.14% (80.28 86.00) 0.16 (2.63) 326
9 503 492 05 0.0 84.00% (83.30 84.69) 0.84 (2.61) 5318
10 50.7 493 0.0 0.0 84.29% (83.79 84.79) 0.18 (3.00) 9900

YNy = 17753

5. Conclussion

The method for stochastic programming with linear constraintgfgasible Monte-

Carlo estimators has been developed. The method distinguishes itself by two peculiar-
ities: the optimality of the solution is tested with respect to statistical criteria and the
Monte-Carlo sample size is adjusted in an iterative way so as to guarantee the estimation
of the objective function with an admissible confidence after a finite number of series.
The theoretical study and a counterexamgmdnstrate the applicability of the approach
proposed in the stochastic portfolio optimization.

Appendix
We need several lemmas to prove the theorem.

Lemmal. Let g € V(z),2 € X.Denotee = ¢,(g) according to (7) and by g. the
projection of the vector g to an e-feasible set. Then

A) each nonzero vector g contains negative components, moreover, there exists a
value a < oo such that uniformly

Léa, gEV(:Z?), xGX;
maxigke<n {|gk|}
9 <0
B)g#0=¢>0;
Cg=0sg.=0;
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D) if j issuchthat {24 = minai<i<n (— ), then
J

9 <0 gi

l9j1 = € max {[gxl}-
91, <0

Proof. Note thatX is a bounded convex and closed set from some linear space of nonzero
dimensions and («) are convex closed cones (Rockafellar, 1996). It is easy to get sure
that every nonzero vectgr € V' contains negative components. Indeed, in the opposite
case, we have that+ p - g € X for anyp > 0, which contradicts the assumption on
the finiteness of the set of institutional restrictioXisThe estimate in A follows from the
closeness and finiteness 8f too.

We have thafg € V N g # 0} = Jigj<nlg; < 0N a; > 0) by definition of the
feasible set, because all the components ofaamy X cannot be zero at the same time
and any nonzero vectgre V' contains negative components. This implies B.

Let us study the structure of arfeasible set (7). According to the definition, this set
is an intersection of a finite number of &ar half-spaces. It is concave, because

max {mln {xj,max((), —A- ﬁ 9]1)}}

1<j<n

+ max {min {xj,max((), —(1=X)-p- 9]2)}}

1<5<n

. ~ 1
> A 121;2(” { min {xj,max((), —p- gj)}}

. ~ 2
+(1-X) 121];2(” { min {z;, max(0, —p - gj)}},
when0 < A < 1, Vz € X. Thee-feasible seV.(z) is a subset of the feasible étx).
It is easy to get convinced that it contains the zero vegter 0 in a close vicinity from
V(). The latter conclusions imply proposition C.

Now let the indexj be such thag’Z; = min 4, <o. (25), 9 € Vo. Then

1<ign 191l

max i1<k<n {$k}
€T . o<
951 > lgil =+ > €+ |gs| ——+22=

K2 K2

=& |gil, Vigign(zi+p-9: <0).
However,

X5 ~ ~
lg;| = ?j >& max {|gr|}, Vicicn(®i+p-gi>0, g; <0), too.

1<k<n
PR

Tp+p gk >0
9, <0

Both last estimates imply D.
The lemma is proved.

Lemma 2. If vectors g and g* aree-feasibleat the point x € X, then for a certaina > 0

o /a
029") - " = pulo) - 9| <7+ (2+1) - Ig" — gl
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Proof. Denote indicesj and i such that—+~ = minici<n (T2 |) and t =
‘ g’j‘ g;,k<0 ‘ga’k Ge,i
Tl

mini<k<n (7257). Let, for the sake of simplicityy, (g*) > p.(g). Then

9e k<O |95,k‘

1 PN . [~ T4 T; T;
p=(9”) = pa(g) = mm(p,—) fmm(p,—) < ’_7_
T 3] o/ = VTl ™ Tad

1 1 _
gi gi

< pal(gh) -

Thus, by virtue of A and D of Lemma 1:

lpa(g") - 9" = pal9) - 9| =

pa(g") - (9" — 9) + (p=(g") — p2(9)) -g’

o NP ez bl
gp.|g ,g|.<1+;)</7'|g g|'<1Jr ‘;.\ .maX <0 |g|>
i i 94

1<i<n

~ a
<plg' —gl- (1+:).
g
The lemma.is proved.

Lemma 3. Assume the conditions of theorem to be valid and let p > 0 and £ > 0 be
some small values. Then:

o, p-(1+4)-K
L)_/) ( ‘5) V(zeX),

EF(:[;+,7-(§)>F(J;)+E(,7.|§|2).(1_p'2 = :

where G is the projection of the estimate VF to the c-feasible set, j = p,(G) is the
corresponding step length chosen according to (6).

Proof. We have from the Lagrange formula (Diedonne, 1960) that

1
Flx+p-G) = F(ac)—l—ﬁ-G'-/ VF(x+p-7-G)dr
0
= Fx)+p-G-VF—(p-G—p-G) - (VF - VF)
1
+p-G(VF—VF) +/7-G’-/ (VF(@+7-7-G) - VF(2))dr,
0
wherep = p,(G), G is thee-feasible projection of gradient F. Thus, the proof of the
lemma is complete taking the expectation of both sides of this expression and applying

further the Lipshitz condition and Lemma 2.
The lemmais proved.
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Proof of Theorem 1

Denote a stream af-algebras generated by the sequefice N*}:°, by {S:}5°,. Let
us introduce a random sequence

ﬁ-(1+§)-K_

X; = F(2',R) — e

Assume) < p < p = 1. Then by virtue of Lemma 3 we have that

5L _
E(Xi11|S-1) 2 Xi + (1 - pT) CE(p" |G [S¢e-1)

~ a 1
7 (142) KB (g l9e)

1+4)-K N
> X; + (%—%) CE(p |G Se-), t=1,2,.... (1A)
(1+2)-K

It follows that X; is a submartingale fo@’ > —5—
By summing up unconditional expectations on both sides of inequality (1A) and set-

_ _ (1+2)&

ting C > C = —;5—, one can get:
! i E(o" - |G@M)|*) < BF@) — F(°) + 5 (1 + 9) K (A)
4 = h g '

The left-hand side of this inequality is bounded, and therefore the series on the left
converges as — oo.

Now, saylim,_... |G(z")|? # 0. Then a certain small valu# > 0 could be found
that a converging infinite subsequencé* }7° , exists such thatG'*|2 > 42 for any
term of this subsequence. Denote the limit of this subsequende bgt us fix a vicinity
of & such thaﬂétk |2 > % for all points of the subsequence from this vicinity. It follows
by virtue of B) of Lemma 1 and the continuity ef.(-) that there exists a certain so
thate®* > 1 > 0 for all points of the subsequence hitting this vicinity. Hence, by virtue

of (15), we havep’ - |G*[2 > min (P, Igt\) G2 = min(p,eq) - ¢. Consequently,

we should have an infinite number of terms in (2A) exceeding(p, 1) - % > 0 which
contradicts the convergence in (2A). This implies:

lim |G(z)]* =0 (mod(P)). (3A)

t—oo

Next, by virtue of (19), (3A), we obtain

tlirgo N 0 (mod(P)). (4A)
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Further

lim |G < lim G + lim |G G'*=0 (mod(P)),

t—o0

becausdim,_.. |G' — G2 = 0 by virtue of (4A) and the law of large numbers. It
remains to apply the proposition C of Lemma 1 to establish (10).
The proof of the theorem is completed.
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Monte-K arlo metodo taikymas netiesiniam stochastiniam
programavimui su tiesiniaisribojimais

Leonidas SAKALAUSKAS

Darbe nagriBjama stochastinio netiesinio programavimo su tiesiniais ribojimais problema.
Sukurtas leistig sprendinij metodas Siai problemai gsti panaudojus Monte-Karlo ity seri-
jas, kuris leidzia iSvengti “uzsikirtimo” arba “zigzagavimo”. Metodas pasizymi dviem pag@madin
savytem: sprendinio optimalumas yra testuojamas pasinaudojus statistiniais kriterijas bei Monte-
Karlo imgiy turis yra reguliuojamas taip, kad sumazinti skavimu apimt, reikalinga uzdaviniui
iSspesti, bei uztikrinti metodo konvergavanPritaikius martingal metod prie gana bendrsalygu
irodytas sukurto optimizavimo metodo konvergavimas bstacionay sprendziamos problemos
tadla. Skaitmeninio vertybini popiery portfolio optimizavimo pavyzdys pateikiamas metodo
veikimui pademonstruoti.



