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Abstract. A new digital signature scheme in non-commutative Gaussian monoid is presented. Two
algebraic structures are employed: Gaussian monoid and a certain module being compatible with a
monoid. For both monoid and module, presentation and action level attributes are defined. Monoid
action level is defined as monoid element (word) action on module element as an operator. A
module is a set of functions (elements) with special properties and could be treated as some gener-
alization of vector space.

Signature scheme is based on the one-way functions (OWF) design using: three recognized hard
problems in monoid presentation level, one postulated hard problem in monoid action level and one
provable hard problem in module action level.

For signature creation and verification the word equivalence problem is solved in monoid action
level thus avoiding solving it in monoid presentation level. Then the three recognized hard problems
in monoid presentation level can be essentially as hard as possible to increase signature security.
Thus they do not influence on the word problem complexity and, consequently, on the complexity
of signature realization.

The investigation of signature scheme security against four kind of attacks is presented. It is
shown that the signature has a provable security property with respect to the list of attacks presented
here, which are postulated to be complete.

Key words: digital signature scheme, one-way function, Gaussian monoid, monoid action problem,
conjugator search problem, square root problem, factors’ search problem.

1. Introduction

We present a new digital signature scheme taking in mind two challenges on crypto-
graphic information protection:

1. Cryptosystem implementation in limited environments like PDA's, mobile phones
and smart cards. RSA or EIGamal type algorithms based on integer factorization
and discrete logarithms are not well sditier that because they require large inte-
ger modular arithmetic and therefore costly specialized co-processors.

2. The most worrisome threat to integer factorization and discrete logarithm cryp-
tosystems (including elliptic curve discrete logarithms) that cryptographic commu-
nity can foresee right now comes from quantum computers. Shor (1997) showed
that if such machines could be built, integer factorization and discrete logarithms
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could be computed in polynomial time. The vulnerable ones are RSA and ElIGamal
cryptosystems.

A general concept for cryptographic primitive’s design including digital signature is as
follows: to define a suitable working area (an algebraic structure), to find hard problems in
this structure, to design a one-way function(s) (OWF) referencing to these hard problems,
and finally to build a requested cryptographic primitive.

Algebraic terms used in this study could be found in (Van der Waerden, 1967). We will
consider an infinite, non-commuitze, multiplicative algebria structure named Gaussian
monoid (Dehornoy and Paris, 1999). In additive introduce a certain module that is
compatible with a monoid in some sense defined below. Recall that monoid is a semi-
group with unity element and module is an additive abelian group. The element of a
monoid we will call a word. The first fundamental concept in infinite monoids is a word
equivalence problem (word problem) determining the equivalence of words. Its solution
must be feasible for cryptographic primitives’ construction.

We consider the monoid and module having two levels of attributes: the presentation
level and the action level. The monoid presentation level is defined by a finite set of
generators, which we will call atoms, and a finite set of relations. The monoid action level
can be defined as monoid action on our introduced module. This module is a relations-
free abelian group (Magnwt al., 1966). The module action level is defined as well.

The signature scheme is constructed using both the monoid and module presentation
and action levels. The monoid action on module is defined as a particularly chosen op-
eration that is distributive with respect tioe module addition operation. The main tools
for a signature scheme are the following five hard problems and corresponding OWFs
defined: three recognized OWFs in the monoid presentation level, one OWF postulated
in the monoid action level, and one provable OWF defined in module action level.

In our analysis we will consider some problems related both with group and monoid
properties. We will do expansion of group properties to the monoid taking in mind that
monoid has some sub-monoid as a group. Whether monoid or group problems are con-
sidered, will be clear from the context.

The methodological background for OWF design using non-commutative groups and
semigroups is presented in (Sidelniketval, 1993) and is employed for key agreement
protocol realization. Two hard problems are formulated there which are the main tools
for an OWF construction in abstract non-commutative groups and semigroups.

Rabi and Sherman (1993) introduced a concept of strong associative OWF on abelian
semigroup and proposed a key agreement protocol and signature scheme using it. The
authors left open the problem of finding a strong associative OWF. Among the other open
problems presented there is a question: what other combinations of algebraic and security
properties of cryptographic functions yield useful cryptographic objects.

This paper deals with these other combinations.

Some generalization of Sidelniket al. (1993) methodology is presented in (Anshel
et al, 1999).

Monico (2002) has presented an example of cryptosystem based on finite semigroup
action problem (SAP). It is a aitidimensional generaation of modular exponention
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using finite semigroup of matrices or ring of matrix polynomials over finite vector field.
As a consequence the proposed SAP is a multi-dsimmal generalization of traditional
(one-dimensional) discrete logarithm problem (DLP) and is more harder. This cryptosys-
tem is used for session key agreement protocol and ElIGamal-type encryption. According
to the author, this cryptosystem requires further investigations and first of all secure key
length needs to be determined.

In 2002 appeared a new signature scheme using conjugacy problem in infinite non-
commutative groups (Ket al, 2002). This invention is based on a gap between the
conjugacy decision problem (CDP) and conjugator search problem (CSP). It means that
CSP is hard and CDP is feasible. The conjugation operation serves for signing and CDP
provides a verification procedure. It is a pure signature scheme based on group theory
mechanism (on group presentation level). The subtlety of scheme is to choose group
parameters so that CSP is hard but CDP remains feasible.

Some realization of key agreemt protocol using Sidelnikogt al. (1993) method-
ology with application to a semigroup action level could be found in (Sakalauskas and
Burba, 2003). The concrete construction afuged commutative sub-semigroups is pre-
sented there.

So far the main requirement for cryptograplpirimitive construction in the presen-
tation level of infinite non-commutative groups is that the CSP must be hard but word
problem must be feasible.

Our approach differs from the above in at least two items presented below:

1. By applying infinite non-commutative monoid belonging to the Gaussian monoid
family.

2. Using monoid action level with defined action operation on some module satisfying
distributivity condition.

3. Using and combining three OWF in monoid presentation level, one OWF in
monoid action level and one OWF in module action level.

Gaussian monoid has a sufficiently complex structure and several essentially compli-
cated problems for OWF design in presentation level. It includes Garside monoids as a
sub-family and the latters in turn include Braid monoid family. These inclusions could
be expressed by notation Braid GarsideC Gaussian. Until the paper (Dehornoy and
Paris, 1999) appeared, there were only a few examples of Gaussian groups and Garside
groups in the literature. But applying the tegiresented by authors, one may construct
more examples of Gaussian groups and infinite families of Garside groups.

The question of particular importance for any cryptographic primitive construction
in infinite non-commutative groups is the féaBty of the word problem solution. One
known solution for Braid groups is an application of left-weighted canonical (normal)
form mechanism which is performed in(£¥n log(n)) time (Ko et al,, 2000), wherep
is canonical length and is Braid group index. The other one is a Dehornoy normal
form mechanism using word reversing process (Dehornoy and Paris, 1999) for Gaussian
groups. For Garside groups, these normal forms have uniqueness property/and O
transformation time, wherkis a word length. For further we assume that word length is
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the number of atoms in the word. In a general Gaussian group case there are situations
when Dehornoy normal forms have exponential time or even exponentially growing time
caused by generation process.

We replace the classical word problem in monoid presentation level by the word prob-
lem in monoid action level. Then it is not nexsary to use normal forms created for this
purpose and being time consuming procesurAs a consequence the CSP and other
problems in group presentation level may be as hard as possible and they can (and usu-
ally do) influence the complexity of a word problem in this level since we have no doubt
about this complexity. Using this approach the word problem solution in group can be
extended to the monoid.

But nevertheless some kind of word transformation instead of normal forms is re-
quired because while executing cryptographiatpcols, Alice and Bob are exchanging
words through insecure communication channgfe initial words have factors required
to be hidden, because these factors, as ubeal, information about the secret (private)
keys. Since uniqueness of these transformations is not required (the word problem is
solved in action level), we may choose the other non-unique normal form servicing for
only one purpose — to hide the information about the factors making a word. Then the
words must be rewritten in some special form using a set of relations defined in the
group.

We propose to use a random rewriting protipouixing atoms in &ctors being hidden.

This procedure we will call random mixing. After such random mixing only exponential
algorithm of total scan area could be applied to find initial factors.

The created signature scheme belongs to the class of randomized schemes (Gold-
wasselet al,, 1988) and is invulnerable against an adaptively chosen message attack. The
fundamental idea in the construction of such signatures is a signing procedure performed
in two authentication steps: the first step authenticates a random value which is used in
the second step to authenticate the message.

Our signature scheme has provable security with respect to the four attacks consid-
ered. It means that it is based on the following hard problems in Gaussian monoid and
group:

1. Three recognized hard problems in Gaussian monoid and group presentation level.

2. One postulated hard problem in monoid action level.
3. One provable hard problem in module action level.

Each of these hard problems is linked with some OWFs. The four specially selected
active attacks are considered and it is provet these attacks fail due to the introduced
OWFs. We think that these selected attackes@mplete and are representing the main
pool of other available attacks. On this assumption a provable security concept is based.

According to our knowledge this is a second proposal to use infinite non-commutative
groups or monoids for signature scheme creation afterefkd., 2002) result.

In Section 2 we present some basic concepts as preliminaries for signature scheme
construction. We introduce a Gaussian monoid and group, a certain module compatible
with a monoid and two action levels in monoid and module, respectively. Five hard prob-
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lems are defined for construction of corresponding OWFs. Among them one OWF is
postulated in monoid action level.

We present a signature scheme in Section 3.

Security analysis for four kinds ottacks is described in Section 4.

Section 5 is dedicated to some discussions on the presented signature scheme and to
some comparative-qualitative analysis on implementation issue.

2. Preliminaries

The definitions and notations used in this study could be found in (Van der Waerden,
1967).

Let us consider some multiplicative Gaussian monoid, defined by thé$aiy (De-
hornoy and Paris, 1999). The multipliceg monoid operation we denote aand neutral
element as 1. For convenien6ds presented by a finite set of generators and relations
(Magnuset al, 1966). The generators we will call atoms. A monoid consists of elements
named words and words consist of atoms. We use the term “atom”, since this term better
coincides with the procedure that we introduced for atoms’ random mixing process in the
word. SoS is an infinite monoid finitely presented by the set of atoms and relations. The
finite product of elements (words) &fwill be another word inS. As usual the multipli-
cation in Gaussian groups means concatenation of atoms as characters in a word. Then in
our case means concatenation (multiplication) operation. AssumeSHgeds a structure
where two mutually commutative subséts, Sk could be defined irb. Then for any
wordsa € Sp, andg € Sk the commutation property takes place

a-B=0-a.

AssumeS has some subsét C S having inverse elements where forale J there
exists an unique—! € S such that

We do not claimJ to be a group. The cases whernis a group will be considered
below.

The subset of having no finitely presented inverse elements we denofg ds

Consider some modulg”, +) consisting of set of function§f } which is some gene-
ralization of vector space. Recall thatis an additive abelian group of elements (func-
tions in our case). Assume that all functighs) F' perform a mapping: Q — Q, where
Q is the domain off' and is a set of fixed length binary strings.

We considelS as a monoid of operators or multipliers acting on modyleThen for
conveniencé/ is called a module over the mona$d or simply S-module in other legal
notation. The action level of monoitimay be determined as an action of any its element
o on any functionz in F' as an operator, i.es; F' — F. For this action restricted i\ .J



256 E. Sakalauskas

we introduce a new associative binary bijective operation (functiof)\J x M — M.
This means that for alt € S\J andf € F there exists somg € F', such that

g=0of. (OWF)

Assume that two mutually commutative subsgts Si defined above are the subsets
of S\ J. Let us introduce also a sufficiently large two mutually commutative sutssgts
andSy; in Sy, for our construction.

So we defined three associative operationsand+. Assume for them the following
order of execution takes place for amyp € S andf, g € F, as illustrated by equation

g-poftg=(a-p)of)+g=(o0o(pof)) +g.
According to this and associativity of operations applied, the following expressions
are equivalent
og-pof=(0-p)of=co(pof)=copof.
Assume that the following distributive relation take place fowa$t S andf,g € F
co(f+g)=cof+ocog.

This means that is left distributive.
And finally let

lof=f

We postulate that is an OWF associated with a monoid action on the module. The
exact definition we will present below.

Determine now some properties required for functighi I’ to define a module
action level and corresponding OWF in a module action level.

1. Functionsf € F are surjective. This means that thfat! (w) is not unique.

2. The Liapunov criteria\ of f is positive, i.e.A\f(w) > 0, for all w € Q. Then
function f acts as an expansion mappindin

A similar concept of module action level is used in this study, taking in mindfhst
acting on(2. Then for anyw € Q we have a simple action defined by the formula

w/:f(w)a W e

Define recurrent calculations with a functigh Choose some integer > 1 and

binary stringwg € Q. Then by recursion we can compute the valuesos, . . ., wy,
w1 = f((UQ),
w2 = f(wl)v

wp, = f(wn-1).
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The valuew,, could be expressed by the formula
™ (wo) = wp.

Itis clear that according to Propig 1 and for considerable big, there is impossible
to determinevy from the equation

wo = [ "(wn), (RP1)

except using random guess in the total domain of preimaggs.ofhis domain grows
exponentially with increasing.

From Property 2 it follows that recursion process does not converge to some con-
stant point for allf € F and for any two different initial conditionsg; # wg2. As a
consequence, for some natunahe probability of occurrence of the event

f"(wo) = Wo, (RPQ)

is negligible for anyw, € 2. This corresponds to the requinent that the probability for
some element, € (2 to be involved in the closed orbit for a particulais negligible.

Let us look at some problems related with infinite groups presented by finite set of
atoms and relations assuming temporarily that group.

Dehnin 1911 has formulated three fundamental problems with increasing complexity
related to these kinds of groups. Two of them are the following:

I: Word problem.
[I: Conjugacy problem.

Word problemIt means word’s equivalence problem.

Every wordw in J has its equivalency class| determined by the relations ih In
other words each word in [w] could be obtained from any other woug in [w] using
equivalent transformations defined by the set of relations in

It is said that two wordsv,, ws € J are equivalent, i.ey; = ws, if there exists a
finite algorithm using the set of relations which transfapgto w, or vice versa. Novikov
in 1957 proved that the word’s equivalence problem is very hard and can’t be solved in a
general case.

Conjugacy problemTwo wordsw;,ws € J are said to be conjugate, i.eu; ~ ws,
if there is an elemeni € J such that

-1
wy=mn-w2-n -,

where the elementis called a conjugator. It is conveniently accepted that the conjugacy
problem is harder than the word problem.

The solutions of problems mentioned above are known only for a few Garside groups.
In most cases solutions are unknown or they do not exist at all. When the solution is
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known in form of an algorithm involving finite steps, the problem may be treated as
“easy” or “hard” to solve.

“Easy” and “hard” problems forni&e the compleity theory (Menezest al,, 1996).

The “easy” solution means that the problérsolved by a polynomial-time algorithm
whose on-average running time function is of the fortm, wheren is the input size,

k is a constant and @*) means asymptotic upper bound of running time less or equal
to cnk, for all n > ng, where constants> 0, ng > 0. The complexity clas®’ is a set of

all decision problems that are solvable in polynomial time.

Whenk is considerably big, it is said that we have super polynomial-time complex-
ity. Any algorithm whose running time cannot be so bounded is called exponential-time
algorithm. Both cases, super polynomial-time and exponential-time complexity, may be
treated as “hard” problems.

The complexity classV P is a set of all problems for which a YES answer can be
verified in polynomial time given some extra information called a certificate.

Main cryptographic primitives are using One Way Function (OWF) methodology
(Rabi and Sherman, 1993; Menezdsal, 1996). So far OWF design is based on the
hypothesis thaP # N P and this means that OWF calculation corresponds to the com-
plexity classP, but the inverse OWF algorithm is in the complexity claés.

The useful scheme for OWF construction in some group is a feasible solution of word
problem by the algorithm in complexity clagd and infeasible solution of conjugacy
problem by the algorithm in clas® P. According to this, the conjugacy problem al-
gorithm must have exponential or at least super polynomial-time complexity when the
conjugatom is unknown.

The conjugacy problem itself is divided into two essential problemsgad., 2002):
Conjugacy Decision Problem (CDP) and Conjugator Search Problem (CSP). The CDP
means to determine whetheg ~ w- for given instances, w, € J. CSP is reckoned
to be harder than the CDP. We do not consider now the complexity of word equivalence
problem and CDP. We will return to the word problem later.

We would like to present now some reference problems assumed to be hard in non-
commutative Gaussian group.

P1.The Conjugator Search Problef@SP): to findy € J, satisfyingw, = n-w--n~!,
for givenwy, ws € J.

P2.Square Root ProblefSRP): to findx € G, for givena?.

This problem is exponential in essence and is solved for Garside groups being mem-
bers of Gaussian group family (Sibert, 2002). No other algorithm is known so far.

P3.Factors Search ProblefFSP). For a given word find factorsny andy in some
equivalent unknown word’ = n - u, wheno' = o.

For an arbitrary finite bounded length wosdin J there is an exponential amount
of possible factors defining its equivalence clags Consider the initial wor@d”’ in [o]
consisting of concatenation @f and ;. as is commonly done by performing a formal
multiplication in non-commutative groups oronoids. The problem P3 becomes hard if
we perform some equivalent transformatierns’ — o, using defined relations, when the
atoms composing andy are mixing with each other. A was mentioned above this
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procedure applies when two words are verified for equivalence. ghismormal form
transformation having a uniqueness property.

We propose to use random equivalence transformatiom®viding random mixing
of atom mechanism by randomly using relations defined.im the most known groups
and monoids random mixing could be done in polynomial time. Moreover the sufficient
random mixing could be achieved in tim&/Q wherel is the word length or the number
of atoms. The unmixing procedure which determine@sd will require an exponential
time with respect to word length

The next problem we formulate for a mondidand call it monoid action problem.

P4.Monoid action problen{MAP): for some giverv € S, and knowrna € F' find
x € F from the equation = o o .

We postulate that the MAP is hard and is associated with a correcponding OWF for
our signature construction. The one-wagsef equation (OWF) from above is based on
the postulate that—! has no finite presentation. So the algorithm to findsing the
relations

cloa=0"tloogox=1oz=u,

requires infinite amount of steps.
As a simple example, MAP could be transformed to the discrete logarithm problem

(DLP) in the case ifS = F' and both are finite cyclic groups of prime orgerThen we
can construct the well known modular exponentiation function in the form

a=o0ox = oc"modp.

The generalization of this examplerfa multidimensional case could be found in
(Monico, 2002) where the semigroup (ring) action problem is introduced for finite semi-
group of matrices or for ring of matrix polynomials, both over finite vector field.

The last problem we formulate in moduteaction level and call it an inverse recur-
rency problem.

P5. Inverse recurrency probleiiRP): havingf and some knowmnth iteration value
wy, € , find an initial valuey, from the equatiorwy = f~"(wy,)-

This problem corresponds to the (RP1) and is based on the Properties 1 and 2 from
above.

The problems P1-P3 are widely recognized as hard, especially in Gaussian groups.

The complexity of P4 in this study is postulated. We think it is a sensible postulate.
The motivation could be based on some results presented in (Monico, 2002). Even in the
case of finite semirings over finite fields and acting on certain set, the complexity of semi-
group action problem noticeably exceeds thenptexity of ordinary one-dimensional
DLP. Recall that we are considering an iftenGaussian monoid and so we are expecting
much greater complexity.

The complexity of P5 is provable taking into account the Properties 1, 2 and (RP1),
(RP2).
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The purpose of this paper is to use hard problems P1-P5 as related with corresponding
OWEFs and to construct a signature scheme with provable security. The provable security
has the following sense: several specialllestd active attacks are considered and it
is proved that these attacks fail because protd P1-P5 are infeasible. It is also based
on the postulate that these selected attacks cover all the other possible attacks, i.e., these
attacks are complete.

Recall our postulate that the MAP is hard and is an OWF. We use MAP and OWF as
synonyms further, taking into account that there are the other four OWFs named by CSP,
SRP, FSP and IRP.

We define now the monoid word problem solution in action level of the mofoid
Assume the probability of event; o f = ws o f is negligible ifw; # ws for wy, we € S.

Then we can make a decision that if

wio f=wzof,

thenw; andw, are equivalent with overwhelming probability, i.ey, = ws.
For effective verification of this conditiowe use a module action level defined above
by providing recurrent calculations with any functigre F.

PrROPOSITIONL. The wordsw;,ws € S are equivalent with a very high probability if
for some integen > 1, f € F and anyw € (2, the following relation is valid:

(w10 f)"(w) = (wg 0 f)"(w)-

Proof. Assumew; # ws and(wy o f)"(w) = wp1. Let us formally apply the inverse
recurrent functiorfws o ) ~™ to both sides of the last equation, despite the infeasibility of
inverse recursion operation, deadrin (RP1). According to propositidiws o f) ™" (w; o
f)"(w) = w. Let(wg o f)~™(wy o )™ = g, g € F. Then functions’ composition for a
valuew can be expressed as,

9w) = w.

But according to (RP2) the probability to satisfy the last equation is negligible. Then
the latter equation is valid whenis identity function and thefw; o f)™ = (wq o f)™.
Taking in mind the bijectivity ob we obtain thatv; = ws. This proves the proposition.

As it seems from the Proposition 1, the presented words’ equivalence criterion does
not depend on the word problem complexitydrpresentation level.

Finally, define some notations for signature creation and verification.

The message space consisting of finite length binary strings we dend@telst a
signer Alice intend to sign some messafe € T and to send it to verifier Bob. As
usual, Alice signs not a messaf@ig but someh-valuem of original message. Assume
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that there are three cryptographically seckifeinctions (Menezest al., 1996)H, h and
h', performing mappings

H: T — F,
h: S — F;
B: F — Sg.

FunctionsH andh are surjective anfl’ is injective. The data to be signed is expressed
asm = H(T4).

Let the domairf2 C T'. Assume also that any function € F' could be represented
in binary form as an element 6f. Thenif f, m € F, we may represent in binary form
and havingn € , calculate the valug¢(m) € Q. This convention helps to shorten the
notations.

Alice creates a signatureon valuem and sends it to verifier Bob. Bob has a publicly
available verification functio® to verify the signatureS onm.

Alice and Bob communicate through insecure and open communication channels and
all the data published and transmitted are available to the active adversary Eve. All parties
share information about the structure of monsidmodule F’, hash functiongd and
h, verification function® and public key of Alice. Eve can obtain, remove, forge and
retransmit any message Alice sends to Bob.

3. Signature Creation and Verification
3.1. Key Generation

Alice chooses at random secret elements S;,, n € J, x € M and non-secret element
a € Sro. She calculates the elementse Sy, p € S\J andq € M:

1.

p=mn-a®-nl

g=n-a’oux.

o =a-a-a”

Then the Private Key (PrK) and Public Key (PuK) are as follows:
PrK = (o, a,n,2);  PuK=(a,p,q).
3.2. Signature Creation

Alice takes a messadg, € T to be signed, chooses at randgng S;; and calculates
the following elements:

ma = H(TA);
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p="h(§oma);
m=ma+h(&-p-a )
(=t prac

The secret signature key§s
The following signature parameterss are calculated in addition

o=n-peon

s=co(n-aox+ma).
Then she creates a signatref the form
S =(m,¢,a,s).
Alice sendsS to Bob.
3.3. Signature Verification
Bob uses givem: and¢ from signatureS to find m g by the formulas

mp =m—nh(a-C-a"t)
=ma+h(€ p-a ¢ —ha & pa gt a™h
=mat+h(€ pao & =nEa paat-E
=ma+hE poa € —h(E poa £ =ma.

Having signature’'ss’ components ands, the verification functiolb = ®(m, o, s)
is TRUE if

pos=cgoq+pooomy. (V)
The proof of verification condition (V) follows from the expressions

pos=po(oo(n aostms)
=prO-N-XOT+POOTOMY
:n.QQ.n*1.n.ﬂ.nfl.n.aoszpOJOmA
:n-aQ-u-aox—i—poaomA

:n~u~a30:p+poaomA

=n-p-n'-n-a’ox+pocoma

=o0coqg+pooomuy,

taking in mind thatv - u = p- ccandn - =1 = 1.
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The verification condition (V) is suffient and is realized in monoifl action level.
The implementation of verigation condition (V) we providenimodule action level using
Proposition 1 and recurrent calculations. Bob takes the binary representation, @n
integerv > 1 and verifies the equation

posl(mp) = [00q+00pomsl(ms). (VV)

If (VV) is valid, then Bob accepts a signatuseon message: z.

4. Security Analysis

Assume that the active eavesdropper Eve can obtain, remove, forge and retransmit any
message Alice sends to Bob. Any forgered datee denote ag’'.

We consider the four main and specialljes#ed attacks and prove that these at-
tacks fail, by referencing to the above introduced OWFs based on P1-P5: CSP, SRP, FSP,
MAP and IRP. It is postulated that these selected attacks cover all other possible active
attacks, i.e., these attacks are completee Tist of considered attacks is the following:

PrK compromitation, Data+Signature forgering, Data implied forgering and Data implied
forgering in Module action level.

4.1. PrKCompromitation

Instance: Puk (a, p, q).

Objective: find Pr= (o, o/, n, x).

Eve having PuK must sequentially solve three hard problems to find PrK. The ques-
tion is to find a starting point. We could advise to begin from the expression determining
the publicly known parameter.

The problem is to fing factorsn anda? by solving corresponding FSP. But this
problem is postulated as hard. Even if factgrando? are found, Eve must solve the
next hard problem: to extract a square root and to find

o = (a2)1/2

by solving the SRP. But even this is not sufficient to achieve PrK compromitation. At a
third step she must find unknownfrom the equation

qg=n-a’ou,
which corresponds to MAP.
So the three sequential hard problems FSP, SRP and MAP must be solved by the
eavesdropper for Prk compromitation.
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4.2. Data+Signature Forgering

According to Rivest, this kind of attack is called existential forgering (Goldwasser, 1988).
Assume Eve is trying to sign a forgered messdge Then being unable to find

an actual PrK, she must forge it by replacimgginal PrK elements with forgered ones

(o', nF 2F") and performing the following calculations after choosing sges Sy1:

my = H(TY),

ph = 1" omy),

mF = mF + h(gF uF L o'F (gF)—l),
O’F — 77F '/LF . (nF)fl.

In this attack the elementg” ando " are initial data for determination of” from the
equation (V). If it is feasible to determing” in this way then the verification procedure
will be successful and Eve can sign the forgered mesgggeso the forgered data must
satisfy the following equation

posF:JFoq+panouF.

Formally Eve can write the last equation in the form

F —1

st =pto(cf oqg4poct opul)

taking in mind thatp—! o p = 1 and los?" = s¥'.
This is equivalent to find the inverge ! to thep. Then by definition

But according to our assumption thate S;, C S\J. Thena~! can not be found by
the finite step algorithm so it can not found anyway. Theh also can not. So Eve is not
able to calculate the forgered, havingu ando”".

The solution of forgered equation (V) with respecitb with chosens’” and taking
in mind thatp - ¥ = o - p is impossible, because the expressiga- p o m’)~1 has
no sense.

4.3. Data Implied Forgering

Traditionally this kind of attack means to forge messdgeand to sign it with valid
or partially forgered signature parameters. Eve creates her meB§aged then, using
original signature parametérand forgered’ € Sy, calculates

mi = H(Tj)v
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whereh’” # h’ and is specially constructed by Eve realizing a mappifigF’ — J. By
this mean Eve achieved that’ is invertible, i.e.,(u") ! exists.
Then she must determine somfehavingu ™ and choosing some', using equation

Assume Eve has obtained despite the declared infeasibility of solving CSP. But it
is strongly unbelievable that she obtaingd= 7. Moreover, for a valid verification she
must find soméa o z)’ from the equation

s=0"o(n (aoz) +mk) =00 (aoz) +0o oml.
The term(« - )’ could be expressed as follows
’—1 r—1 /—1

(a-2) =010 tos—n/"tomk.

This is possible, because (as we mentioned abovg)ifi—! exists, therv’~! also
exists and satisfies equatioh=n’ - (u)=1 -7/ ~1L.
Eve forms the following signatur§’:

SI = (mf;’é.v o-l’ S)’

with a forgered parameten; related to forgered daf}".
But Bob discloses this attack due to verification condition (V) failure

pos :po(alo(n’.(aox)/erfZ))

=p-o' - (aox) +poo’om]
=n-a-ng ey pt gy (o) 4 poo’ om

3

£ -pf oy naPox+pooc’oml =0"0q+poc’oml.

Condition fails becausg=! - ' # 1 anda? - (a0 z)’ # o o .

CommentBy achieving an invertability of.”", Eve changes a convenient structure of
1 ando. So instead the original, Eve can employ the modified only. The difference
betweens’ and legalo could be noticed by evidence. It could be also disclosed when
Bob applies verification condition (VV) and his calculations were rejected by algorithm
accepting invalid data.

4.4, Data Implied Forgering in Module Action Level

Assume Eve is trying to present such a forgered data that verification condition (VV) will
not fail. Starting from the"%" she forms a signature

SF = (MFaCFaUF7SF)a
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trying to choose the parameters satisfying (VV). For more clarity let us use the brackets
[]instead of () where possie. Then for a bit stringn!” the validity condition holds if
17 (m").

[pos™])"(m") = 0" 0 g+ 0" 0 pom™]’(m

Eve must findn ' satisfying formal equation

m¥ =[post| ™ ([o" oq+ 0" o pom](m")).
Refusing contradiction with (RP2), assume thdt could be obtained. Then the ver-
ification condition (VV) succeeds, because applying the functjon §']* to both sides
of last equation we have

pos™(m") = [pos™) (lpos™] ([0 0 g+ 0" 0 pom ] (m™)))

F)-

17 (m

=[oFoq+c"opom
But according to IRP, it is infeasible to germ inverse recurrent calculations and
thereby to determing:”” using (RP2) type equation.
Even if Eve could guess suchma” she would not be able to choose some sensible
messagé'} for m’" because we assumed tHefunction is cryptographically secure.

5. Discussions
5.1. Theoretical Considerations

We have presented a signature scheme in Gaussian monoid. This is a shortened name.
In more detail the title of the scheme could be named as signature scheme in Gaussian
monoid action level defined on module, compatible with respect to monoid action opera-
tion.

According to our knowledge this is a second proposal to use infinite non-commutative
groups or monoids for signature scheme creation afterefkd., 2002) result.

Except the three known problems existing in Gaussian groups named as CSP, SRP
and FSP, the following main conditions (requirements) must take place for our signature
scheme in addition:

1. The compatibility betweenamoid and module. Compatibility is determined by the

distributive property of monoid action operatioto module addition operation.

2. The operatior is an OWF and is based on the monoid action problem (MAP).
3. The monoid word problem solution in its action level.

The main advantage of our scheme is that there is no matter what complexity the word
problem in monoid presentation level has. The listed above CSP, SRP, FSP could be (or
could be required to be) as hard as possible to increase the security of our scheme.
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Why Gaussian monoids? Formally, our scheme gives the opportunity to use Gaussian
monoids having in mind the described complexity requirements and two level attributes:
presentation and action levels. Gaussian monoids are considerably abstract and suffi-
ciently complex monoids. So far only a few examples of Gaussian monoids were known.
(Dehornoy and Paris, 1999)eated tools for infinite families of Garside monoids as a
special families of Gaussian monoids’ construction. In general it is hard to expect that
CSP, SRP and FSP algorithms for these monoids are feasible or will be constructed at all.

We are sure that at least for one family of Gaussian monoids known as Braid monoid,
possessing a Braid group as sub-monoid, our scheme is suitable. However, we have no
any knowledge about the impsibility to implement this sa@me with the other Gaussian
monoids so far. This sophism allows us to look ahead, and to expect implementation of
this scheme on the other more complex Gaussian monoids providing more secure digital
signatures.

The auxiliary results obtained in this study are:

1. We proposed a security proof based on the four specially selected attacks. These

attacks fail due to the above introduced OWFs based on P1-P4: CSP, SRP, FSP,
MAP and IRP. We postulate that these attacks cover all other possible attacks, i.e.,
that these attacks are complete.

2. We presented a probabilistically suféoit condition for word problem solution in
a monoid using monoid and module action levels. Thus, we avoided a complex, in
general, word problem solution in monoid presentation level.

3. We proposed a secure word factors’ hiding protocol, using random mixing of atoms
in the word procedure, and so providing & Pcomplexity for it, wherd is word
length (number of atoms).

5.2. Performance Analysis

It is hard to estimate performance of propdsscheme because no practical implemen-
tation is realized yet. Nevertheless, some qualitative and indirect analysis could be done.
Firstly it could be done by using some algebraic and cryptographic prototype and com-
paring it with a possible realization of ourrseme. Secondly this cryptographic prototype
could be compared with other traditional cryptosystems.

As an algebraic prototype we choose a Braid group, and as cryptographic prototype,
a public-key Braid cryptosystem (BCS) published in (&tal., 2000).

What similarities and differences could be noticed between this BCS and our signature
scheme?

1. The number of key parameters in our scheme is greater than in the BSC, but nev-

ertheless the key length could be comparable, taking in mind that our key pair is

better protected.
The PrK in BCS consists of 1 braid, in our system there are 3 braids plus one
module element.
The PuK in BCS consists of 2 braids, in our system there are 2 braids plus one
module element.



268 E. Sakalauskas

Our key lengths could be shorter becatlsey are protected not only by CSP as in
BCS but by the SRP, FSP and MAP simultaneously.

2. Operation speed is alsoroparable. Assume both algorithms uses a left-weighted
canonical form mechanism. The left-weighted canonical form is performed in time
O(p*nlogn), wherep is a number of canonical factors in the form ani a braid
index (Koet al, 2000).

BCS uses it for encryption and decryption.

Our scheme together with left-weighted canonical forms also uses monoid action,
random mixing and recurrence calculation procedures. The latter procedures are executed
in time O(7) and are independent of braid indexTherel is a braid length (humber of
atoms). The list of comparable operations is presented in the Table 1.

As a consequence the public key length and execution time in our scheme are compa-
rable with those in Braid cryptosystem.

Having in mind qualitative comparison of our scheme with BCS as a prototype, we
can illustrate comparative results of BCS withet traditional public key cryptosystems,
obtained by (Karu and Loikkanen, 2001). The authors performed calculations on Pentium
500 MHz computer. Some selected figarare presented in the Table 2.

Having in mind that our signature scheme as in BCS does not use arithmetics with
large integers it is more suitable for implementation in mobile phones and smart cards.
The key length in our scheme is comparable with RSA cryptosystem, but it is processed
piece by piece and hence this procedure could be realized in ordinary processors.

Table 1
The list of comparable operations

List of operations

BCS Our signature scheme
Encryption Decryption Signing Verification
1. Left-weighted 1. Left-weighted 1. Left-weighted canonical 1. Left-weighted canonical
canonical form  canonical form  form x2 times form x 1 time
X2 times x1time

2. Monoid actionx 2 times 2. Monoid actiorx 3 times

3. Random mixing x1 3. Recurrence calculation
time %2 times

Table 2
Comparative results of BCS with other cryptosystems

Parameter RSA1024 ECC168 NTRU263 BCS
Public key size (bits) 1024 169 1841 1000
Encryption speed (ms) 4.28 140 1.9 29.8

Decryption speed (ms) 48.50 67 35 14.9
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And finally, so far we have no any knowledge about quantum information algorithms
capable to break a cryptosystem based on BCS. The same, of course, is valid for our
scheme as well. Therefore we think that the signature scheme presented here requires
further investigations as possible alternative to the traditional RSA and ElGamal signa-
ture schemes because BCS is already reak@sean alternative to RSA and ElGamal
cryptosystems.
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Nauja skaitmeninio paraso shema Gauso monoide
Eligijus SAKALAUSKAS

Pateikta nauja skaitmeninio paraSo schema Gauso monoide. Naudojamos dvi tarpusavyje
suderintos algebras sistemos: Gauso monoidas ir modulis. Monoidas sudaro oparaibegi,
veikiantia modulyje.

ParaSo schema paremta trimis pripazintomis sunkiomis problemomis monoido atvaizdavimo
lygmenyje; viena postuluota sunkia problema monoido veikimo lygmenyje ir viena sunkia prob-
lema modulio veikimo lygmenyje.

Pateikta schemos saugumo analizeturiems klastés atvejams, tudrodant, kad pateikta
schema turirodomo saugumo savgb Pateiktas palyginimas su kitomis paraSo schemomis.



