
INFORMATICA, 2004, Vol. 15, No. 2, 203–218 203
 2004Institute of Mathematics and Informatics, Vilnius

Quick Matrix Multiplication on Clusters of
Workstations

Eyas EL-QAWASMEH
Computer Science Dept., Jordan University of Science and Technology
P.O. Box 3030, Irbid 22110, Jordan
e-mail: eyas@just.edu.jo

Abdel-Elah AL-AYYOUB
Information Technology and Computing, Arab Open University
P.O. Box 1339, Amman 11953, Jordan
e-mail: ayyoub@acm.org

Nayef ABU-GHAZALEH
Department of Computer Science, State University of New York at Binghamton
Binghamton, NY 13902-6000
e-mail: nayefag@hotmail.com

Received: October 2003

Abstract. A quick matrix multiplication algorithm is presented and evaluated on a cluster of net-
worked workstations consisting of Pentium hosts connected together by Ethernet segments. The
obtained results confirm the feasibility of using networked workstations to provide fast and low
cost solutions to many computationally intensive applications such as large linear algebraic sys-
tems. The paper also presents and verifies an accurate timing model to predict the performance of
the proposed algorithm on arbitrary clusters of workstations. Through this model theviability of
the proposed algorithm can be revealed without the extra effort that would be needed to carry out
real testing.

Key words: clustered computing, matrix multiplication, MPI, parallel algorithms, performance
estimation, PVM.

1. Introduction

The ever-increasing demand for high-performance computing is far beyond what sequen-
tial computers can provide. In fact, advancesin natural and social sciences are mainly
constrained by the limitations of computational power. The primary way of alleviating
these limitations is through the advances in technology that allows higher degree of inte-
gration and faster switching circuits. Even though the technology still advances, permit-
ting to pack more circuitry per unit of surfaceand decreasing transmission delays, further
improvements are constrained by the speed of light. Another approach for increasing per-
formance has been the focus in the past two decades. This approach focuses on parallel

204 E. El-Qawasmeh, A.-E. Al-Ayyoub, N. Abu-Ghazaleh

architectures and software. Through the replication of computational elements that are

interconnected in some regular structure, programs can execute on multiple hosts and ac-

cess multiple memory banks. In other words, computations and memory transfers can be

performed in parallel.

Parallel computers consisting of thousands of hosts are now commercially available.

These high performance computers open up new frontiers in many applications since they

provide solutions for numerous problems that were until today beyond the capability of

conventional computing techniques. However, the benefits of parallel processing as a

means to provide high computational power were limited to individuals who have access

to such expensive systems. The percentage of parallel processing users compared to the

computing community is rather marginal. Therefore, the early 1990’s have witnessed an

expanding trend of shifting from expensive proprietary supercomputers towards clusters

of workstations. This transition was driven by market economies as well as the availability

of commodity components for clusters of workstations.

Tremendous research efforts are being directed towards developing a novel technolo-

gy that takes advantage of the increasing performance of low-cost computing systems in

order to deliver high performance parallel computing. With this technology, the existing

network computing infrastructure can act as one parallel computer solving one problem.

This technology leverages software and hardware to reduce the effort of building high

performance applications on geographically distributed computer systems.

These research efforts seek to confirm the viability of building fast, inexpensive, scal-

able and highly available parallel computers by using commodity workstations and per-

sonal computers. Such cost-effective “supercomputers” provide the basis for traditional

parallel computing and furthermore open new horizons for novel applications such as the

Internet services (Jiang, 1997).

There are two common approaches for cluster computing. The first approach exploits

the idle cycles of heterogeneous shared computing resources connected via general-

purpose local-area networks. This approach is efficient for loosely coupled computa-

tional models. Parallel Virtual Machine (Sunderman, 1990) and Message Passing Inter-

face (Huss–Ledermanet al., 1993) are well-known examples of systems based on this

approach.

In the second approach, specialized and dedicated high-speed system-area networks

such as Myrinet (Bodenet al., 1995) and ATM (Foxet al., 1987) are employed. This

approach combines the rapidincrease in computing performance and the recent advances

in communication technology to deliver powerful parallel computers. Berkeley NOW

(Agrawalet al., 1995), IBM SP2 (Inktomi Corporation, 1996), and HPVM (Choi, 1998)

are examples of systems based on this approach.

This paper supports the argument that network-based multicomputers are more fea-

sible than massively parallel systems. It presents and evaluates a parallel algorithm for

matrix multiplication, as a fundamentalproblem, on a cluster environment.

Quick Matrix Multiplication on Clusters of Workstations 205

2. Related Work

Matrix multiplication is a fundamental operation that is used in many scientific areas
of research such as linear algebra, signal processing, digital control, and graph theory
(Agrawal et al., 1994; Agrawalet al., 1995; Cosnardet al., 1989; Groppet al., 1999).
There have been a number of approaches proposed recently for implementing matrix
multiplication on distributed memory computers. The two-dimensional systolic algorithm
(Chienet al., 1999) and the broadcast-multiply-roll algorithm (Grayson and Geijn, 1996)
are two examples. These algorithms are based on square grids with block data distribution
methods.

Several attempts to implement the broadcast-multiply roll algorithm on general 2-D
grids have appeared in the literature (Coppersmith and Winograd, 1990; Grayson and
Geijn, 1996). Choi, Dongarra, and Walker presented a Parallel Universal Matrix Multi-
plication Algorithm (PUMMA) (Coppersmith and Winograd, 1990), which is a general
two-dimensional grid implementation of the broadcast-multiply roll algorithm. An al-
ternative generalization, which is also based on the two-dimensional grid, is referred to
as BiMMeR (Broadcast-Multiply-Roll) (Huss–Ledermanet al., 1994; IBM Corporation,
1995). PUMMA and BiMMeR aimed at providing library-quality implementations of
distributed matrix multiplication (Huss–Ledermanet al., 1993). The main difference be-
tween the two algorithms (PUMMA and BiMMeR) lies in the employed data distribution
function. PUMMA uses two-dimensional block cyclic data distribution while BiMMeR
uses a “virtual” two-dimensional torus wrapdata distribution. Experimental results pre-
sented in (Geijn and Watts, 1996) showed that PUMMA and BiMMer algorithms achieve
significant performance on the Intel Touchstone Delta (IBM Corporation, 1995).

Additional attempts on parallel matrix multiplication include a Broadcast-Broadcast
Algorithm (Agrawalet al., 1994), Scalable Universal Matrix Multiplication Algorithm
(abbreviated SUMMA) (Groppet al., 1999), Parallel General Matrix Multipli cation (ab-
breviated Parallel_GEMM) as a generalization of the serial GEMM routine for the Level
3 BLAS algorithm that is based on a three-dimensional data distribution (Agrawalet al.,
1995; Dowdet al., 1995), and the Distribution-Independent Matrix Multiplication Algo-
rithm (abbreviated DIMMA) (Choiet al., 1994). The DIMMA algorithm uses a pipelined
communication scheme to overlap computation and communication effectively. In addi-
tion, it uses theleast common multiple block concept (Choi et al., 1994) to obtain maxi-
mum performance.

The above-mentioned works concentrate primarily on parallelizing sequential algo-
rithms of quadratic to cubic time complexity. In fact, most of previous works attempt
parallelizing three categories of matrix multiplication algorithms; these are the standard
matrix multiplication which has O(n3) time complexity, Strassen’s algorithm which has
O(n2.8074) time complexity (Geijn and Watts, 1997), and the successive progress algo-
rithms with a best case time complexity of O(n2.3) (Cosnardet al., 1989).

Recently a new algorithm for matrix multiplication with time complexity of O(n2)
has been introduced as the first algorithm achieving the theoretical optimal performance
(Lippert and Schilling, 1996) for certain classes of matrices (non-negative integer matri-
ces). In this paper we present a cost effective parallel approach that further reduces the

206 E. El-Qawasmeh, A.-E. Al-Ayyoub, N. Abu-Ghazaleh

time complexity for matrix multiplication to O(n) on a cluster ofn networked worksta-
tions.

The rest of the paper is organized as follows. In the next section, a non-negative inte-
ger matrix multiplication algorithm is summarized. Section 4 presents a matrix distribu-
tion function for parallelizing the non-negativeinteger matrix multiplication algorithm. A
cluster algorithm is presented in Section 5, followed by a performance estimation model
in Section 6. Next, some experimental results are presented in Section 7. Finally, the
paper is concluded by a recount of obtained results.

3. Non-Negative Integer Matrix Multiplication

Matrix multiplication is a time consuming operation often encountered in fundamen-
tal problems such as linear algebra, signal processing, digital control, and graph theory.
Many researchers have studied the conventional O(n3) time algorithm in an attempt to
reduce its unaffordable cubic cost. Theoretically speaking, the lower bound for multiply-
ing twon×n matrices is O(n2) since there are 2n2 inputs that must be examined andn2

outputs to be computed. A general and optimal algorithm that achieves this lower bound
is not yet in existence; however a special case that has been reported recently is discussed
in the sequel.

Given any two non-negative integer matrices [A] and [B] of ordern, their product
[C]=[A]×[B] can be computed in O(n2) time using an algorithm described by Jiang and
Wu (Lippert and Schilling, 1996), abbreviated JW algorithm. This algorithm improves
the lowest complexity of matrix multiplication algorithm from O(n2.49) which was given
by V. Pan in 1981 to O(n2). The JW algorithm can be generalized to the field of rational
numbers with a marginal increase in computing time (Lippert and Schilling, 1996). Below
we describe the JW algorithm.

Algorithm JW
Compute the divider

x = n × max {aik|1 � i � n and 1 � k � n}
×max {bik|1 � i � n and 1 � k � n} + 1.

Compute the pivot vector �v = (v1, v2, . . . , vn) using Horner’s method as follows:

vk = bk1 + x (bk2 + x (bk3 + . . . + x(bkn)) . . .) , 1 � k � n.

Compute the multipliers vector �u = (u1, u2, . . . , un), which is obtained by perfor-
ming the dot product of �v and the rows at [A], as follows:

uk = �v· (ak1, ak2, . . . , akn) , 1 � k � n.

Quick Matrix Multiplication on Clusters of Workstations 207

Compute the quotients vectors qi1, qi2, . . . , qi,n−2 and the remainders vectors
ci1, ci2, . . . , ci,n (1 � i � n) such that

ui = qi1x + ci1, 0 � ci1 < x,

qi,j−1 = qijx + cij , 0 � cij < x and j = 2, . . . , n − 2,

qi,n−2 = cinx + ci,n−1, 0 � ci,n−1 < x.

End JW

JW is designed for handling integer matrix multiplication. It is considered a stable
algorithm since there is no rounding errors. For rational numbers, stability is not a prob-
lem for sparse matrices. However, for dense matrices, it might be a problem which needs
further investigation. We should report here that there are some techniques that can be
used to reduce the unstability.

4. Balanced Matrix Multiplication

In a cluster computing environment running on a loaded general-purpose network, com-
munication latency is a crucial performance bottleneck. Thematrix elements should be
distributed to maintain a low communication overhead and also to guarantee balanced
load on the available hosts in the cluster. In this section, we present a unified matrix
distribution method that covers a wide range of matrix distribution functions and in the
same time facilitate clear separation between the parallel algorithm and the choice of
matrix distribution function.

Let V = {Pi|1 � i � h} be the set of hosts in the cluster, and letE = {ai,j |1 �
i, j � n} ∪ {bi,j|1 � i, j � n} ∪ {ci,j |1 � i, j � n} be the set of elements in the three
n × n matrices, where [C]=[A]×[B]. The unified matrix distribution is characterized by
the functionξ = φ◦ρ, whereρ: E → 2E is the function that partitionsE using a specific
matrix distribution method, andφ: 2E → V is the function that assigns these parts to the
hosts. The functionξ is a general-purpose matrix distribution that covers a wide spectrum
of matrix distribution methods. As we will see later on, the above instance ofξ achieves
low communication latency and also allows balanced load distribution on the available
hosts.

5. Cluster Matrix Multiplication Algorithm

In his section we present a cluster matrix multiplication algorithm based on the unified
matrix distribution function discussed above. In this algorithm, the hostPr, 1 � r � h

is assignedn/h rows from [A],n/h rows from [B], andn/h rows from [C]. These 3n/h

rows are denoted by the setMr = M
[A]
r ∪ M

[B]
r ∪ M

[C]
r . The list below formalizes the

tasks performed by the JW algorithm.

– Taskµ[Z]
r ≡ Find max[Z]

r = max{M [Z]
r }, where [Z] is [A] and [B].

208 E. El-Qawasmeh, A.-E. Al-Ayyoub, N. Abu-Ghazaleh

– Taskπr ≡ Compute pivots vk = bk1 + x(bk2 + x(bk3 + . . . + x(bkn)) . . .),
(r − 1)n

h + 1 � k � rn
h . Each host holds part of the vector�v , let us denotes byrv

the set of elements from�v assigned to and updated byPr.

– Taskδr ≡ Compute multipliers uk = �v· (ak1, ak2, . . . , akn), (r − 1)n
h + 1 �

k � rn
h .

– Taskχr ≡ Compute final results {cij |(r − 1)n
h + 1 � i � rn

h and 1 � j �
n − 1} such that

ui = qi1x + ci1, 0 � ci1 < x,

qi,j−1 = qijx + cij , 0 � cij < x and j = 2, . . . , n − 2,

qi,n−2 = cinx + ci,n−1, 0 � ci,n−1 < x.

Using the above formulation, a parallel version of JW algorithm for non-negative
integer matrix multiplication can be described as follows. The hostPr, 1 � r � h,
performsµ[A]

r , µ
[B]
r and exchanges the local extremes with all other hosts to determine

the global extremes. Then,Pr performsπr followed by a total exchange to gather up the
vector�v in each host’s memory. Finally,Pr performsδr and thenχr independently to get
the final product. The parallel JW algorithm,abbreviated PJW, is outlined in Fig. 1. The
algorithm makes use of a common data communication operation calledtotal exchange
(Raoet al., 1995). A host executing a total exchange operation, denotedε(d−, Ð), sends
out the datad− to all hosts and gathers inÐ the data received from all hosts in the cluster.
A straightforward implementation for the operationε(d−, Ð) would be realized in two
steps: Anasynchronous send to all hosts to transmitd− followed by ablock-receive to get
the portions ofÐ from all hosts in the cluster.

The algorithm PJW is “spawned” in the available hosts, one copy for each host, with
no external coordination or synchronization. Each host gets its portion of the input, de-
termined by the functionξ, from a local disk and writes its part of the output to a local
disk. Hence, I/O operations are also concurrent in PJW.

Algorithm PJW
1. Execute µ

[A]
r then ε(max[A]

r , max[A]
k for 1 � k � h and k �= r).

2. Execute µ
[B]
r then ε(max[B]

r , max[B]
k for 1 � k � h and k �= r).

3. Compute x = n × max{max[A]
k |1 � k � h} × max{max[B]

k |1 � k � h} + 1.

4. Execute πr then ε(rv,k v for 1 � k � h and k �= r).

5. Execute δr.

6. Execute χr.
End PJW

Fig. 1. Parallel JW algorithm.

Quick Matrix Multiplication on Clusters of Workstations 209

An alternative formulation for PJW would be a master/slave model. The master han-
dles communication and synchronization in the first two steps of PJW. The master spawns
the slaves and all communication has to go through the master. Such a version of PJW
would induce the same amount of communication and also would alleviate a little of the
load on the hosts by only allowing the master to perform step 3 of PJW. However, this
reduction in the hosts’ computation load is insignificant (unless a very large number of
hosts are involved) and it does not reduce the overall execution time of PJW. Further-
more, the PJW in Fig. 1 is superior to the master/slave version in terms of fault tolerance.
A master/slave model collapses if the master goes down, which is not the case in the
PJW of Fig. 1. Fault recovery measures are easily adopted by reapplying the distribu-
tion function so the newMr’s are known at the time a host goes down or comes up. We
will defer discussion on PJW fault tolerance, though it is important in cluster computers
built on public networks and workstations, to future research in order to stay within the
boundaries of this paper’s focus.

It should be noticed that the JW algorithmcan also be used to multiply negative and
non-negative integer matrices. This can be achieved by separating each of the factor ma-
trices into two parts as follows:

[F] = [F]+ − [F]−,

where [F]+ and [F]− are obtained from [F] by taking only the positive (respectively,
absolute value of negative) elements from [F] and substituting zeroes for negative (re-
spectively, positive) elements. Thus, the product of two integer matrices [A] and [B] can
be rewritten using the above formulation as follows:

[A][B] =
(
[A] + − [A] −

) (
[B]+ − [B]−

)

= [A] +[B]+ − [A] +[B]− − [A] −[B]+ + [A] −[B]−.

Since [A]+, [A]−, [B]+, and [B]− are non-negative integer matrices, the four matrix
multiplications in the above expression can be carried out using the JW algorithm. Of
course there will be an extra cost incurred, but this is a shortcoming of JW algorithm.
PJW algorithm on the other hand makes use of the replicated processing hosts to reduce
this negative influence on the execution time of the original JW algorithm.

6. Performance Results

Performance prediction models can be greatly contributes to the parallel computing
(Ciegis, 2003). In this section we present a time prediction model for PJW. One of the key
qualities of this model stems from the fact that machine and matrix distribution charac-
teristics are separated from the timing parameters. The model can be used to predict the
performance of PJW on arbitrary machine clusters and using arbitrary matrix distribution
functions. The machine clusters can be heterogeneous; however homogenous machine
characteristics give more accurate estimates.

210 E. El-Qawasmeh, A.-E. Al-Ayyoub, N. Abu-Ghazaleh

In the sequel we denote byt- (t) the amount of time needed to carry out the taskt by

one or more hosts. For instancet- (µ[A]
r) is the time taken by a single host to performn2/h

arithmetic operations in order to findmax[A]
r . Also, let taop denote the average time for

carrying out a single arithmetic operation. With this terminology, the execution time for
the algorithm PJW to multiply two matrices of ordern on a cluster ofh hosts is given by

t- (PJW) = 2t- (µ[A]
r) + 2t-

(
ε(max[A]

r , max[A]
k for 1 � k � h and k �= r)

)

+(2h + 1)taop + t- (πr) + t-
(
ε(rv,k v for 1 � k � h and k �= r)

)

+t- (δr) + t- (χr). (1)

The expressions in (Agrawalet al., 1994) can be further refined as will be explained
next. In a cluster environment, the time for a total exchange operationε(d−, Ð) can be
estimated using a common model for measuring the cost of communicating a message of
dimensionm in a network with latencyα and unit transmission cost ofβ, which is given
by α + βm (Dongarraet al., 1990). With this model the communication time in PJW can
be summarized as shown below:

t-
(
ε(max[A]

r , max[A]
k for 1 � k � h and k �= r)

)

= t-
(
ε(max[B]

r , max[B]
k for 1 � k � h and k �= r)

)
= (α + β)h, (2)

t-
(
ε(rv,k v for 1 � k � h and k �= r)

)
= (α + β

n

h
)h. (3)

Thus, (1) can be reduced to

t- (PJW) = 2(n2/h)taop + 2(α + β)h + (2h + 1)taop + (2n2/h)taop

+(α + βn/h)h + (2n2/h)taop +
(
6n(n − 1)/h

)
taop. (4)

The computation and communication characteristics of the PJW algorithm are shown
in Table 1 and Table 2, respectively. The expressions in these two tables show accurate
operations counts executed by each host, except for the part related to vector reduction

Table 1

Arithmetic operation counts for PJW computation tasks

Computation task Addition Comparison Multiplication Division

µ
[A]
r 0 n2/h 0 0

µ
[B]
r 0 n2/h 0 0

πr n2/h 0 n2/h 0

δr n2/h 0 n2/h 0

χr 3n(n − 1)/h 0 0 3n(n − 1)/h

Other 1 h − 1 h + 1 0

Total (5n2 − 3n)/h + 1 2n2/h + h − 1 2n2/h + h + 1 3n(n − 1)/h

Quick Matrix Multiplication on Clusters of Workstations 211

Table 2

Communication cost in PJW

Communication task Latency Transmission Cost

ε(max
[A]
r , max

[A]
k

for 1 � k � h and k �= r) h h

ε(max
[B]
r , max

[B]
k

for 1 � k � h and k �= r) h h

ε(rv,k v for 1 � k � h and k �= r) h n

Total 3h 2h + n

(e.g., finding the maximum or summing up a vector) where the number of operation is
consideredn instead ofn − 1. This simplifies the analysis and has negligible effect on
the accuracy of the timing model.

The expressions in the above two tables indicate that the computation and commu-
nication time requirements for PJW are of order O(n2/h) and O(n + h), respectively.
From these complexities, we deduce that by increasing the number of hosts we can end
up in a faster PJW. However, involving larger numbers of hosts means higher communi-
cation complexity, and hence it is possible to end up in a slower PJW. The next section
investigates this point.

7. Experimental Results

In this section, the performance of the PJW algorithm is investigated on a cluster of 32
Pentium III workstations connected together via 100Mb/s Ethernet segments. The work-
stations are running under Linux with PVM and MPI in support of cluster computing.

PVM is a message passing system that enables a network of heterogeneous computers
to be used as a single distributed memory parallel computer. PVM can be used at several
levels. “At the highest level, thetransparent mode, tasks are automatically executed on the
most appropriate host. In thearchitecture-dependent mode, the user specifies the types
of hosts suitable to run a specific task. In thelow-level mode, the user may specify a
particular host to execute a particilar task” (Sunderman, 1990). In all of these modes,
PVM takes care of necessary data conversions from one host to another as well as low-
level communication details (Huss–Lederman it et al., 1993; Sunderman, 1990).

MPI, on the other hand, is a software for message passing, proposed as a standard by
a broad committee of vendors, implementers, and users (Huss–Ledermanet al., 1993).
MPI is portable and flexible software that is used widely. It is considered as a standard
for writing message-passing programs in which higher level routines and abstractions are
built upon lower level message passing routines.

In our experiments we implemented PJW using both PVM and MPI. These two im-
plementations of the PJW algorithm were tested using matrices of orders ranging from
1,000 up to 10,000 with strides of 500. In order to avoid overflow exceptions for large
matrix orders, small-valued non negative matrix elements were used. The experiments

212 E. El-Qawasmeh, A.-E. Al-Ayyoub, N. Abu-Ghazaleh

have been repeated using 4, 8, 16 and 32 hosts for both implementations with a total of
152 test runs.

The employed cluster environment is a typical academic installation with dedicated
local area network. In order to avoid pointless scenarios, the experiments were conducted
after midnights where no unknown loads on the hosts. Furthermore, unnecessary time
stealing daemons were blocked at the time of experimentation.

Fig. 2 shows the real execution times for PVM-based PJW on 4, 8, 16, and 32 hosts
and for matrix orders ranging from 1,000 to 10,000 elements. Although the algorithm runs

Fig. 2. The real execution times for PVM based PJW.

Fig. 3. The real execution times for MPI based PJW.

Quick Matrix Multiplication on Clusters of Workstations 213

faster on a larger number of hosts, the gain in the speedup factor is slower. For instance,
the difference in execution time between 16 and 32 hosts is smaller than the difference
between 8 and 16 hosts. This is due to the dominance of increased communication cost
over the reduced in computation cost.

The MPI experimentation results are shown in Fig. 3. The results are somewhat sim-
ilar to those for the PVM with some reduction of the execution time in favor of MPI.
This reduction becomes more apparent for a larger number of hosts. This leads to the

Fig. 4. The attained throughput for PVM based PJW.

Fig. 5. The attained throughput for MPI based PJW.

214 E. El-Qawasmeh, A.-E. Al-Ayyoub, N. Abu-Ghazaleh

observation that MPI performs faster message passing than PVM in this experiment.
Figs. 4 and 5 show the attained throughput(in millions of arithmetic operations per

second) for PJW using PVM and MPI, respectively. These throughputs compare favor-
ably to today’s most expensive supercomputers in terms of cost/performance ratio. Hence,
these results confirm the viability of cluster computing as a cost-effective alternative to
expensive supercomputing. The fluctuating throughput for larger numbers of hosts is due
to the non-deterministic workload on the public network. Although the experiments were

Fig. 6. The estimated and the real execution times for PVM based PJW.

Fig. 7. The estimated and the real execution times for MPI based PJW.

Quick Matrix Multiplication on Clusters of Workstations 215

conducted after midnight,one should expect occasional traffic on the network.
The final experiment was conducted to verify the correctness of the proposed timing

models for PJW. The expressions in Tables 1 and 2 are plotted in Figs. 6 and 7 using PVM
and PMI time parameters, respectively. Arithmetic execution times are the same for both
cases, however the communication latencyhas been empirically obtained by measuring
the time needed to transmit a 4-byte messagebetween a pair of hosts. The difference be-
tween the recorded time and the ideal time (for a known network bandwidth) represents
the communication latency. To obtain an accurate estimate, the measured communication
latency has been averaged over one hundred tests. The network latencyα and unit trans-
mission costbeta have been measured using PVM and then using MPI primitives. The
two values pairs have record and used in the subsequent experiments. A similar num-
ber of tests have been carried out to estimate the arithmetic execution times (addition,
comparison, multiplication, and division) on the employed Pentium workstations.

As can be seen from Figs. 6 and 7, the estimated execution times are quite close to
the real ones. This verifies that the proposed timing model for PJW is fairly accurate, and
hence it provides a means to test the viability of PJW on any cluster without taking the
burden of real testing.

The key qualities that have been the driving force in designing the PJW are: linear time
complexity (with sufficiently large number of hosts), low cost as it utilizes off-the-shelf
networked workstations with huge aggregate memory space, and low communication
overhead. One problem that still persists in the original JW algorithm is the overflow sce-
narios inherited from the way pivot elements are computed. PJW algorithm is not meant
to solve the overflow problem of JW, which is deferred to future research. One way to
solve this problem is by using emulated large integers. Of course this adds some overhead
to JW and PJW execution times, however the gained improvement in time complexity of
the PJW worth paying this extra overhead.

8. Concluding Remarks

The JW matrix multiplication algorithm was the first that reaches the optimum of O(n2)
to multiply two integer matrices of ordern (Lippert and Schilling, 1996). In this paper
we proposed and evaluated a parallel JW algorithm (abbreviated PJW) that reduces the
complexity to O(n2/h), whereh is the number of hosts in the cluster. The algorithm has
been tested on a cluster of 32 Pentium hosts connected together using 100 mps Ethernet
segments. The obtained results show little timing difference in favor of MPI over PVM,
yet confirm the viability of cluster computers as a cost-effective alternative for expensive
supercomputers. The 32-host cluster attained over 650 MOPS, which is comparable to
modern supercomputer performance. Another key ability ofcluster computing is the huge
aggregate memory space that would be unachievable in a single system. The matrix order
10,000 requires 1.2 GB of real memory to store the three matrices in JW or PJW. High
memory requirement would be hardly supported in a multi-user supercomputer system
for some problems, hence making cluster computers with large aggregate memory spaces
a suitable host for applications demanding large computational power.

216 E. El-Qawasmeh, A.-E. Al-Ayyoub, N. Abu-Ghazaleh

References

Agrawal, R., F. Gustavson and M. Zubair (1994). A high-performance matrix multiplication algorithm on a
distributed memory parallel computer using overlapped communication.IBM Journal of Research and De-
velopment, 38(6), 673–681.

Agrawal, R., S. Balle, F. Gustavson, M. Joshi and P. Palkar (1995). Three dimensional approach to parallel
matrix multiplication.IBM Journal of Research and Development, 39(5), 575–583.

Anderson, T., D. Culler, D. Patterson and the NOW Team(1995). A Case for NOW (Networks of Workstations).
IEEE Micro, 15(1), 54–64.

Boden, N., D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J. Seizovic and W. Su (1995). Myrinet – a gigabit-
per-second local-area network.IEEE Micro, 15(1), 29–36.

Chien, A., M. Lauria, R. Pennington, M. Showerman, G.Iannello, M. Buchanan, K.Connelly, L. Giannini, G.
Koenig, S. Krishnamurthy, Q. Liu, S. Pakin and G. Sampemane (1999). Design and evaluation of an HPVM-
based Windows NT supercomputer.International Journal of High-Performance Computing Applications,
13(3), 201–219.

Choi, J. (1998). A new parallel matrix multiplication algorithm on distributed memory concurrent computers.
Concurrency: Practice and Experience, 10(8), 655–670.

Choi, J., J. Dongarra and D. Walker (1994). PUMMA: Parallel universal matrix multiplication algorithms on
distributed memory concurrent computers.Concurrency: Practice and Experience, 6(7), 543–570.

Ciegis, R., and V. Starikovicius (2003). Realistic performance prediction tool for the parallel block LU factor-
ization algorithm.Informatica, 14(3), 167–180.

Coppersmith, D., and S. Winograd (1990). Matrix multiplication via arithmetic progressions.Journal of Sym-
bolic Computation, 9(3), 251–280.

Cosnard, M., Y. Robert and B. Tourancheau (1989). Evaluating speedups on distributed memory architectures.
Parallel Computing, 10(2), 247–53.

Dongarra, J., I. Duff, J. Croz and S. Hammarling (1990). A set of level 3 basic linear algebra subprograms.
ACM Transactions on Mathematical Software, 16(1), 1–17.

Dowd, P., S. Srinidhi, E. Blade and R. Claus (1995). Issues in the ATM support of high performance geographi-
cally distributed computing. InFirst International Workshop on High Speed Network Computing. pp. 19–28.

Fox, G., S. Otto and A. Hey (1987). Matrix algorithm on a hypercube I: matrix multiplication.Parallel Com-
puting, 4(1), 17–31.

Grayson, B., and R. Geijn (1996). A high performance parallel strassen implementation.Parallel Processing
Letters, 6(1), 3–12.

Geijn, R., and J. Watts (1997). SUMMA: ScalableUniversal Matrix Multiplication Algorithm.Concurrency:
Practice and Experience, 9(4), 255–274.

Gropp, W., E. Lusk and A. Skjellum (1999).Using MPI, 2nd Edition. MIT Press.
Huss–Lederman, S., E. Jacobson and A. Tsao (1993). Comparison of scalable parallel matrix libraries. InPro-

ceedings of the Scalable Parallel Libraries Conference, Starksville, MS. pp. 142–149.
Huss–Lederman, S., E. Jacobson, A. Tsao and G. Zhang(1994). Matrix multiplication on the Intel Touchstone

Delta.Concurrency: Practice and Experience, 6(7), 571–594.
IBM Corporation (1995).Scalable POWERparallel System.
Inktomi Corporation (1996). The Inktomi technology Behind Hotbot,A White Paper. Also available from

http://www.inktomi.com/Tech/CoupClustWhitePap.html.
Jiang, C., and Z. Wu (1997). Two new algorithms for matrix multiplication and vector convolution.International

Journal of Computer Mathematics, 63(1–2), 23–36.
Lippert, T., and K. Schilling (1996). Hyper-systolic matrix multiplication. InProceedings of the International

Conference on Parallel and Distributed Processing Techniques and Applications, Sunnyvale, California,
USA. pp. 919–930.

Rao, S., T. Suel, T. Tsantilas and M. Goudreau (1995). Efficient communication using total-exchange.Procee-
dings of the 9th International Parallel Processing Symposium, Santa Barbara, CA. pp. 544–550.

Sunderman, V. (1990). PVM: a framework for parallel and distributed computing.Concurrency: Practice and
Experience, 2(4), 315–339.

Quick Matrix Multiplication on Clusters of Workstations 217

E. El-Qawasmeh received his BSc degree in computer science in 1985 from Yarmouk
University, Jordan. He thenjoined the Yarmouk University as teaching assistant in the
Computer Science Department. In 1992, he joined the George Washington University,
Washington, D.C., USA where he obtained his MS and PhD degrees in software and sys-
tems in 1994 and 1997, respectively. In 2001, he joined George Washington University,
USA as visiting researcher through a Fulbright Commission grant. He received 2001 Hi-
jjawi research prize for computer science (best computer research for 2001 in Jordan and
Palestine). His areas of interest include multimedia databases, information retrieval, and
object-oriented. Dr. El-Qawasmeh is currentlyan assistant professor in the Department of
the Computer Science and Information Systems at Jordan University of Science and tech-
nology, Jordan. He is a member of the editorial board ofDigital Information Management
Journal. He is a member of the ACM and IEEE.

A.-E. Al-Ayyoub is an associate professor of computer science at the Arab Open Univer-
sity. He received his BSc degree in computer science in 1986 from Yarmouk University,
Jordan. He then joined the Middle East Technical University, Turkey, where he obtained
his MS and PhD degrees in computer engineering in 1987 and 1992, respectively. His
areas of interest include interconnection networks, parallelizing compilers, design of par-
allel algorithms, mobile computing, and artificial intelligence. Dr. Al-Ayyoub is an IEEE
senior member. He received more than quarter a million US dollars in research grants,
won two major prizes in computer science (the State Prize and Abdul-Hameed Shoman
Prize), and published over 50 papers in well-known journals and conference proceed-
ings. Dr. Al-Ayyoub supervised PhD and master students and developed several graduate
and undergraduate programs in various fields of information technology. Before joining
the Arab Open University, Dr. Al-Ayyoub severed in the University of Bahrain, Sultan
Qaboos University – Oman, The University of Akron – Ohio, and Jordan University of
Science and Technology – Jordan. His experience in teaching extends to 14 years.

N. Abu-Ghazaleh is pursuing his PhD at State University of New York at Binghamton.
He got his BSc from Jordan University of Science and Technology in 2002. He then
joined the state Univesity of New York at Binghamton where he got his master in 2004.

218 E. El-Qawasmeh, A.-E. Al-Ayyoub, N. Abu-Ghazaleh

Greitasis matric ↪u dauginimas naudojant vartotoj ↪u darbo viet ↪u
klasterius

Eyas El-QAWASMEH, Abdel-Elah AL-AYYOUB, Nayef ABU-GHAZALEH

Straipsnyje pateiktas greitojo matric↪u dauginimo algoritmas, skirtas vykdyti tinkle sujungtuo-
se vartotoj↪u darbo viet↪u klasteriuose. Gauti rezultatai patvirtina, kad algoritmas tinka greitam ir
pigiam daug skaičiavim ↪u reikalaujaňci ↪u uždavini↪u, pavyzdžiui, didel̇es apimties tiesiṅes algebras
uždavini↪u, sprendimui. Taip pat straipsnyje pateiktas skaičiavimo laiko poreiki↪u prognożes mo-
delis.

