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1. Introduction

Today we communicate with computers and other systems using keyboard, mouse, but-
tons, and other artificial devices, although for people the most natural way to communi-
cate is speech. Despite a lot of research b@en made in the speech recognition field,

it is still easier task for people than for mputers. Speech andriguage technologies
have found many commercial applications,sas spelling checkers, dictation systems,
voice control systems, voice information nieval systems, and computer-assisted lan-
guage learning. However, large vocabulary continuous speech recognition (LVCSR) sys-
tems still operate with error rates that are much too high to be used in practice. Some
laboratory systems achieve nearly usable recognition rates but use very complex models,
which does not allow real-time performance required for many practical applications.
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LVCSR systems have lots of tunable parameters and modeling alternatives that can have
greater or smaller effect to the recognition performance. In this paper we look inside
the LVCSR system based on Hidden Markov Model (HMM) methods, which is a state-
of-the-art technique used in modern speestognition systems. We review specifics of
HMM modeling for continuous speech recogaitj build an experimental LVCSR system

and investigate several HMM modifications.

2. Statement of the Problem

Since 1993, when resource management and WSJO speech corpora were released, there
has been a lot of research in broadcast news recognition systems. These systems mainly
investigated large vocabulary continuougeph recognition dedicated to dictation in
noise-free environments. Many research activities were going on in Cambridge Univer-
sity in UK, see (Woodland, 1995) and (Robinson, 1995), LIMSI University in France, see
(Gauvain, 1994) and (Gauvain, 1996), aratious U.S. institutions, see (Young, 1998)

and (Wegmann, 1999). Multiple frameworks wegrepared for comparing performance

of laboratory systems for broadcast news recognition. Thorough reviews of these activ-
ities are given in (Gauvain, 1996) and (Young, 1998). However, there are many aspects
that are important for practical applications but are not covered in a concise way in the
publications resulted from these researclivé@s. Only early publications looked inside

the structure of the recognition systemsjlimore recent publications usually reportim-
provements of recognition rates without gigidetailed description of recognizer. To our
knowledge, there were no publications comparing multiple HMM modifications consid-
ering recognition rates and some measure of models complexity. This is important, since
in many practical applications memory andngputational resources are restricted and
balance between improving recognition rates and increasing models complexity must be
found so that the best possible recognitiatercould be achieved with allowed memory

and computational resources. Some aspects, such as context-dependency, see (Kershaw,
1996), were studied separately. However it's difficult to compare the influence of various
modeling variants from publications that used different recognition systems and differ-
ent data sets, which may significantly edf the results. We will build an HMM-based
LVCSR system using HTK toolkit, and investigate the following issues using the same
training and testing data sets from WSJCAMO speech corpus:

e compare simple and context-dependphone HMMs by recognition rates and
models complexity;

e compare different numbers of Gaussian mixture components for modeling distri-
bution of speech features by recdtipn rates and mods complexity;

e estimate an impact of incorporating an appropriate language model to the speech
recognition rate.

British English speech corpus WSJCAM@d similar American English corpus

WSJO were used for evaluating perfante for broadcast news recognition in 1992—
1994, see (Young, 1998) for detailed review of these activities. We do not have a goal to
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improve state-of-the-art recognition rate ssted for these corpora by sophisticated and
complex laboratory systems. Rather we will investigate listed HMM modifications for
modeling speechcousticqwithout incorporating sophisticated language models which
can improve absolute recognitizate) and use comparativeaysis of their recognition
rates and computational complexity necessary for such modeling.

3. Specifics of HMM-Based LVCSR

The continuous speech recognition problem is to recognize word sequ&nce

Wi, ..., W, from observed acoustic speech signal, by which speaker communicates this
word sequenc®’. We observe a speech signal, which is coded’by Y1,...,Yr, and

our task is to recognize” analyzing observed . Statistically this problem is formulated
asW = arg maxy P(W|Y). Itis not feasible directly, but applying Bayes rule we can
split this problem into feasible components:

o~

W = arg mV%xP(W|Y) = argmma}xP(Y|W) - P(W). 1)

The values ofP(Y'|W) and P(W) can be estimated from parametric statistical mod-
els — respectively acoustic model and language model.

Fig. 1 shows a graphical illustration of typical LVCSR system design, which we ap-
plied in our experimental system. The first component in LVCSR system is a signal pro-
cessing front-end, which converts raw speeelveform into sequence of feature vectors
Y = Yi,...,Yr. Itis well known that the raw speech signal carries a lot of redundant
information and thus is not the best representation for using in recognition systems. It is
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Fig. 1. Structure of LVCSR system.
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a common technique to segment signal into short-time overlapping frames (\2& unse
frames shifted byt0 ms) that are treated as pseudo-stationary, and extract representative
feature vector for each frame.aWill denote such feature vectgy, wheret is the index
of the frame corresponding to discrete time value. Reader may refer to (Deller, 1993) for
detailed discussion about extracting various feature sets.

We have used a set 8 features, which can be divided in3cstreams:

e 13 primary feature set!, ..., ¢!, consisting of 12 Mel frequency cepstral coeffi-

cients (MFCC) and logarithm of signal energy;

e 13 first order time derivatived\ct, ..., Act,, where Act = ¢t — ™t i =
1,...,13;

e 13 second order time derivativegct, ..., A%c},, whereA?ct = Act — Act™t,
i=1,...,13.

This feature vector sequengeis then passed to recognizer, which computes likeli-
hood score corresponding (Y |1W) and incorporates likelihood score corresponding
to P(W).

The state-of-the-art technique irogfeling acoustics of speech, i.e., tR&Y"|IW) com-
ponent, is Hidden Markov Model (HMM). HMM is a doubly stochastic process, consist-
ing of observable stochastic output process and not-observable (internal) stochastic state
transition process. HMM changes a state eashréte time step t, and the state generates
an observable output. Probability of observing a particular output value is probabilis-
tically dependent on the state, in which HMM is at that time. A single HMM has the
following parameters:

e Number of internal stated’, which is selected according to HMM specifics. We

will use variables; for denoting number of state in that HMM is at discrete tiime
We use three-state HMMs (see Fig. 2).

e The possibilities of transitions between internal states. HMM state transition pro-
cess is a first-order Markov chain, i.€2(s|s1,82,...,8t—1) = P(s¢|st-1)-
Therefore transition probabilities can be definedby IV size matrixA = {a;;},

i, =1,...,N,wherea;; = P(s; = j|s;—1 = 7). Some transitions may be not
allowed by setting their probabilities zero. We use left-to-right phone HMMs
that do not allow backward transitions (see Fig. 2).

e The functions defining observation probabilities for each state: {b;(y)}, i =
1,..., N. We use continuous HMMs with vector-valued observations, thi9
will correspond to multivariate Gaussigumobability distribution function (pdf),

Fig. 2. Three-state left-to-right HMM topology for phones.
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i.e., b;(y) = N(y;u,X), such thatV (y; u, X) = mefé(y’“/)zflw’“)
where ;1 is mean vector). is covariance matrix, and is the dimensionality
of y. We will further extend the system to use Gaussian mixtubgg) =
¥ i N(y; i, 2i), whereX""_ | ¢; = 1. We will perform experiments to inves-
tigate the influence of modeling feature distribution functions with simple Gaussian
and two and three-component Gaussian mixture pdf. We use diagonal covariance
matricesY, i.e., variances only, because using full covariance matrices heavily in-
creases computational complexity and does not give significant recognition im-
provement.

We use a compact notation of an HMM model= {A, B}. We think of a single
HMM as a model of system generating feasiof modeled speech unit, which can be a
word, syllable, simple or context-depegent phone. The choice afodeled speech unit
depends on speech recognition system charatitey; available training data sets, and
specifics of language. We will compare mtidg simple and context-dependent phones
in our experiment. We will call simple phonesonophonesand context-dependent
phonedriphones We need to define the topology of HMMs. Choosing number of states
is based on vocal tract behavior. When uttering a phone, a vocal tract goes through three
basic states — changing from previous phone, steady pronunciation of phone, and chang-
ing to the next phone. Also, since speech acoustics is of forward-in-time nature, we do
not need backward transitions. Finally, sometimes phones are pronounced very fast and
some state may be skipped. For all these reasons, all phones will be modeled by three-
state left-to-right HMMs.

A topology of left-to-right HMM for any phone is shown in Fig. 2. The states 1 and 5
are shown differently because they are noriténg and are only usedf joining multiple
phone HMMs together. Dealing with continuous read speech, we also need to model short
pauses and silence. We model pause by one-state HMM and silence by three-state HMM,
which central state shares the same pdf with the single state of pause HMM, and left and
right states have forward and backward siéinns to each other to model noises that may
be similar to start of speech.

Having selected modeled speech unitd #meir topologies, we may build prototype
HMMs, which need to be trained using appropriate amount of speech data to represent
the features of associated phones. We usedititeedded Baum-Weltthining algorithm,
which is implemented in HTK, see (Young, 2002). Discussing HMM training algorithms
is out of scope for this article. Reader may refer to (Rabiner, 1993) for details of training
algorithms.

Recognizing with trained HMMs, we need to find HMM which produces the best like-
lihood score for observed speech signal. There are two approaches to evaluating HMM
likelihood scores used for recognition: evaluate accumulatgdgathlikelihood score or
evaluatebest patHikelihood score. We will take thbest pathapproach and usédterbi
algorithm, which finds the best state sequence and computes its likelihood score. Let’s
define variable); (i) = maxs, s,.....s, P(51,82,...,8 = 4,91, Y2, - - -, Yt|A), which in-
dicates the best likelihood score till discrete time momefot state sequence ending in
the state. By induction,d;+1(j) = max;(0,(4) - ai;) - bj(y:+1). To avoid floating-point
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Fig. 3. Silence and short pause HMM topologies.

numbers underflow problems we apply negative logarithm, which turns likelihood scores
into cost scores and maximization into minimization. The full Viterbi algorithm in loga-
rithm form is given bellow.

First, we need to initializé; (¢) values:

d1(1) = —logy(b1(y1)), )
01(1) =00, 1=2,...,N. (3)
Then we can use induction for finding forward-in-timé;) values:

6(7)= min (~Togo(0r1(1) —loguo (b)), £=2,.... T j=1,...,N. (4)

To backtrack the best state sequence, we need to store arguments that mipjiize
for eacht andj:

wt(j):arglgLnN(flogw(&fl(i))*log‘lo(aij)), t=2,...,T; j=1,...,N. (5)
Finally, the minimum cost score can be found by:

P* = min (67(1)). (6)

1<i<N

For backtracking the best state sequence we use:

s =arg min (67(i)), (7)

1<i<
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sp =Yir1(sy ), t=T-1,...,1 (8)

The complexity of Viterbi algorithm i€ (N 2T"), which is practically feasible. How-
ever, for large vocabulary, when we need to concatenate a sequence of phone HMMs to
form words and sequences, the search space gets too labgar searclallows drop-
ping unlikely hypotheses, which may drastically reduce computations without having
significant impact on results. This simple semi-greedy approach is known to work well
in practice. It works within Viterbi search algorithm as follows:

At each time step, compute minimum cost score for previous stepl:

Py = min (5,-1(). ©)
Using P/ ; and carefully chosen constaht (we usedk = 300), define a dynamic
threshold:

1=K P’ . (10)

Then purge, i.e., do not consider in minimizat{®) the states at level- 1, for which
cost score is higher than the thresholg: 1 (i) > 7—1.

As already mentioned, regnizing continuous speech uses joining phone HMMs into
sequences to form words, and joining words into sequences to form sentences. Possible
sequences of HMMs are defined by pronunciation dictionary, which contains all allowed
words and their phonetic transcriptions. Since we will model monophones and triphones,
we need a monophone and triphone pronunciation dictionaries.

Table 1 shows several words from vocabulary used in our experiment and their mono-
phone and triphone pronunciation transcops8. Some words have multiple pronuncia-
tions. Note that when using monophones phaxeould be modeled by the same HMM
in all four words, and using triphones there would be different triphone HMMs for this
phone in all four words.

For continuous speech recognition we neeéhtorporate the linguistic knowledge
— the P(W) score. We allow arbitrary word sequences with likelihood scores given

Table 1
Sample monophone and triphone pronunciation transcriptions

Word Monophone transcription  Triphone transcription
OUR awl ax awl+ax awl-ax

OUR awl axr awl+ax awl-ax+r ax-r
OURS awl ax z awl+ax awl-ax+z ax-z

OURSELF awlaxsehlf awl+ax awl-ax+s ax-s+eh s-eh+l| eh-I+f |-f
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by context-free stochastic language models. The most widely used statistical context-
free technique isi-grams which assumes Markov chain idea that probability of ob-
serving a word is only dependent on the precedingords: P(wy|wg—1,...,w1) ~
P(wg|wk—1, ..., wk—n—1). We have usebigram (N = 2) language model. Reader may
refer to (Clarkson, 1997) for more detailed explanation-@fram modeling algorithms.

The basic formula for computing unigram and bigram probabilistic scores is:

i=1,...,L, (11)

K(wjw;) — D it K(wjw; > k),
P(w;|w;) = K (wy) ij=1,...

b(wj) - P(w;)  else,

L. (12)

Unigram scoreP(w;) is an estimated probability of observing tith word from the
vocabulary calculated using simple relative frequendigsy; ) is the number of wora;
observationsK is the total number of words in text corpusis the number of words in
vocabulary. Bigram scorB(w;|w, ) is an estimate of conditional probability of observing
wordw; if previous word wasv, . K (w;w;) is the number of word pairs;w; observedin

text corpus. Since there afé possible word pairs, we need to do some language model
smoothing, i.e., introduce some discount for frequent observations and assign some small
probabilities br pairs that are rarely or never found in text corpus. This is implemented
by introducing coefficient® andb(w;). Reader may refer to (Clarkson, 1997) for a short
introduction to computing-grams.
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Fig. 4. The token passing HMM search lattice incorporating linguistic scores.
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The actual search algorithm that we used is alternafiterbi searchformulation
calledtoken passingsee (Young, 1989). Fig. 4 contains graphical illustration of the token
passing search algorithm. Searching for the best sequence is implemented by passing a to-
ken, which accumulates scores from language model (LM) and acoustic model (AM). We
need to incorporate scores from language model in the search algorithm as well. Since we
applied negative logarithm to acoustics likelihood score, we need to do the same with lin-
guistic scorepr, s (w;) = —log,o P(w;) andprar(w;|w;) = —log; o P(w;|wj;). To bal-
ance the impacts of scores from acoustic mogalg, and linguistic modelg, y; (w;),
prm(wilw;), we add weight coefficients: for scaling linguistic scores arfdfor scal-
ing acoustic scores. The coefficienis another means for tuning the speech recognizer
—word transition penaltylt is known that speech recognizer may tend to recognize se-
guences of short words, thus word transition penalty may be helpful for compensating
this effect.

We have discussed specifics of HMM modeling techniques used for continuous
speech recognition in our case. We will now discuss the experimental investigations,
which make practical use of daibed models and algorithms.

4. Experimental Investigations

We implemented an experimental largegabulary continuous speech recognition system
using the discussed theoretical methods. For this task we used HTK toolkit, which is de-
veloped by Cambridge University and is freely availabletatp: // ht k. eng.camac. uk
for non-commercial usage. HTK provides powerful and flexible tools for building this
kind of system: extracting features from sound files (HCopy), manipulating label tran-
scriptions (HLEd), training HMMs (HCompV, HERest or Hinit, HRest), editing HMM
structure (HHEd), realigning label trangations for multiple pronunciations (HVite),
manipulating vocabularies (HDMan), building word networks (HBuild), computing bi-
gram language model (HLStats), adapting HMMs for specific speaker (HEAdapt), per-
forming recognition (HVite), ad evaluating recognition reka (HResults). Reader may
refer to (Young, 2002) for HTK tutorial and d@ted description of each HTK tool. Addi-
tionally, we used various Linux utilities, such as gawk, sort, unique, and tr, for preparing
data resources.

We need a large amount of speech samples for training and testing. We have used
WSJCAMO corpus that contains sentences fitdall Street Journatead by British En-
glish speakers in a quiet room isolated from environmental noises. Detailed description
of the WSJCAMO corpus can be found in (Fransen, 1994). Results of pilot experiments
using WSJCAMO are reported in (Robinson, 1995). WSJCAMO corpus contains six CDs
with speech waveform files and their laberiscriptions (word-level and monophone-
level). Each waveform contains one semenWSJCAMO defines data sets for training,
development test and evaluation test $é&rand 20k word vocabularies, which are also
given (without phonetic transcriptions). In our experiments we usedintyord vocab-
ulary test data set. There were 7861 sentences (132465 words, approximately 12 hours
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Fig. 5. Experiment workflow (UML activity diagram).

of speech) dedicated to training HMM:3ch 368 sentences (6254 words) dedicated to
evaluation test fobk-word vocabulary recognition task.

Fig. 5 shows the experiment workflow using UML activity diagram. The rounded
grey-filled blocks are activities and the square blocks represent incoming and outgoing
data objects. We will shortly describe each activity in a sequential order.

Since WSJCAMO corpus contains list of words f@r-word vocabulary test and does
not define their phonetic transcriptions, we had to prepare vocabulary with phonetic tran-
scriptions. The activityPrepare monophone pronunciation dictionagkes input data
Word list (words included in WSJCAMGk-word task vocabulary) and outputéono-
phone pronunciation dictionaryVe used BEEP dictionary, automatic phonetic transcrip-
tion tool addttp4, and several manual transcriptions for building the full pronunciation
dictionary. We defined pronunciations using the extended ARPAbet phone set given in
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(Fransen, 1994).

For speech recognition we use speech feataectors extracted from raw speech wave-
forms. We extracted features for both traigend evaluation test files at once. Therefore,
activity Convert speech waveforms to feature fildees as inpubpeech waveforngboth
training and testing) and outpugature files for trainingand Feature files for testing
We used HTK tool HCopy for coding speech waveforms by feature vectors.

We created prototypes for monophone HMMs and silence and short pause. Using
HMM prototypes List of monophonegextracted from vocabaly using HDMan tool),
Mohopnohe-level labels of training speef@rovided by corpus), anBeature files for
training, activity Train monophone HMMs with Gaussian pgérforms training of pro-
totype models and outputsained monophone HMMs with Gaussian pahich contain
HMM parameters (state transition possibilities and pdf parameters — means and variances
— for each emitting state) for each element inth@nophone ListWe used flat-start train-
ing implemented by HCompV function, wdh computes global speech feature means
and variances that are later assigneddfach HMM. Then we performed four iterations
of embedded Baum-Welch training using HERest function, tied silence and short-pause
HMMs using HHEd function, called two iterations of training, realigned transcriptions
for multiple pronunciations using HVite fution, and again performed two iterations of
training.

Using Trained monophone HMMs with Gaussian gdbnophone pronunciation dic-
tionary, Feature files for testingand originaWord-level labels of testing speedttivi-
ty Recognize using monophone HMMs with Gaussiangwdfluates the word recogni-
tion rate of trained monophone HMMs. We used HVite function, which executes Viterbi
beam-search and creates label files with recognized words for feature files. Using ori-
ginal and recognized word-level labels we can evaluate the performance using func-
tion HResults. We will use word recognition rates as performance measure. HResults
counts total word number (N), word hits (Hyord deletions (D), submitted word (S),
and inserted words (l). There are two woetognition rate measures — word correctness
C = & % 100%, and word accuracg = Y=5=P=1 5 100%. The same recognition pro-
cess is used by all succeeding activities theatlgate recognition pérmance for other
HMM modifications.

Monophone HMMs serve as a starting point for triphone HMMs. Before moving to
triphones, we need to convert vocabulary and label files to include triphone transcrip-
tions instead of monophones. The activRyepare triphone pronunciation dictionary
takesMonophone pronunciation dictionagnd converts it tolriphone pronunciation
dictionary. It also outputs &riphone list which includes all triphones found in vocab-
ulary. The conversion of monophone vocabulary to triphone vocabulary and creation of
triphone list was performed by HTK function HDMan. The activityepare triphone-
level labels of training speedhakesMonophone transcriptions of speech textsan input
object and output3riphone-level labels of training speechhis is performed by HTK
function HLEd.

Now we move to triphone HMMs that are built from trained monophone HMMs.
Using Triphone list Trained monophone HMMs with Gaussian pBéature files for
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training, and Triphone-level labels of training speeels input data, activityrain tri-

phone HMMs with Gaussian pdiutputsTrained triphone HMMs with Gaussian pdf
There are several issues in performing this activity that need to be mentioned. First, we
use monophone HMM as a starting pointéach biphone and triphone having that mono-
phone as a central phone. Second, valuesaoisition are little dpendent of phone con-

text — the greatest impact of context is in feature distribution. Therefore a single state
transition matrix is shared by all omophones, biphones and triphones with the same
central phone. Third, the feature distribution for central state in triphone HMM corre-
sponds to steady phone sound. Therefore it is also shared by all monophones, biphones
and triphones with the same central phone. Fourth, some triphones are found very rarely
in training data, thus training their HMMs would result in poor estimates. To overcome
this problem, we use triphone clustering based on question trees as suggested in (Young,
1994). For transition and state tying,ptnione clustering we used HTK tool HHEd and
trained triphone HMMs using three iterations of embedded Baum—Welch training. First
modification of triphone HMMs and monophone HMMs model feature distribution by a
Gaussian pdf. Later we will move to mixtures of two and three Gaussian components,
which captures better the inter-speaker variations.

The activityRecognize using triphone HMMs with Gaussian pdéluates the word
recognition rate for ouifrained triphone HMMs with Gaussian pdfsing Vocabulary
with triphone transcriptionsFeature files for testingand Word-level labels of testing
speech

As we have already noted, mixture of mulépgsaussian components for feature dis-
tribution models better the inter-speaker variations, thus we will increase Gaussian com-
ponents from one (simple Gaussian pdf) to two. The activityease Gaussians to 2 and
retrain takes as inputrained triphone HMMs with Gaussian pdfeature files for train-
ing, and Triphone transcriptions for speech texdad outputsTrained triphone HMMs
with Gaussian pdfThis activity consists of splitting Gaussian distribution into two Gaus-
sian components and retraining HMMs. Increasing number of Gaussian components is
implemented using HTK tool HHEGQ. It takes the Gaussian mixture component with heav-
iest weight and splits it into two component$hen we perform two iterations of training
using HERest.

The activityRecognize using triphone HMMs with 2-Gaussian @ddluates the word
recognition rate for oufirained triphone HMMs with 2-Gaussian pdfocabulary with
triphone transcriptionsFeature files for testingandWord-level labels of testing speech

The activity Increase Gaussians to 3 and retraiakes as inpuffrained triphone
HMMs with 2-Gaussian pdfeature files for trainingand Triphone transcriptions for
speech textand outputsTrained triphone HMMs with 3-Gaussian pdfhis is a fur-
ther sophistication of Gaussian mixtures, which is performed similarly to changing from
Gaussian pdf to two-component Gaussian mixture.

The activityRecognize using triphone HMMs with 3-Gaussian @ddluates the word
recognition rate for oufrained triphone HMMs with 3-Gaussian p&focabulary with
triphone transcriptionsFeature files for testingandWord-level labels of testing speech

We also need to incorporate languagedel (LM) scores in recognition search.
Recognition search algorithm is highly deplent on used language model. HTK tool
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HVite implements search algorithm, which allows only unigrams and bigrams. The ac-
tivity Build bigram LMtakesWord-level labels of training speeemdWord listas input

and outputBigram LM, containing unigram and bigram probabilities for each word in
vocabulary. The WSJCAMO corpus includes neither pre-computed language models nor
enough text for building appropriate language models. We have used transcriptions of
speech dedicated to traing contaning aboutl00k words. Testing sentences are not in-
cluded in training data. For computing appropriate bigram LM, text amount in order of
10M words is necessary, thus our bigram LM is a poor estimate. To see how far we
can get with appropriate bigram LM, we also computediair bigram LM, using tran-
scriptions of both training and testing sentences, which means that probabilities of test
word sequences may get unreasonably high values because of small text corpus size. We
computed bigrams using HTK tool HLStats.

We evaluated recognition usif&igram LMfor all modifications of HMMs. Addition-
ally we evaluated recognition usingpfair bigram LM to see how far we could get with
bigram LM computed from appropriate amount of text.

Finally, we want to notice that recognition performance, using our LVCSR system
built with HTK, was much slower than real-time. The recognition of about 30 minutes
of speech dedicated to evaluationtfesok about 7—8 hours on computer wittbGHz
Pentium CPU an@56MB RAM. This confirms our argument that when building real-
time LVCSR systems we have to give up those sophistications that increase computations
heavily, but do not give significant recognition improvement.

5. Results of Experimental Investigations

We have evaluated several variants of trained HMMs on WSJCAMO evaluation test data.
We present recognition results using comparative charts and tables reporting both word
recognition correctness and accuracy percentage measures.

Fig. 6 shows recognition progress goifigm simple to more sophisticated HMMs.
Since models are getting more sophisticategimputation and memory resources in-
crease heavily as well. The computational complexity of monophone HMMs and triphone
HMMs is the same — just the number of models increases from 46 monophone models to
8694 triphone models (some of them share the same parameters). Thus this only affects
the memory resources and amount of necessaiging data. Changing simple Gaus-
sian pdf with Gaussian mixtures is a different issue — it does not change the number of
HMMs but increases the number of HMM parameters, which affects both computational
and memory resources.

Table 2 compares complexity of triphone HMM models based on number of param-
eters. It is necessary to indicate which impements are significant and which can be
neglected when building practical applications. Moving from monophones to triphones
makes a significant progress in recognition — 88% relatively higher correctness and 85%
higher accuracy Splitting Gaussian pdf into Gaussian mixture of two and three com-

1when comparing recognition performance of two HMM modifications we always use relative measures:
C2=C1 % 100% and 24244 x 100%
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Table 2

Number of parameters in HMMs with Gssian, 2-component Gaussian mixture,
and 3-component Gaussian mixture pdf

HMM with HMM with HMM with
Gaussian 2-component 3-component
pdf Gaussian mixture  Gaussian mixture
Transition probabilities 8 8 8
Pdf parameters:
Means and variances (39 + 39) ((39 + 39) ((39 +39)
Gaussian components x1 X2 x3
Additional weight coeffs +2) +3)
Number of states x3 x3 x3
Total parameters 242 482 719

ponents improves recognition less signifitgr- 8% higher correctness and 11% higher
accuracy comparing HMMs with two-compamteGaussian mixture pdf to HMMs with
Gaussian pdf, and 3% higher correctnest4¥% higher accuracy comparing HMMs with
three-component Gaussian mixture pdf to HMMs with two-component Gaussian mixture
pdf. This suggests that modeling triphones ssential, while usig multiple Gaussian
component mixtures can be neglected in practical applications for performance reasons.

Fig. 7 displays comparative progress of recognition using various HMMs with and
without using bigram LM. Incorporatmbigram LM adds abo®0%—25% of recognition
correctness and accuracy. This is 101%hieir correctness and 102% higher accuracy
for monophone HMMs, 47% higher correcsseand 59% higher accuracy for triphone
HMMs with Gaussians, 40% higher correess and 48% higher accuracy for triphone
HMMs with 2-components mixtures, 37%(dfier correctness and 44% higher accuracy
for triphone HMMs with 3-component mixtures.
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Fig. 6. Comparison of word recognition correctness and accuracy for monophone HMMs and triphone HMMs
with 1, 2, and 3 Gaussian components (without LM).
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Fig. 7. Comparison of word recognition using monophone HMMs and triphone HMMs with 1, 2, and 3 Gaussian
components with and without bigram LM.
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Fig. 8. Comparison of word recognition using monophone HMMs and triphone HMMs with 1, 2, and 3 Gaussian
components with and without bigram LM.

Fig. 8 shows another view of bigram LM impact on word recognition rates: compares
using no LM, using fair (but underestimated) bigram LM, and using unfair (underesti-
mated with artificially increased probabilities of test word sequences) bigram LM for
triphone HMMs with three-component mixeipdf having the best recognition perfor-
mance without LM. Using unfair LM give81.03% correctness and 89.32% accuracy.
Comparatively, using fair (but underestimated) bigram LM shows 37% higher correct-
ness and 44% higher accuracy as compared to not using LM, and unfair bigram LM
shows 60% higher corrects& and 74% higher accuracy, which could be close to the
values that we could obtain with bigram LM computed using appropriate amount of text.
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Finally, we want to compare our recognition rates with those reported by other re-
searchers for the same WSA# vocabulary task. (Robinson, 1995) reports 86.5% word
recognition correctness for the sarfle vocabulary task achieved in pilot experiments
for WSJCAMO corpus using backed-off bigram language model computed from 38M
word corpora. Review paper (Young, 1998) stdbed the state-of-the-art recognition rate
for WSJ5k vocabulary task is about 5% word error rate (WER), which corresponds to
95% word recognition accuracy. Another i@w paper (Gauvain, 1996) indicates that
laboratory systems tested for Nov92 W&J vocabulary task with bigram language
model achieved 6.9%-15.0% WER, Nov93 WSJvocabulary task with bigram lan-
guage model — 8.7%—-17.7%, and Nov93 V8BJ/ocabulary task witlrigram language
model — 4.9%-9.2%. Although waidn’t have a goal to improve these recognition rates
achieved by sophisticated laboratory systems using more complex language models (5%
WER is only achieved using trigrams) computed from large text corpora (38M words and
more compared to oui00k words), our recognition rates are reasonably close to them.

6. Conclusions

Complex HMM modeling usually improves recognition rates, but also heavily increases
computation and memory size, which is not tedate in most practical applications. From
experimental investigations we conclude:

e Using context-dependent phones is higpteferable to simple phones — we ob-
served about 80% relative improvement of word recognition without affecting
computational complexity. Only the number of HMMs increased from 45 to 8694,
which requires memory resources.

e Using two-component Gaussian mixture pdf instead of simple Gaussian pdf for
modeling HMM state feature distributions is less effective: we observed only 8%
relative improvement of word recognition, while the number of HMM parame-
ters is doubled affecting both memory and computational resources. Using three-
component Gaussian mixture pdf is even less effective. We suggest use mixtures
only when computational and memory resources are not restricted.

e Rather that using Gaussian mixtures, incorporating appropriate language model
may be explored, since even poor bigram model estimated from only abotit
words text, gave a significant 30%—50%atéese improvement in word recognition.
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Paskptuju Markovo modeliy modifikacij u, naudojamy didelio
zodyno tolydzios Snekos atpazinimui, savyds

Darius SILINGAS, Laimutis TELKSNYS

Straipsnyje nagrieiamos Snekos atpazinimo, naudojant @aslosius Markovo modelius,
savyles. Aptariama paprastr kontekstiniy fonemuy naudojimo, poZymi pasiskirstymo modeliavi-
mo Gauso bei dvigjir triju komponeni Gauso miSinj tikimybes pasiskirstymo funkcijomis, kal-
bos modelio integravimdgaka. Modifikacij tinkamuna praktiniams pritaikymamivertinti nau-
dojami ZodZi) atpazZinimo tikslumo bei modelisudetingumo kriterijai. ApraSoma didelio Zodyno
tolydZios Snekos atpaZinimo sistema, sukurta naudojant HTK porgedraimg bei WSJCAMO
angl) Snekos duomenbaz. Pristatomi eksperimentintyrimu rezultatai.



