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Abstract. Evolutionary Engineering (EE) is defined to be “the art of using evolutionary algorithms
approach such as genetic algorithms to build complex systems”. This paper deals with a neural
net based system. It analyses ability of genetically trained neural nets to control Simulated robot
arm, witch tries to track a moving object. In difference from classical Approaches neural network
learning is performed on line, i.e., in real time. Usually systems are built/evolved, i.e., genetically
trained separately of their utilization. That is how it is commonly done. It’s a fact that evolution
process is heavy on time; that’s why Real-Time approach is rarely taken into consideration. The re-
sults presented in this paper show that such approach (Real-Time EE) is possible. These successful
results are essentially due to the “continuity” of the target’s trajectory. In EE terms, we express this
by the Neighbourhood Hypothesis (NH) concept.

Key words: evolutionary engineering, genetic programming, genetic algorithm, tracking, real time,
neighborhood hypothesis, artificial intelligence.

1. Introduction

Intelligent systems have been extensively investigated in the few last years, and represent
a real challenge for software system developers for industrial applications of AI. The fu-
sion of emerging concepts such as neural networks, fuzzy systems, genetic algorithms,
expert systems has proven to be a useful way to develop real-world applications, includ-
ing the areas of control systems, robotics, diagnosis systems, and industrial operations.
Evolutionary Engineering (EE) is a discipline of soft computing engineering. EE is de-
fined (De Garis, 1993b) to be “the art of using evolutionary algorithms approach such
as genetic algorithms (Goldberg, 1989) to build complex systems”. Essentially this dis-
cipline aims to solve the problem of building complex systems without going through
any design process. By imitating nature, the evolutionary engineering scientists describe
an elementary structure of the system and then evolve this structure toward the desired
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system. Genetic algorithms are used for evolving such systems. One may see that EE, Ge-
netic Programming (GP) (Kozaet al., 1999; De Garis, 1993b) and Evolutionary Compu-
tation (EC) are basically equivalent. EE is used to bring out “systems building ”. Usually,
In EE approach, systems are built/evolved separately of their utilization. That is how it is
commonly done. We refer to this method by a Non-Real-Time system evolution approach
or an OFF-LINE system evolution approach. In contrast, the Real-Time system evolution
approach or the ON-LINE system evolution approach deals with the fact that evolution
and utilization are undertaken together. It’s afact that evolution process is heavy on time;
that is why the on-line approach is rarely taken into consideration. This paper deals with a
Real-Time EE Application: Evolving in Real Time a neural net controller of a two-eyed,
two-jointed, single robot-arm to track a target. the challenge is how to speed up the evo-
lution process such that real time delays are respected, i.e., the target is caught as rapidly
as it moves. Our solution consists in a new manner of using GA that reduces consider-
ably the evolution time. In EE terms, to capture fundamentally this solution we present
a concept: the neighborhood hypothesis (NH). We consider the NH as a criterion if sat-
isfied makes ON-LINE evolution effective and realistic. In Sections 2 and 3 the problem
specification and the adopted approach are set out. Genetic programming of the joint and
the control module is described in Sections 4 and 5. Subsections 5.1 and 5.2 detail the
solution in question. The results are shown in Section 6.

2. Problem Specification

We are concerned by a two–eyed, two–jointed, single robot–arm positioning simulation
problem. Fig. 1 shows the basic setup. The aim of the task is to move the robot arm from
its starting positionX to the targeting positionY , where the position ofY is specified by
the viewing angles of two eyes. J1 and J2 are the joints, E1 and E2 are the eyes positions,
and JA1, JA2, EA1 and EA2 are the joints and eyes angles of the pointY . Eyes angles

Fig. 1. Arm positionning.
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values EA1 and EA2 are mapped to the joints angles values JA1 and JA2, so that the actual
positionsY ′ and the desired positionY are as closer as possible (De Garis, 1993b). In
the tracking process, the target is able to move according to a trajectory and the robot
arm must point at the target. So, at each target move, the robot arm controller detects
the viewing angles EA1, EA2, determines the target position and generates the joints
angles JA1, JA2. For simulation’s sake, the target’s trajectory is generated by means of
mathematical functions (ax + b, sin e,cosin e, etc. . .).

3. Approach to the Problem

A “modular”, hierarchical (2 layered) approach to solving this problem, as described in
(De Garis, 1993b), isillustrated by specifying two different neural net modules. The first
is called the “Joint Module”, it controls the joint angle JAi that a given joint opens to, for
an input control signal of a given strength. And the second, called the “Control Module”,
receives inputs EA1 and EA2 from the two eyes and sends control signals to the joints J1
and J2 to open to angles of JA1 and JA2. Fig. 2 shows the basic circuit design. The joint
modules, identical copies, are placed under the control of the control module. Each is
fully connected, including connections from each neuron to itself. Between any two neu-
rons there are two connections in opposite directions, each with a corresponding (signed)
weight. The input and output neurons also have “in” and “out” external connections but
these have fixed weights of 1 unit. The outputs of the control module are the inputs of the
joint modules, as shown in Fig. 2.

The aim of the exercise is to use Genetic programming to evolve the values of the
signs and weights of the various modules, such that the overall circuit performs as desired.
This is done in a modular fashion: first the joint module is evolved apart. This mean that
the joint module is evolved in Non-Real Time manner (off-line). Then the joint module
characteristics are frozen, and the overall system is evolved in Real Time (on-line). Thus,
the control module characteristics are evolved for each target position so that the arm
moves as close as possible to the specified goal point.

Fig. 2. Control and joint modules neural nets.
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4. Genetic Programming of the Joint Module

4.1. The Neural Network Model

The Neural Network (NN) is completely specified by its topology and the functionality
of the artificial neuron.

4.1.1. Topology of the NN
Recurrent NN is chosen. A recurrent NN is a self fully connected NN. This topology has
the advantage to do not deal with any specific details of the NN, such as number of layers,
number of neurons in each layer, number of hidden layers, how neurons are connected
and so on. Only the number of neurons has to be chosen. For the joint module the NN
contains 4 neurons as in Fig. 2.

4.1.2. Artificial Neuron Functionality
Figs. 3 and 4 show in details the behavior of the artificial neuron. The output is a sigmoid.
External inputs are used to control the NN (De Garis, 1993b). We use them to inject input
data into the NN.

Sj ≡ input signal “j”.

Fig. 3. Artificial neuron.

Fig. 4. Neuron output function: 2

1+e−Activi
− 1.
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Wji ≡ weight associated toSj for the neuron “i”.
Ei ≡ external input of the neuron “i”; when used its weight is clamped to 1.0 if not

to 0.0.

4.2. Genotype and Phenotype of the Joint Module

The set of weights determines fully the behavior of the recurrent NN. Each weight is
coded (onto a GA chromosome) with a sign, (where 0 means an excitatory synapse,
1 means an inhibitory synapse) followed by a specified number of bits. Thus the chromo-
some witch represents the joint module genotype is simply: the set of weights in code.
Fig. 5 describes the chromosome structure. The phenotype of the joint module is obtained
by decoding the chromosome into a4×4 table. Each table entry(i, j) contains the weight
value of the connection from the neuronj to neuroni.

Wij denotes the weight associated to the signalSj coming from neuronej to neu-
ronei.

Each weight is coded with 6 bits and has its value in[−1, +1].
The chromosome length is 96 bits= 4 × 4 × 6.
In Fig. 5W11 is interpreted as follow:
Bit 0 = 1⇒ weight is a negative value.
Bit 1 = 1⇒ weight= weight+1 × 2−1 = weight+1 × 0.5,
Bit 2 = 1⇒ weight= weight+1 × 2−2 = weight+1 × 0.25,
Bit 3 = 0⇒ weight= weight+0 × 2−3 = weight+0 × 0.125,
Bit 4 = 1⇒ weight= weight+1 × 2−4 = weight+1 × 0.0625,
Bit 5 = 1⇒ weight= weight+1 × 2−5 = weight+1 × 0.03125.
So:W11 = −(0.5 + 0.25 + 0.0625 + 0.03125) = −0.84375.

4.3. The Adaptation Function of the Joint Module

Since a genetic algorithm is used to evolve the values of the weights, such that the actual
output was as close as possible to the desired output, 21 input values ranging from−1 to
+1 by steps of 0.1, were used. The desired output values were chosen to be half of the
(clamped) input values, thus ranging from−0.5 to +0.5, and were interpreted as being
the number of turns of a joint, (e.g.,+0.5, i.e., half a turn, would mean a joint angle of 180
degrees. A positive angle was clockwise). During the evolution process, these 21 input
values were presented one at a time to the joint module NN. The NN output value was
recorded, as well as the error between this value and the desired value (i.e., half the input
value). This procedure was repeated foreach of the 21 clamped input values, for each

Fig. 5. Chromosome structure.
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chromosome. The quality measure (fitness) used in the evolution of the Joint Module was
the inverse of the sum of the squares of the differences between the desired and the actual
output valuesAi, i.e.:

Fitness=
1

∑+10
−10 (i × 0.05 − Ai)2

.

4.4. The Joint Module Evolution Process

Basically a GA guides this process. At each evolution step, the GA generates a new popu-
lation of offspring by mean of genetic operators (selection, crossover, and mutation). For
each individual of the offspring, i.e., a genotype (chromosome) is associated a phenotype
(weight table). The weight table and the NN simulator brought together represents a po-
tential solution. The adaptation function, i.e., the fitness of this solution is then computed
as in 4.3.

The evolution process continues until a good solution is found. Fig. 6 describes the
overall joint module evolution process. Because the joint module is evolved apart we call
this manner a Non-Real Time Evolution or an OFF-LINE Evolution and we say that the
joint module is evolved in OFF-LINE.

4.4.1. The Recurrent NN Simulation Algorithm
In neural net terms our application is known as a neural net with Time Independent Input
(TII) and Time Independent Output (TIO); for this reason the recurrent NN must run
until stabilization. The Stabilization cycle number must be determined separately, if not
the result is unpredictable.

Giving the weight tableW , the external input data vectorE and the output signal
vectorS, the recurrent NN simulation stands as in Fig. 7.

Fig. 6. Joint module evolution schema.
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Fig. 7. Recurent NN simulator algorithm.

4.4.2. Joint Module Evolution Process Parameters
The following parameter values concern the off-line, i.e., non-real-time evolution process.

Neuron number= 4,
Number of input neurons= 2,
Number of output neurons= 1,
Weight code length= 6 bits,
Chromosome length= 96 bits,
NN stability cycles number= 50,
Type of crossover: Uniform crossover,
Crossover probability= 0.6,
Mutation probability= 0.001,
Selection strategy: Roulette wheel,
Evolution strategy: Elitism,
Scaling constant= 2.0,
Population size= 100,
Number of generation= 100.

5. Genetic Programming of the Control Module

The Neural Network model, the Genotype and the phenotype of the control module are
identical to those of the joint module. The neuron number of the control module is set to
6 so the chromosome length is6 × 6 × 6 = 216 bits. Our main goal is to approach the
tracking problem by mean of Real Time Evolutionary Computation (Real Time GP). So,
Once the joint module is evolved, the weights are frozen. The joint modules, identical
copies, are placed under the control of the control module as in Fig. 2. Therefore, Real
time evolution concerns the control module only.

5.1. The Adaptation Function of the Control Module

In tracking we need only to evaluate the distance between the target position and the
arm position. Usually computation of the distance, i.e.,

√
(x1 − x2)2 + (y1 − y2)2 is
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used; but in real time context we need also that the adaptation function, i.e., the Fitness
improves the GA convergence delays too. So the Fitness computationmust give advan-
tage to the individuals who are in the immediate neighborhood of the solution; andmust
devaluate, i.e., exclude the others. Below we present the Algorithm used in our appli-
cation. This Algorithm computes two fitness. The fitness associated to thex coordinate:
FITNESSX and the fitness associated to they coordinate: FITNESSY . The final fitness
is their product.

Fitness Computation Algorithm:
Let xt, yt the coordinates of the target position,

xa, ya the coordinates of the arm position,
xt, yt computed according to the eye angles EA1 and EA2,
xa, ya computed according to the joint angles JA1 and JA2,

Sx be thex coordinates product. Its sign determines ifxt andxa are in the same half
plan side according to thex axis.

Sy be they coordinates product. Its sign determines ifyt andya are in the same half
plan side according to they axis.

So:

Sx = xt × xa,

Sy = yt × ya.

Let

SDx = (xt − xa)2 ,

SDy = (yt − ya)2 ,

if (Sx ≺ 0) then SDx = SDx + 4;

if (Sy ≺ 0) then SDy = SDy + 4.

We add 4 toSDx or SDy to devaluate the individuals not in the immediate neighbor-
hood of the solution.

The value 4 is the maximum distance;because the arm is two (2) units long.
Let
FITNESSX the fitness associated to thex coordinates,
FITNESSY the fitness associated to they coordinates.
Then,

if (SDx ≺ 1) then FITNESSX = 1 − SDx;

else FITNESSX = 1/SDx.

and

if (SDy ≺ 1) then FITNESSY = 1 − SDy;

else FITNESSY = 1/SDy.
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Fig. 8. Fitness over 100 arm positions using author algorithm: FITALG, and the standard distance method
FITDIST.

And finally the overall fitness is:

FITNESS= FITNESSX × FITNESSY .

Fig. 8 shows that the fitness computed by mean of the algorithm, i.e., FITALG is
morerestrictive than the fitness computed by mean of the distance, i.e., FITDIST. This
means, in GP terms, that thesolutions search space is significantly reduced. Also, if we
consider that the best solutions have their fitness∈ [0.8, 1], FITALG presents 7 solutions
while FITDIST presents only 3 solutions. Real time evolution process must be rapid and
very elitist, we think that the algorithm presented above is more suitable for this kind of
task.

5.2. The Control Module Real Time Evolution Process

The control module neural net parameters must be learned during the target tracking. For
each target position the evolution process configures the control module neural net. This
is an ON-LINE or a Real-time learning. It is well known that the evolution processes are
heavy on time; this is due to the GA convergence delay. Therefore the challenge is to
reduce these delays. In the Neighborhood Hypothesis s/section we explain the adopted
solution. Fig. 9 describes the overall Real Time evolution process.

5.2.1. Neighborhood Hypothesis (NH)
The main task is to evolve a new version of the control module according to each tar-
get position along the trajectory target . This means for each target position we start up
a new evolution process. Since real time process requires rapidity especially in track-
ing and because the GA convergence is time consuming (> 100 generations), the major
problem is “HOW GENETIC ALGORITHM CONVERGENCE DELAY COULD BE
REDUCED?”
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Fig. 9. Control module real time evolution schema.

Analyzing the tracking problem, one can easily see that the target trajectory, mathe-
matically speaking, must be continuous.

We define the notion of two adjoining evolution processes to speak about evolution
processes associated to two adjacent targets positions.

According to the continuity property, we put the assumption that: two adjoining evo-
lution processes are close to each other. Ingenetic programming terms this assumption
means that for two adjoining evolution processes the actual evolution process couldin-
herit from the preceding one. This is what wecall the NeighborhoodHypothesis (NH).

To put in practice the NH our solution consists of the following: in using the GA,
Instead of generating the first population randomly for each target position, we assign the
last population of the preceding target position to the first population of the actual target
position. Except for the initial target position.

Our investigations had shown that this technic reduces considerably the GA conver-
gence delays. Also, the notion of Neighborhood can be applied to more than two target
positions. A neighborhood is characterized by its size; the Neighborhood size depends on
the way of sampling the target’s trajectory.

5.2.2. Control Module Real Time Evolution Process Parameters
To make the final solution more efficient, some GA parameters as population size, gener-
ation number, crossover and mutation probability were tuned. The following parameters
values concern all the real time evolution processes.

Neuron number= 6,
Number of input neurons= 2,
Number of output neurons= 2,
Weight code length= 6 bits,
Chromosome length= 216 bits,
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NN stability cycles number= 50,
Type of crossover: Uniform crossover,
Crossover probability= 0.7,
Mutation probability= 0.01,
Selection strategy: Roulette wheel,
Evolution strategy: Elitism,
Scaling constant= 2.0,
Population size= 50,
Number of generation= 25 or until Fitness�0.99.

6. Experiments and Results

Implementation has been done with the Neural Net Evolution Software (NES); devel-
oped by our team. Seven experiments were performed to verify the correctness of our
approach. Each experiment concerns the application of the Real Time evolution process
to a specific target’s trajectory. Target trajectories are generated by mean of mathematical
functions. For each experiment the NES gives a graph and an illustration. Figs. 10, 11, 12
and 13 exhibit two experiments. The graph displays a positions target/generations num-
bers curve. This curve points out for each target position the number of generation for
which the GA converges, i.e., fitness> 0.99. The illustration shows the tracking process
simulation. The target is represented by a square and a circle ends the robot arm. The
square enclosing the circle illustrates that the arm position is closer to the Target position.
Fig. 14 shows overall results.

7. Conclusion

As shown in Section 6, experiments were organized according to the type of the target’s
trajectory and the neighborhood size. Perturbations were added by using random effect.
For each experience the real-time evolution process is stopped when the fitness is greater

Fig. 10. Linear target trajectory (Y constant,X = X +1). Tracking was successful at each target position (100
positions).
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Fig. 11. Graph associated to Fig. 10. The evolution process succeed, i.e., the GA converges at the first generation
for all the Target positions except the initial.

Fig. 12. Sinusoidal target trajectory: step<= 10, progression: PI/50. Tracking was succesful at each target
position (100 positons).

Fig. 13. Graph associated to Fig. 12 the evolution process succeed, i.e., the GA converges at the first generation
for all the Target positions except: (11 pos at gen<= 5), (5 pos at15 >= gen>= 5) and (2 pos at gen= 25).
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Target trajectory type

LinearY

constant
X=X+1

Linear
X=X+

Rand (6)

Y =Y +

Rand (6)

Sinusoidal
step <=3
progression
of PI/50

Sinusoidal
step <=10
progression
of PI/50

Cosine step
<=3
progression
of PI/50

Random
neighbor-
hood size
=10

Random
neighbor-
hood size
=25

Rate

C
o
v First 99 91 99 81 94 99 95 94%e generation
r
g
e
n
c >1st& <=10 1 4 1 15 5 1 5 5%e generation

d
e
l
a >10&<=25 0 5 0 4 1 0 0 1%y generation
s

Fig. 14. Overall results.

than 0.99 or generation number is greater than 25. Statistics of the overall experiments
indicate that over 700 target positions 658 real-time evolution processes converge at the
first generation, 32 converge at generation number less than 10; therefore this gives an
efficiency rate of 99%. These results are positive and prove that the neighborhood hy-
pothesis (NH) is consistent. Also this proves that the GA as used in subsection 5.2 is well
adapted to the NH. An important problem remains: how to detect that a specific applica-
tion verify the Neighborhood Hypothesis (NH).We believe that NH can highly improve
Real-Time EE.
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Neuroninio tinklo kontroliuojamo roboto manipuliatoriaus
evoliucinis vystymas realiame laike

Ahmed LEHIRECHE, Abdellatif RAHMOUNE

Autoriai pristato evoliucinio mokymo principais paremt↪a algoritm↪a, skirt↪a roboto manipulia-
toriui kontroliuoti. Algoritmo veiksmingumas yra grindžiamas simuliaciniais tyrimais. Simuliaci-
nis modelis susideda iš virtualaus manipuliatoriaus su 2 s↪anariais, kontrolinio bloko, kur↪i atstoja
genetiškai mokomas neuroninis tinklas ir dviej↪u sensori↪u, gebaňciu nustatyti kamp↪a iki sekamo
objekto. Šiame straipsnyje autoriai demonstruoja, kaip j↪u pateikiamas algoritmas evoliucionuoja ir
laikui bėgant vis geriau ir geriau sugeba sekti judant↪i objekt ↪a.


