
INFORMATICA, 2004, Vol. 15, No. 1, 45–62 45
 2004Institute of Mathematics and Informatics, Vilnius

The Evaluation and Design Methodology for Real
Time Systems

Egidijus KAZANAVI ČIUS
Computer Department Kaunas University of Technology
Studentu 50–214c, LT-51368 Kaunas, Lithuania
e-mail: ekaza@ifko.ktu.lt

Received: August 2003

Abstract. Petri net variants are widely used as a real time systems modeling technique. Recently,
UML activity diagrams have been used for the same purpose, even though the syntax and semantics
of activity diagrams has not been yet fully worked out. Nevertheless, activity diagrams seem very
similar to Petri net semantics. UML, being the industry standard as a common object oriented mod-
eling language needs a well-defined semantic base for its notation. Formalization of the graphical
notation enables automated processing and analysis tasks. Petri nets can provide a formal semantic
framework for the UML notations plus the behavioral modeling/analysis strength needed to system
designers. This paper describes the methodology for creating the model of the RT application that
would allow testing the correctness of the algorithm and the fulfillment of the time constraints at
the design stage using UML and Petri Nets.

Key words: real time system, unified modelling language, Petri net behaviour, verification.

1. Introduction

Real-time systems are defined as those systems in which the correctness of the system
depends not only on the logical result of computation, but also on the time at which
the results are produced. Real-time systems span a broad spectrum of complexity from
very simple microcontrollers (such as a microprocessor controlling an automobile cruise
control system) to highly sophisticated, complex and distributed systems (such as air
traffic control for the Europe Union) (Stankovic and Ramamritham, 1998). Typically, a
real-time system consists of a controlling system and a controlled system. For example,
in an automobile cruise control system, the controlled system is the automobile with all
its parts, while the controlling system is the controller and human interfaces that manage
and coordinate the running of the automobile. Thus, the controlled system can be viewed
as the environment with which the computer interacts.

The controlling system interacts with its environment based on the information avail-
able about the environment from various sensors. It is imperative that the state of the
environment, as perceived by the controlling system, be consistent with the actual state
of the environment. Otherwise, the effects of the controlling systems activities may be
disastrous. Hence, periodic monitoring of the environment as well as timely processing
of the sensed information is necessary.

46 E. Kazanaviˇcius

Timing correctness requirements in a real-time system arise because of the physical
impact of the controlling systems, activities upon its environment. In many real-time
systems even more severe consequences willresult if timing as well as logical correctness
properties of the system are not satisfied, e.g., consider nuclear power plants or air traffic
control systems failing or ultrasonic measurement systems (Kazanaviciuset al., 2004;
Kazanaviciuset al., 2004a). Timing constraints for tasks can be arbitrarily complicated
but the most common timing constraints for tasks are either periodic or aperiodic.

Model-based development is the best way to make an efficient application in today’s
high-complexity, short-development-cycle business environment. It is important to focus
on the abstractions of the problem rather than on the low-level details of its implemen-
tation. The use of Unified Modelling Language(UML) for system designing is rapidly
gaining attention from the industry. It allows capturing user requirement and system view
of the application using single unified notation. However the early stages of the real-time
development process involve some very specific tasks, beside the usual analysis and de-
sign stages. Examples include scheduling analysis, performance evaluation and formal
verification of critical timing properties of the system. Due to public request, UML now
is expanding in such a way that it allows to do specific real-time development tasks such
as: timelines requirements capturing and scheduling analysis, behaviour an performance
analysis. This expanded notation sometimes is called Real-Time UML (RT-UML). How-
ever it still does not address formal verification and performance evaluation problems.

On the other hand formal Petri Nets (PNs)methods are well suited for modelling and
analysis of systems. They are also similar to UML in that they have a convenient and
effective graphical language for their visualization. However, most real-time systems are
sometimes subsystems of complex systems, including large computer systems.

The UML is user-friendly, easy to use and is useful for describing system effectively.
On the other hand Petri Nets are formal methods, which allow strict analysis, verification,
evaluation and simulation of the system.

So here we combine advantages of the UML and PNs and propose a UML-PNs inte-
grated modelling method for real-time systems.

2. UML and Real-Time Systems

A. Problem Statement and UML

A typical real time system design project proceeds using the ROPES or the similar, pro-
cess. In such a process, work begins with the identification of the use cases, actors and
scenarios. The project proceeds with the definition of classes, objects and their relations.
Some objects are reactive so their behaviourcan be defined using activity diagrams. The
formal method is needed that would allow to test the correctness of the timing constraints
in the design stage.

The Unified Modelling Language (UML) is alanguage for expressing the constructs
and relationships of complex systems. It was begun as a response to the Object Manage-
ment Group’s (OMG, 1999) request for proposal for a standard object-oriented method-
ology.

The Evaluation and Design Methodology for Real Time Systems 47

The UML is more complex than other methods in its support for modelling com-
plex systems. It is particularly suited for modelling real-time, embedded systems (Selic
and Rumbaugh, 1998). Major features include object model, use cases and scenarios,
behavioural modelling with state charts, packaging of various kinds of entities, represen-
tation of tasking and task synchronization, models of physical topology, models of source
code organization, support for object-oriented patterns.

The early stages of the real-time development process involve some very specific
tasks, beside the usual analysis and design stages. Examples include: scheduling analysis,
performance evaluation and formal verification of critical timing properties of the system.
It is quit common to model real-time systems usingstate diagrams. A state diagram
provide a static view of the entire state space of a system, however it doesn’t provide
means for specifying timing constraints. The most common way to capture timelines
requirements is to usesequence diagrams. Sequence diagrams allow showing typical
system behaviour paths, calledscenarios.

Scenarios may not visit all states in the system nor activate all transitions, but they
provide an order-dependent view of how the system is expected to behave when actually
used. So, sequence diagrams almost always show the combined behaviour of a collabo-
ration of objects working to achieve a common purpose, such as the realization of a use
case. But it is not suited to capture overall system behaviour.

For this purposeactivity diagramsare better choice. UML considers activity diagrams
to be a kind of state machine in witch most or all the transitions are taken when the
activity completes rather than wait for an external asynchronous event. Activity diagrams
excellent at showing procedural flow and, in fact, show concurrency in a more natural
and obvious way than state charts (Douglas, 1999). This is why activity diagrams are
well suited to capture algorithmic flow. In addition activity diagrams allow specifying
timing constraints as transitions guards. Asynchronous control can be specified using
signal reception and signal sending states. Multitasking is also an integral part of activity
diagrams. It is controlled using forks and joins. All this allow to specify real-time systems
in details using activity diagrams.

Performance and dependability evaluation is an important step in the development of
most real-time systems. Traditionally, performance and dependability evaluation has used
a separate set of models, disregarding functional models that serve as basis for other steps
of system development. Traditional models for performance analysis are queuing net-
works and stochastic processes. Recently,academic studies have concentrated on model-
based performance evaluation, which proposes the use of the same models as in func-
tional description, possibly with stochastic extensions. Existing results on model-based
performance evaluation concern formalisms like: Petri nets (stochastic Petri nets), pro-
cess algebra, but also more high-level functional specification formalisms such as SDL
(Bozgaet al., 2001).

In particular, for formally verifying the timing properties of an UML specification, a
parallel specification in formalism such as timed automata, timed Petri nets or SDL, may
be necessary (Bozgaet al., 2001; Pranevicius and Budnikas, 2003).

The problem is, that these formal models have different concept than UML models,
so system analysts have to put much effort and additional work to support UML model

48 E. Kazanaviˇcius

and some formal model in parallel. This is why we try to define method how to get formal
Petri net model from already defined UML model.

B. Real-Time System Modelling Tools

Nowadays modelling automation tools is one of the prerequisites for modelling notations
to gain popularity. Some tools just provide possibility to draw diagrams, some also allow
checking the model correctness and others allow testing the model behaviour. There are
quite a number of powerful tools that allow drawing UML diagrams. Regarding the mod-
elling of timed Petri nets this number is lower, but this is understandable, because UML
has more common use and timed Petri nets are primarily used for modelling real time
systems.No Magic MagicDraw UML(MagicDraw Tool, 2003) is a visual UML mod-
elling tool. It provides the code engineering mechanism (with full round-trip support for
Java, C#, C++, and CORBA IDL programming languages), as well as database schema
modelling and reverse engineering facilities.Rational Rose(Rose Case Tool, 2003) is a
big development tools family, which includes tools for project management, UML mod-
elling, real-time systems modelling and others.I-Logix Rhapsody(ILogix Tool, 2003) is
a UML-compliant design automation tool used in the development of real-time and em-
bedded systems.ArgoUML (Argo UML Tool, 2003) is Java based, open source project
running under BSD License. It allows designing fully featured UML diagrams and (what
is quite uncommon for UML designing tool) has a module for designing Petri nets. It also
saves data in XML format, so it can be easily processed or/and exported to other tools. It
also has support for plug-in modules, which makes it easy to add additional functionality
to this tool.

For our tests we have used ArgoUML tool extended with our modules for mapping
activity diagrams to PN model and it’s modelling tool. The main advantages of this tool
are that it is open source, free and have support for Petri Nets. It also allows to plug-in
additional modules, so was added additional functionality needed for our approach and
tests.

3. Methodology

A. Petri-Net Formal Method for RTS Modelling

Effective modelling of complex concurrent RTS requires a formalism that can capture es-
sential properties such nondeterminism, synchronization and parallelism. Petri nets pro-
vide for a mathematical approach to behaviour and analysis of systems, with a convenient,
effective and highly intuitive graphical language for their visualization.

Petri nets cover a range of diverse applications, including communication protocols,
computer networks, manufacturing systems, industrial process control and data flow
computing. Similarly, they have been widely used in the study of behavioural proper-
ties as well as in areas such as simulations, performance evaluation and fault tolerance
(Nisanake, 1997).

The Evaluation and Design Methodology for Real Time Systems 49

The Petri nets model: captures explicitly timing information; it is more expressive as
tokens might carry information; systems may be represented at different levels of granu-
larity; both control and data information may be captured by a unified design representa-
tion.

A RTS model is 7-tupleN = (P, T, I, O, M0, t, t2) whereP is a set of places,T
is a set of transitions,I is a set of input (place-transition) arcs,O is a set of output
(transition-place), andM0 is the initial marking of the net,t: T ⇒ t ∈ R+

0 is mean time
associated to transition,t2: T ⇒ t ∈ R+

0 second time parameter (variance). A marking
is an assignment of tokens to the places of the net. A token is a pairk = 〈v, r〉 wherev

is the token value (may be of any type) andr is the token time. Thus tokens carry time
information attached to them stamps. The token type associated to a placep, denoted
τ(p), is the type of value that a token may bear inp. A transitiont ∈ T may have a guard
G, a condition that must be satisfied in orderto enable the transition when all its input
places hold tokens. For every transitiont ∈ T , there exist a minimum transition delayd

and maximum transition delayD. The non-negative real numbersd � D represent the
lower and upper bounds for the execution time of the activity function. Transition delays
give the limits in time for the firing of the a transition since it becomes enabled, uless it
is disabled by firing another transition.

B. Abstraction of RTS and Timing Analysis

The simplest form of abstraction of real time reduces it to an ordering, possibly a partial
ordering, of events in real time according to their temporal precedence. The precedence
relation may sometimes be implicit, as in the case of inputs and outputs, where it is taken
for granted that that outputs follow inputs. Systems that are based on the notions of input
and output are referred to as transformational systems. Their specification may be given
as an input-output relation. Conformity of the actual behaviour with the specified input-
output relationship is understood as logically correct behaviour. One implication of this
view is that the computations concerned terminate; otherwise the correctness has to be
treated as contributing only to a partial understanding.

In situations where the real time events may not be seen simply as inputs and outputs,
but as more general complex patterns of interactions of the system with its environment,
the temporal precedence relation is explicitly recognized, if not explicitly stated. Systems
founded on events and interactions correspondto what are referred to as reactive systems.
Since the interactions are typically non-terminating, the correctness has to be investigated
by using more elaborate models than those employed in transformational systems.

In our methodology we will analyse reactive systems – the systems that are founded
on events. For such systems many timing questions can be phrased in a particular frame-
work, namely as an analysis of the extremecase separation in time between two system
events. Then the problem of determining the extreme case separation in time between two
eventsea andeb is to determine the tightest boundsδ and∆ such that for all executions
δ � τ(eb) − τ(ea) � ∆, whereτ(efrom) andτ(eto) represent the time of eventsea and
eb, respectively. That isδ and∆ are the smallest and largest separation betweenea and
eb, respectively.

50 E. Kazanaviˇcius

Timing analysis of a real-time system answers questions like “How long may an event
have to wait have to wait before it will be enabled?” or “How much time may pass be-
tween two system events?” Stochastic analysis, where delays are specified using prob-
ability distributions answers such questions with average case numbers in steady state
execution. This information is important for performance evaluation for example to de-
termine average utilization and average response time of the components of the system.
However stochastic analysis methods are inappropriate for verifying correct operation.
Instead delays are modelled using ranges rather than probability distributions and the
timing analysis we consider provides extreme case rather than average case numbers.

C. Translating UML Activity Diagrams into PN

The global scheme of the UML – PNs integrated modelling method can be described as
follows: the UML is utilized for requirement description, model specification and design.
Then, the UML model is mapped to the PN model for model analysis and simulation,
results of which can be fed back to the UML model design. Such process can be executed
in an iterative way to achieve continued model improving. Lastly, model implementation
is carried out according to the improved UML model (Fig. 1).

The development process using UML is discussed in details by many authors (Hurby,
1999), so we will concentrate on UML to PN mapping here.

We propose the methodology for RT UML mapping into Petri net.
This methodology is considered to assist RTS designers in supporting UML specifi-

cation and formalism in Petri net in parallel. In the first step designer must design the
system in UML. Following step is to describe the behaviour of the system using UML
activity diagram. And last step is to map activity diagram to Petri net.

Then mapping from activity diagram to Petri net can be done as shown in Table 1.
Timing constraints in activity diagram can be specified in states using our proposed

specific notation.
Such activity diagram already is essentially Petri net with the constraint that each

activity state has a maximal capacity of a single token. The basic idea of mapping is to
change every activity diagram state into Petri net place and every transition into Petri
net transition. The initial marking of the net is determined by initial state of the activity
diagram (Agerwala, 1979).

Fig. 1. Block diagram of the proposed methodology.

The Evaluation and Design Methodology for Real Time Systems 51

Table 1

Activity diagram to Petri net mapping scenarios

As mapping result we getsafetimed Petri Net. A safe Petri netΣ = (S, T, F, M0) is
such that in every execution has at most one token on each place (Murata, 1989):

∀s ∈ S, ∀M ∈ [M0] : M(s) � 1.

The similar constraint was applied to initial activity diagram, so we can state that
activity diagram in our case is essentiallysafePetri net.

Safe Petri nets have a number of useful properties and restricting our model to safe
nets greatly simplifies the execution semantics based on processes. The main reason for
this is that a safe net has a finite number of reachable markings, and only one token can
be assigned for a single place.

4. Experimental Results

This section presents a case study of real time temperature measurement system which we
use in order to illustrate our proposed methodology and the improvement techniques. As
mentioned earlier, our goal is to define a process for generation of Petri nets from UML
specifications. More specifically, we focushere on two key experiments: 1) generation
of Petri net models from UML activity diagrams, 2) description of algorithm and timing
correctness verification (Experiment 1) and 3) our approach for the behavioural modelling
and analysis (Experiment 2).

A. Temperature Measurement System: a Case Study

As an example of Real-Time system we take simple temperature measurement system.
Temperature sensor device measures the temperature. Measured and sampled value

goes through ADC, where analogue signal is converted to digital. After this measured
value put through communication Txd port to FIFO buffer, which length for the sim-
plicity we assume is one. Data from buffer goes to data processor, where it is checked
for suitability. In non-critical temperature case measured value is written to the database;
while in critical temperature case in addition to storing the measured value to the database
some actions are taken to cope with the situation and an error message is send to the op-
erator display.

52 E. Kazanaviˇcius

Fig. 2. Temperature measurement system – implementation diagram.

In there is an example of initial activity diagram, which models simple temperature
measurement system. Ins2 state the temperature value is read, then ins3 it is pushed
to buffer.s4 state takes the value from buffer. The depending on the temperature value
s6 (for non critical) ors7 (for critical) processes the value. Lastlys5 state does some
finishing tasks.

Time ranges are presented for every state, except initial state, which is always [0, 0].
The data flow state shows what values should be taken during the automatic evaluation.

Fig. 3. Temperature measurement system – activity diagram.

The Evaluation and Design Methodology for Real Time Systems 53

B. Verification of RTS Using Timed Petri Net

A timed Petri net is a formal model of Real TimeSystems that has a simple representation
of concurrency and synchronization. It includes cycles and conditions that makes the
task of execution time verification complicated. Therefore beside Timed Petri nets are
defined process graphs of the net. A process graph is an acyclic and condition free net
that can be thought of as an unfolding of a Petri net representing a particular execution.
Processes are used to give semantics to Petri nets. Their key advantage is that concurrency
is represented explicitly rather than implicitly. The possible execution of a Petri net is
defined as a set of process graphs. The set of executions is represented using a finite
directed graph called the process automation whose edges are annotated with processes
and whose nodes represent states of the system.

Fig. 4 contains example of a Petri net with cyclic (placess2 ands5) and conditional
(transitionst4 and t6) behaviour. The possible given Petri net unfolding is shown in
Fig. 4, which contains two cycles of the Petri net execution and behaviour witht6 condi-
tional transition enabled.

We assume that the set of all possible processes graphs of the Timed Petri net can
be obtained and the timing analysis can be done using the set of process graphs that
unfold the Petri net. After the UML diagram is converted to a Petri net, we have a safe,
timed Petri net, where delay rangesd andD are associated with places. Delay rangesd

Fig. 4. Petri net, obtained from activity diagram in Fig. 2.

Fig. 5. Process graph, obtained from Petri net in Fig. 3.

54 E. Kazanaviˇcius

andD represent a delay range for each place.Graphically, a place s is annotated with
the interval[d(s), D(s)] or justd(s) whend(s) = D(s). The delay bounds restrict the
possible executions of the Petri net. During a timed execution of the net, when a token is
added to a places, the earliest it becomes available for a transition afters is d(s) time
units later and the latest isD(s) time units later. A transition t must fire when there are
available tokens at all places beforet unless the firing of the transition disabled by firing
another transition. The firing oft is instantaneous.

For all process graphsp from P and for all consistent timing assignmentsτ for p,
determine the largestδ and smallest∆ such that:

δ � τ(sto) − τ(sfrom) � ∆.

The two numbersδ and∆ are the minimum and maximum separation between the
transitionstfrom anstto with the relationship specified by Timed Petri net. The most
important is the maximum separation analysis∆, because the minimum separationδ can
by found from a maximum separation analysis of

τ(sfrom) − τ(sto) � −δ.

That is, to determine the minimum separation betweentfrom andtto, the maximum
separation betweentto andtfrom is determined (which may be negative) and the result is
negated. The timing analysis analyzes two infinite sets: the set of elementp in P , for each
p, the set of consistent timing assignment forp. This leads to a natural decomposition of
the maximum separation problem. If∆(p) is the maximum separation for a particular p
in P, i.e.,∆(p) is the maximum separation betweensfrom andsto in the processp:

∆(p) = max{τ(sto) − τ(sfrom) | τ is a consistent timing assignment for p}.

If a process graphp has no consistent timing assignments the∆(p) will be defined
−∞. The maximum separation is determined by:

∆ = max{∆(p) | p ∈ P}.

Maximum and Minimum Timing Separation of Events (TSE) Algorithm

The process graphp is particular element from overall set of process graphsP for a
Timed Petri net. The maximum separation problem forp is to determine the smallest
number∆(p) such that:

τ(sto) − τ(sfrom) � ∆(p).

The TSE algorithm computes two values for each place s in the process graph, de-
notedm(s) andM(s). The algorithm consists of two phases, computingm(s) in the
first phase andM(s) in the second. For convenience is used notationmax•s{·}to denote

The Evaluation and Design Methodology for Real Time Systems 55

a maximization over all incoming events to events in a process (the dot· denotes an
arbitrary expression referring tos, s′, andb):

max{·}
•s

=
{

max{· | b ∈ •s, {e′} = •b}, if • e �= 0 and • b �= 0,

−∞, otherwise.

From the definition of a process| •b |� 1, and thus there is no ambiguity with respect
to what s’ event to use.

The value ofm(s) is the length of the longest path from an event s to the eventefrom

using the lower delay of bounds of the places:

m(s) = max{d(ρ) | all paths s → sfrom,

whered(ρ) denotes the sum of the lower delay bounds of the conditions of pathρ :

d(ρ) = Σ{d(l(b)) | b is a condition on path ρ}.

The intuitive meaning ofm-value for an events is that it determines the minimum
difference between the timing assignment ofs andsfrom.

If there is no path from an events to sfrom, denoted bys �= sfrom, the arbitrary con-
stant tom(s) can be assigned. Normally, them(s) = 0 can be used, although it some-
times id advantageous to choose different constants for the various evente. Them(s) can
be computed by reversing topological traversal (p is acyclic) starting fromsfrom.

The valueM(s) is computed in the second phase for all events. The value forM(e)
determines how much an event s can be moved forward in time without changing the
timing assignment for the eventsfrom.M(sroot) = 0 and then for all other events in
(normal) topological order:

M(s) = max
•s

{X(s′, b, s)},

where:

X(s′, b, s) =
{

min(0, M(s′) + D(l(b)) − m(e′) + m(s)), if s → sfrom

M(s′ + D(l(b)) − m(s′) + m(s)), if s 	→ sfrom.

The maximum separation betweensfrom andsto is determined from:

∆(p) = M(sto) − m(sto).

The TSE algorithm is shown in Fig. 6. This algorithm consists of two parts. In the
first part (line 1 to 7), processes are constructed of increasing length and∆k is computed
for each of them. The iteration stops either when a lower or upper bounds on∆ converge
or when the (cyclic) system enters a repetitive pattern. In the second part (line 11–12),
the matricesR, S, T are constructed and the matrix closure ofS is used to analyze the
infinite number of further unfolding. By minimizing this value with the∆-value obtained
from the previous unfolding, the exact minimum separation is obtained.

56 E. Kazanaviˇcius

1. k ← 0
2. ∆ ← ∞
3. do
4. ∆k ← ∆(πR(πS)kπτ)
5. ∆ ← max(∆, ∆k)
6. k ← k + 1
7. until termination-condition or repeating
8. if terminatedthen
9. return ∆

10. else
11. ∆�k ← RS ∗ T

12. return max(∆, ∆�k)

Fig. 6. TSE algorithm.

C. The Correctness Verification

In stochastic analysis, where delays are specified by probability distributions, algorithms
define occasions with average case numbers insteady state execution.This information
is important for performance evaluation for example to determine average utilization and
average response time of the components of the system. However, stochastic analysis
is not appropriate to determine correctness of the system. In such a case it is better to
determine the extreme case separation intime between two events. For the Timed Petri
Net, generated from UML (see Fig. 4) we can calculate the lower and upper separation
between two transitions or between recurrences of the same transition:

δ � τ(tto) − τ(tfrom) � ∆.

DEFINITION 1. Petri Net is well-formed, when it is safe, has only one root transition,
root transition has a single place and this place is marked, all repeating transitions newer
looses the possibility of firing.

DEFINITION 2. We will restrict the system verification method only to timed and well-
formed Petri Nets, where timing constraints will be associated with transitions.

DEFINITION 3. If Petri net, converted form UML diagram is not recognized as well-
formed, it will be converted to well-formed by adding additional place and setting initial
marking to this place.

An algorithm for timing analysis of systems with conditional behaviour (Ramchan-
dani, 1974) can analyze systems without conditional behaviour. In such a case process
graph is directly obtained from Petri net. For most of Real Time Systems behaviour mod-
elling, Petri net without conditions is not sufficient. The possibility to describe all kind
of choices is needed. In addition to uni-process graph Petri net simulation our proposed

The Evaluation and Design Methodology for Real Time Systems 57

Fig. 7. One cycle process graph of Petri net, containing t4 transition and succeeding places after the branching.

algorithm, that can handle conditioned Petri net, making several process graphs for de-
termination of minimum/maximum separation in time between two places. It generates
all possible processes graphs of the system, described by the Timed Petri net with condi-
tions. The input for the algorithm is Petri Net and two transitions (tfrom andtto), or one
transition repeated twice (if recurrence time of the same place is needed), for witch the
lower and the upper separation bound is calculated.

There we have Petri net generated from UML activity diagram. It is cyclic condi-
tional Petri net witch has conditional branching from places4 (see Fig. 4). The task is to
determine maximum separation in time between recurrences of transitiont2.

Initially one empty process graph for Petri net is generated. The initial net place is
added to this process graph, with the marking. The succeeding transition is added to the
process. In the case of transition with no conditions (no branching) Petri net places and
transitions step by step are added to the process graph. In the case of conditional transition
– when branching is reached, initial process is duplicated to as many processes graphs as
branching had ramifications. All ramification transitions are added separately to distinct
processes graphs. The process graph building is finished when if containstfrom andtto
transitions or it pushes the Petri net into the state in with it already was according to that
process. Following these directions we have to finish all started processes graphs.

In such a way we end up with a finite number of processes graphs. With such a parti-
tioning of Petri net to processes, conditions are eliminated and timing constraints can be
obtained directly. So, in our proposed methodology Petri net with conditions can be sim-
ulated instead of simple Petri net without condition analysis, when Petri net is equivalent
to the process graph.

In Fig. 4 the Petri Net presented we get two process graphs presented in Fig. 7 and
Fig. 5. Then for every process that contains transitionstfrom andtto the minimum and
maximum separation in time between these places is found according to the algorithm
of finding exact bounds on the time separation of events in concurrent systems. After
the transition marked as second for timing analysis is reached, we have a set of pro-
cesses, that hold used condition values of ramifications (choices, used for all executed
transitions) and minimum, maximum times(tmin, tmax) of process execution. The whole
system behaviour minimum and maximum time (δ, ∆) can be calculated as following:

δ = min(δi); ∆ = max(∆i), i ∈ (1, N),

whereN – number of processes graphs;δi – minimum separation in timetfrom andtto
in processπi and∆i – maximums separation in timetfrom andtto in processπi, for ∀i,
such thattfrom ∈ πi andtto ∈ πi.

58 E. Kazanaviˇcius

5. Results and Discussion

Experiment 1. We have analyzed programs, used for designing UML diagrams and Petri
Nets and decided that for UML designing, Petri Net modelling and implantations of plug-
ins the most appropriate is Argo UML. So we implemented an ArgoUML plug-in that
does mapping of UML diagram to a Petri Net diagram and evaluates the timing constraint
of that Petri net.

We modelled temperature measurement system in UML activity diagram (Fig. 3) us-
ing Argo UML tool and converted it to Petri net (Fig. 4) according to mapping method-
ology. The mapping is done automatically in two passes. In first pass we map all activity
diagram states, forks and joins into Petrinet places and in second pass we map activity
diagram transitions into Petri net transitions. So the complexity of mapping is linear for
any activity diagram.

Now we can to evaluate the system. The main concern is to find out if data handling
process is able to finish its job before the temperature reading process obtains new value.

In order to get timing constraints after temperature reading place (s2) before the syn-
chronization ont2 have added addition transition (t2′). The adjusted Petri net is presented
in Fig. 8.

In order to evaluate the system performance we evaluated this Petri net using Time
Separation of Events (TSE) Fig. 6 algorithm. Was evaluated Petri net whentfrom = t1,
using two simulation iterations. The simulations results are presented in Table 2.

From the results we can clearly see that in some cases data reading process has to wait
for data handling process (t2′∆ = 22 andt2∆ = 25). Then by checking the first iterations
results we find out that this is a case for process presented in Table 2. From calculated
results it is also clear that for not critical temperature the system is able to process data
before the new value arrives.

Experiment 2. There we show a particular kind of PN suitable for the modelling of
RT temperature measurement system behaviour which is periodic, and then demonstrate

Fig. 8. Petri net with additional transitiont2′.

The Evaluation and Design Methodology for Real Time Systems 59

Table 2

Petri net evaluation results

Transition Time Constraint (Iteration 1) Time Constraint (Iteration 2)

t1 [0, 0]

t2’ [9, 10] [19, 22]

t2 [9, 10] [19, 25]

t3 [10, 12] [20, 27]

t4 [11, 15] [21. 27]

t5 [14, 19] [24, 31]

t6 [11, 15] [21, 30]

t7 [17, 24] [27, 39]

how the PN model of a RT composed of communicating Controller and Processor may
be analyzed for the presence of data transferand processing with data transfer lost. Our
presentation throughout will be rather informal and uses existing results taken from dis-
cussion in this paper.

As shown in Fig. 9, the sequential behaviour of the simplest periodic RTC in Fig. 2
(sampling, reading data from ADC, writing to transmitter Txd port, reading data from
input port and putting them to the cyclic FIFObuffer, performing calculation and data
visualization) may be modelled by a condition/event generated from RTC. The RTC event
is related with every one transition on PN.

In Fig. 10 is shown PN model generated from previous activity diagram. Con-
troller and Processor communication is presented as Producer/Consumer model (Nisanke,
1997), where place P4 define the size of buffer FIFO (in this case length equal 4), P5 –
amount of total transferred measurements, P6 – lost transfers, P7 – total amount of re-
ceived measured data and ready to display data. Next measurement calculation is defined
by transfer T4, which firing condition depends on actual value of random variable rep-

Fig. 9. Activity diagram forsequential behaviour of RTS.

60 E. Kazanaviˇcius

resenting interval – arrival time between transmission and displaying data. Transition T3
defines measurement value transmission operation. If the FIFO buffer is not full the mea-
surement value is put, otherwise a collision occurs – the first sample in buffer is discard.

In Fig. 11 simulated results of the Petri net model (see Fig. 10) are shown. The curve
M(P5) represents amount of data sent from Producer to Consumer process. This amount
is modelled as the count of tokens at place P5. Similarly curve M(P7) represents the
amount of data received at the Consumer side and M(P6) is amount of data lost due to
FIFO buffer overflow.

Fig. 10. Petri Net RTS model, generated from activity diagram.

Fig. 11. Simulation results.

The Evaluation and Design Methodology for Real Time Systems 61

6. Conclusions

In this paper, we overviewed and analyzed the UML and PNs and proposed a UML-PN
integrated modelling method for real-time systems development. The methodology pro-
vided an integrative framework supporting requirements description, model specification
and design, model analysis using simulation and verification tools.

The TSE algorithm is very efficient for calculating timing constraints for Petri nets
that do not include conditional behaviour. However, for systems where the conditional
behaviour comes from the fact that the system has several distinct modes of operation we
suggest to analyze each mode separately by splitting Petri net into particular processes.

The UML is well suited for capturing requirements, system view and implementa-
tion details, and Petri nets provide formalism for checking real time system’s behaviour
correctness.

Modeling specific applications with UML would be easier using a more specialized
(domain-specific) notation representing the basic elements and patterns of the target do-
main.

Formally defined domain-dependent use semantics are required to avoid multiple in-
terpretations of the same Petri net models and to support analysis and simulation tools.

Multiple diagrams can be used to capture related aspects of a design. The possibility
of viewing and describing the same object from different perspectives makes the system
specification phase easier, especially in embedded real time software development phase.

Experimental results have demonstrated the worthiness of such improvement tech-
niques, and by combining the UML specification and strategy and the transformational
approach the efficiency of design RTS is improved considerably.

References

Agerwala, T. (1979). Putting Petri nets to work.IEEE Computer, 12(12), 85–94.
Argo UML Toolhttp://argouml.tigris.org
Bozga, M., S.G.L. Mounier, L.O.J.-L. Roux and D. Vincent (2001).Timed Extensions for SDL.
Coolahan, J.E., Jr. and N. Roussopoulos (1983). Timing requirements for time-driven systems using augmented

Petri nets.IEEE Transactions on Software Engineering, 9(5), 602–616.
Douglass, B.P. (1999).Doing Hard Time: Developing Real-Time Systems with UML, Objects, Frameworks, and

Patterns. Addison–Wesley Longman Publishing Co., Inc., Boston, MA.
Gehrke, T., U. Goltz and H. Wehrheim (1998).The Dynamic Models of UML: towards a Semantics and its

Application in the Development Process. Hildesheimer Informatik-Bericht 11/98,
Hruby, P. (1999). Designing UML based development processes, UML’99 – The Unified Modeling Language.

Beyond the Standard. InProceedings of Second International Conference, LNCS, Vol. 1723. Springer. pp.
308–323.

Hulgaard, H., S.M. Burns, T. Amon and G. Borriello (1995). An algorithm for exact bounds on the time sepa-
ration of events in concurrent systems.IEEE Transactions on Computers, 44(11), 1306–1317.

ILogix Tool(2003).http://www.ilogix.com
Kazanavicius, E., A. Mikuckas, I. Mikuckiene (2004). Nondestructive testing method in artificial intelligence

teal time systems.Solid State Phenomena, 97–98, 71–76.
Kazanavicius, E., A. Mikuckas, I. Mikuckiene, V. Kazanavicius (2004a). Noisy signal processing in real time

DSP systems.The e-Journal of Nondestructive Testing & Ultrasonics.
MagicDraw Tool(2003).http://www.magicdraw.com

62 E. Kazanaviˇcius

Murata, T. (1989). Petri nets: properties, analysis and applications. InProceedings of the IEEE, 77(4).
Nisanake, N. (1997).Real Time Systems. Prentice Hall.
Object Management Group (1999).OMG Unified Modeling Language Specification, Version 1.3.
Pranevǐcius, H., G. Budnikas (2003). Creation of ESTELLE/Ag specifications using knowledge bases.Infor-

matica, 14(1), 63–74.
Ramchandani, C. (1974). Analysis of asynchronous concurrent systems by Petri nets.Technical Report. M.I.T.,

Cambridge, MA, Project MAC, TR 120.
Rose Case Tool(2003).http://www.rational.com/rose
Selic, B., and J. Rumbaugh (1998).Using UML for Modeling Complex Real-Time Systems. White Paper, Ratio-

nal Software Corporation.http://www.rational.com/media/whitepapers/umlrt.pdf
Stankovic, J. (1998). Misconceptions about real-time computing: a serious problem for next generation systems.

IEEE Computer, 21(10).
Stankovic, J., and K. Ramamritham(1998). Hard real-time systems.Tutorial Text, IEEE Computer Society

Press, Wash. D.C.
Xiaoqun Du, C.R. Ramakrishnan, S.A. Smolka (2000). Real-time verification techniques for untimed systems.

Electr. Notes Theor. Comput. Sci., 39(3).

E. Kazanavičius is an associate professor in Computer Department at Kaunas University
of Technology. His research interests focused on design, modeling and simulation of
embedded, real-time, digital signal processing and computational systems. He is a head
of Computer Department and a head of Digital Signal Processing Laboratory an Research
group leader. His diploma engineer degree isfrom Kaunas Polytechnical Institute (1979),
his dr. and associate professor from Kaunas University of Technology (1982).

Realaus laiko sistem↪u projektavimo ir ↪ivertinimo metodologija

Egidijus KAZANAVI ČIUS

Straipsnyje pateikiama realaus laiko sistem↪u projektavimo metodologija naudojant UML ir
Petri tinkl ↪u modeliavim↪a. Nagriṅejama UML veiklos diagram↪u aprašymo transformavimo būdas

↪i formal ↪u Petri tinklo model↪i, skirt ↪a realaus laiko sistem↪u elgsenos ir jos funkcij↪u vykdymo laiko
apribojim ↪u ↪ivertinimui. Pasīulytas sistemos funkcionavimo kritiniu laiko intervalu↪ivertinimo algo-
ritmas panaudojant Petri tinklo model↪i. Šios metodologijos pagrindu realizuoti taikom↪uj ↪u sistem↪u
intarpai ARGO UML aplinkoje, pateikti realaus laiko sistemos realizavimo pavyzdys ir eksperi-
ment↪u gauti rezultatai.

