
INFORMATICA, 2003, Vol. 14, No. 4, 455–470 455
 2003Institute of Mathematics and Informatics, Vilnius

The Role of Ontologies in Reusing Domain and
Enterprise Engineering Assets

AlbertasČAPLINSKAS, Audroṅe LUPEIKIENĖ
Institute of Mathematics and Informatics
Akademijos 4, 2021 Vilnius, Lithuania
e-mail: {alcapl,audronel}@ktl.mii.lt

Olegas VASILECAS
Vilnius Gediminas Technical University
Saulėtekio 11, 2040, Vilnius, Lithuania
e-mail: olegas@fm.vtu.lt

Received: June 2003

Abstract. The main purpose of the paper is to compare ontology-based reuse techniques in do-
main engineering and enterprise engineering. It discusses attempts to combine classical domain
engineering techniques with ontology-based techniques as well as the attempts to incorporate on-
tologies in enterprise engineering process and demonstrates that, on the one hand, both approaches
still are not mature enough to solve practical reuse problems and, on the other hand, both propose
ideas that can be used to develop more mature approach. The main contribution of the paper is the
detail description of the problems of ontology-based reuse of enterprise engineering assets.

Key words: enterprise engineering, domain engineering, ontology-based engineering, reuse.

1. Introduction

There is an increasing trend towards acceptance of reuse as an approach to information
systems development. Reuse is defined as “the employment of a previously used and
explicitly defined systems development artefact in another information systems devel-
opment process” (Brash, 2001). The rationale for reuse is the belief that it would in-
crease the quality of information systems and developers productivity. A lot of reusing
techniques including requirement, analysis and design patterns, component based de-
velopment, frameworks, parameterisation, and partial evaluation have been proposed in
scientific literature (Allen and Frost, 1998; Baxter, 1999; Fowler, 1997; Gamma, 1994;
Johnson, 1997; Joneset al., 1993; Masuhara, 1999; Robertson and Robertson, 1999). In
recent years the philosophy of reusing has been influenced strongly by two important
factors:domain engineering techniques (Cohen, 1997a; 1997b; 1999; Czarnecki, 1997;
Czarnecki and Eisenecker, 2000; Eichman, 1997; Falboet al., 2002; Maccario, 1997;
Masuhara, 1999; Sherif, 1997; Štuikys and Damaševičius, 2002) andontology-based ap-
proach (Borst, 1997; Dobson and Martin, 1997; Hakimpour and Geppert, 2002; John-



456 A. Čaplinskas, A. Lupeikienė, O. Vasilecas

stone and McDermid, 2001; Maccario, 1997; Uschold, 1998; Van Belle, 1996; Wand and
Weber, 1990; Weber, 1997).

The main purpose of the paper is to compare ontology-based reuse techniques in do-
main and enterprise engineering, and to explore the problem of ontology-based reuse of
enterprise engineering assets. The authors are working in the project that aims to de-
velop an enterprise engineering framework and it is the reason for this paper. The paper
discusses attempts to combine classical domain engineering techniques with ontology-
based techniques as well as the attempts to incorporate ontologies in enterprise engi-
neering process. It demonstrates that, on the one hand, both analysed approaches are not
mature enough to solve practical reuse problems, and, on the other hand, both propose
ideas that can be used to develop more mature approach.

The rest of the paper is organised as follows. Section 2 discusses main reuse levels in
the context of enterprise engineering. Reusable assets and reuse techniques at different
levels are analysed as well. Section 3 analyses the ontology-based approach to domain
and enterprise engineering. Section 4 investigates the problems of ontology-based reuse
in enterprise engineering context. Finally, Section 5 concludes the paper.

2. Reuse in the Enterprise Engineering Context

Systematic reuse is employed in various engineering areas. Enhancing reuse is an impor-
tant issue of information systems engineering, too. Current approaches (patterns, frame-
works, business components, etc.) mostly address this topic either at different phases of
the software development process or at the level of software components (sub-systems,
objects, functions, etc.). In information system engineering, however, it is necessary to
consider reuse issues at higher abstraction levels, namely, at enterprise engineering (EE),
domain engineering (DE), and application engineering (AE) levels because not only soft-
ware components should be reused. According to (Cohen, 1997a), EE should support
reuse of all artefacts created in the enterprise domain including data and information ar-
chitectures, product line definitions, and business models. DE should support reuse of
products created in certain domain including generic domain models and generic soft-
ware architectures. The term “domain” denotes here “an area of knowledge or activity
characterized by a set of concepts and terminology understood by practitioners in that
area” (Cohen, 1997b). The purpose of AE is to produce products for delivery using assets
created through enterprise engineering and domain engineering.

Let us discuss the approaches mentioned more detail.

2.1. Enterprise Engineering

Usually, an enterprise is thought of as one or more organisations sharing a definite mis-
sion, goals, and objectives to offer an output such as product or service. It is necessary
to distinguish concepts of “enterprise” and “enterprise system”. The relation between
an enterprise and enterprise system is similar to one between hardware and software.
An enterprise is a collection of functional entities (organisational structures, employees,



The Role of Ontologies in Reusing Domain and Enterprise Engineering Assets 457

software systems, machines, etc.) capable to do certain work. An enterprise system (ES)
is a kind of operational system (Fig. 1) designed to perform some business (by the term
“business” we mean any commercial, industrial, governmental or other interest). ES is
run by enterprise, more exactly, by its functional entities.

ES is a hierarchical operational system. It has three levels of hierarchy: business level,
information processing level, and information technology level (Fig. 1).

At the business level operates a number of business systems. Any business system
is a subsystem of ES. It is implemented as a set of interrelated business processes per-
formed by an enterprise to achieve certain, usually, long duration goals while producing
particular products or/and services delivered to clients. A business process, in turn, is
implemented as a set of interrelated activities, which manipulate (acquire, create, store,
transform, transport, deliver, etc.) instances of particular business entities. It is governed
by a number of business rules, implements particular functionality and meets a number
of certain non-functional constraints ensuring the rational usage of recourses, reliability
and other preferable properties of this process.

At the information processing level operates a number information systems. Usually,
any information system supports a particular business system but sometimes it may be
shared by several business systems. It is implemented as a set of information processes
performed by enterprise functional entities in order to provide a number of information
services required to support business processes. Information process is a kind of support-
ing process. It is implemented as a set of interrelated activities, which manipulate (create,
copy, store, transform, transport, disseminate, etc.) particular information objects, and is
governed by a number of information processing rules. Information object is a piece of
business knowledge. Usually it is represented as a record of socially constructed reality
and models some instance of particular business entity. Enterprise’s information systems
cannot operate as autonomous systems. They should be integrated into Enterprise Infor-
mation System (EIS) and operate as its subsystems.

Fig. 1. Taxonomy of components of enterprise system.



458 A. Čaplinskas, A. Lupeikienė, O. Vasilecas

At the IT level operates a number of software systems (applications, portals, data
warehouses, expert systems, messaging systems, etc.). Any software system is a com-
ponent of particular information system (sometimes it can be shared by several IS) and
is used to implement, at least partly, a particular functional entity or a particular tool,
which is used to manipulate software objects. Software objects are information objects
represented in digital form.

So, architecture of any IS should be aligned with enterprise’s business goals and mis-
sion. Architecture of software systems should be aligned with goals and mission of the re-
lated IS. To be effective all three levels of enterprise system should be integrated properly.
Concepts should be mapped rightly from higher level system to lower level systems and
lower level systems should be constrained by rules governing processes in higher level
systems. Lower level systems should be aware of higher-level systems and all changes
should be propagated correctly from top-level system to bottom-level one. Even systems
of the same level should be aware of each other. Design and integration of ES levels is
one of the most important tasks of EE.

According to (Lileset al., 1998), enterprise engineering is a body of knowledge, prin-
ciples, and practices having to do with analysis, design, implementation, and operation
of an enterprise and its system. In other words, EE deals also with the design of enter-
prise itself. In this discipline the enterprise is viewed as a complex system created and
maintained by a number of organisational processes. An example of organisational pro-
cess is human resources management. Organisational processes should be supported by
particular information systems that also should be integrated into EIS. The basic premise
of EE is that key competitive advantages can be gained by rethinking business and or-
ganisation processes both externally, analysing the effectiveness of the enterprise from
the customer’s point of view, and internally, analysing the flow of work in the enterprise
and the enterprise resources from the point of view of efficiency (Meerts, 2002). That is
where information systems and information technology come in focus.

This paper concentrates on the development of EIS, disregarding issues of organisa-
tion and business design. In other words, we assume that enterprise itself and business
level of ES are already designed and implemented. So the term “enterprise engineering”
in the further text denotes activities related to design and implementation of information
processing and IT levels and to integration of EIS components. It also encompasses the
enterprise modelling (EM) activities because one must understand enterprise and busi-
ness to design the information processing level. EM facilitates understanding of business
processes and supports the reuse of business knowledge accumulated by enterprises. En-
terprise models are used also in business engineering related EE activities, for example,
in enterprise integration. As pointed out in (Bernus and Nemes, 1996), enterprise model
is used in this field to “investigate how to perform processes better using a mix of tech-
nology and human recourses”.

A variety of EM approaches have been proposed. They differ in intended purpose
and in conceptualisations of an enterprise (ontological assumptions). For example, IDEF
approach (NIST, 1993; Mayer, 1995) conceptualises business is in terms of input-output
chains, business activities (functions), functional entities (mechanisms), and conditions



The Role of Ontologies in Reusing Domain and Enterprise Engineering Assets 459

required to produce correct output (controls). The approach proposed by Andreas Dietch
(Dietsch, 2002) conceptualises business in terms of goals, input-output chains, and pro-
cesses. Conceptualisation proposed in ODP Enterprise Language (ANSI, 1996) and used
in project COMBINE (COMBINE, 2003) sees business in terms of behavioural, organi-
sational, policy, and responsibility concepts. BPMI (Arkin, 2002) conceptualises business
in terms of collaborations and interfaces.

As design and integration of ES levels is one of the most important tasks of EE,
EM approaches should be revised to cover conceptualisation of the whole ES in uniform
manner (Caplinskaset al., 2002a). More, the common conceptualisation is necessary for
reuse of business models, product lines, development processes in EE, which lacks of
reuse techniques.

2.2. Domain Engineering

Domain engineering originated in the software engineering community and it puts em-
phasis on the formality and rationality. In the context of information systems, DE can be
defined as a discipline that aims to support systematic reuse of business solutions and
supporting software, “focusing on modelling common knowledge in a problem domain”
(Falboet al., 2002).

Domain engineering aims at reuse assets created through EE, first of all, domain mod-
els and software architectures. Domain model represents domain concepts, objects, op-
erations and their relationships (Maccario, 1997). It is used for understanding and clas-
sification of information within the domain (Cohen, 1997b). DE aims to reuse domain
models through generalisation. Generic domain model is a generalisation of a family of
domain models that have common aspects and predicted variability. The term variabil-
ity is defined as “an assumption about how members of a family may differ from one
another” and the term commonality as “an assumption that is true for all members of
a family” (Robak, 2002). Generic domain model provides an abstract, independent and
concise representation of common and variable parts of the family of domains (Kang
et al., 1990). Determining, what will constitute the common part and what the variable
part, has more strategic than the technical nature. Commonality constraints the size of
the family of domain models, variability increases the systems’ complexity. The com-
monality and the variability of the family are defined within so called scooping activity
(Cornwell, 1999). A variation point is a point identifying one or more locations, at which
the variation will take place (Jacobsonet al., 1997).

DE constitutes three main phases: domain analysis, domain design, and domain im-
plementation (Sherif, 1997). Generic domain model is produced during the domain anal-
ysis phase. Domain analysis is ”the process where the knowledge of user/customer needs
is identified, elaborated and organised in such a way that the applications planned inside
a domain (or an application family) can be analysed and designed following modularity
and reusability criteria” (Maccario, 1997). The outcome of the domain design phase is
a generic system’s architecture (domain architecture, architectural domain model) or, in
other words, it is a description of the structural properties and elements of the system.



460 A. Čaplinskas, A. Lupeikienė, O. Vasilecas

Fig. 2. Reuse in domain engineering.

It characterises the solution space versus the problem space characterised by the domain
model. Generic architecture categorises architectural objects (interfaces, corporate data,
processes, etc.) (Jacobsonet al., 1997). It describes particular family of systems (Robak,
2002; Weiss and Lai, 1999). So, generic architecture is the scheme that can be used for
producing new domain applications or for re-engineering existing ones.

Starting from the previously defined generic domain model, the domain design ac-
tivity extracts low-level components (object class, subsystems, etc.) and maps them to
architectural objects that can be reused. Domain implementation refers to the develop-
ment of reusable assets. The outcome of this phase and final product of the whole DE
activity is repository of reusable components. During the domain implementation phase
the generic architecture is implemented as a reusable asset (e.g., as an object framework).
Automatic domain engineering (Frakes, 1997) means combining the domain analysis,
domain design and domain implementation phase into a coherent whole. The outputs of
one phase are mapped to inputs of another phase automatically and the whole DE process
is supported by a set of compatible tools.

Since domain engineering originated in the software engineering community, it deals
with family of systems but not with family of information processes. In other words, a
domain model represents properties of the software, but not the common and variable
properties of information processes. The sources of domain analysis include existing ap-
plications in that domain, their requirements, etc. So domain engineering supports reuse
on IT level, but not on information processing level. From the information system engi-
neering viewpoint, it is the shortcoming because it is desirable to reuse business models,
too. We argue that, to satisfy the needs of enterprise engineering, domain engineering and
IS engineering should be integrated more tightly.

2.3. Application Engineering

The purpose of application engineering (sometimes it is named reuse engineering (Agar-
wal et al., 1999)) is to produce products for delivery using assets created through EE
and DE (Cohen, 1997b). AE constitutes three main phases: requirement analysis, de-
sign analysis, and integration and testing. During the requirement analysis phase busi-
ness needs using the features (reusable requirements) are described and additional re-
quirements (needs not covered by the domain model) are formulated. Requirements are
expressed as variations (so called deltas) to an established base. In other words, require-
ments describe a set of implementation constraints. Additional requirements are used to



The Role of Ontologies in Reusing Domain and Enterprise Engineering Assets 461

refine and extend the reusable assets. During the design analysis phase changes propa-
gated by additional requirements are identified in generic design and the product config-
uration describing the architecture of the system under development is produced. During
the integration and test phase the software system from delivered reusable components
and additional custom-developed components is assembled. The input for AE is generic
architecture together with the requirements for particular IS. DE and AE form together
so called dual-lifecycle (Eichman, 1997).

It should be noted that currently application engineering has serious shortcomings. It
almost always requires to customise reusable design and to write additional code. Thus
additional attempts should be made to improve AE techniques in order to remove these
shortcomings.

3. Ontology-Based Approach

3.1. Reasons and Problems

One of the reasons for building ontologies is the reuse capability they provide. A number
of ontologies, for example, (Uscholdet al., 1996; Fox, 1992), has been developed for
enterprises also. These ontologies conceptualise the enterprise domain and can be used
to support various enterprise engineering processes.

According to Sowa (Sowa, 2000), “the subject of ontology is the study of the cate-
gories of things that exist or may exist in some domain”. Uschold defines (Uschold, 1998)
ontology as a vocabulary of interrelated terms, which “collectively impose a structure of
the domain and constrain the possible interpretation of terms”. Ontology may be infor-
mal, for example, specified by catalogue of types that are definitions stated in a natural
language, or formal, for example, specified by axioms and definitions stated in a formal
language1 (Sowa, 2000). Axiomatised ontology can be seen as an axiomatic concepts
theory and provide the basis for conceptual modelling. Choice of a particular modelling
approach for IS development always is linked to ontological assumptions about the mod-
elled social reality (Humphrey and Feiler, 1992; Weber, 1997). Even generic system ar-
chitecture (system domain) is “more suitable modelled as an ontology within which a
properly parameterised architectural framework is defined” (Cornwell, 1999). A choice
of ontological categories is the first step in designing a particular application as well as
a family of applications (Smith, 2002). For development of single application in highly
specialised domains, so-called microworlds, limited ontologies can be used. The principal
advantage of limited ontology is easy of design and implementation. However, it is diffi-
cult to reuse such ontology in other microworlds. So, domain engineering requires generic
ontologies that can be reused in many microworlds. Enterprise engineering requires even

1In philosophy the term “formal ontology” has other meaning. A division is made between formal and
material (or regional) ontology. Formal ontology is domain-neutral; it deals with those aspects of reality, which
are shared in common by all domains (material regions). Material ontology deals with those features, which are
specific to given domains (Smith, 2002).



462 A. Čaplinskas, A. Lupeikienė, O. Vasilecas

more generic shared ontologies that can support applications across many domains, more
exactly, across all areas of enterprise’s business (Czarnecki and Eisenecker, 2000; Sherif,
1997).

Although theoretically ontologies can play an important role in enterprise and domain
engineering, it is not so simple to use them practically.

First of all, it is slightly complicated to insert ontology-driven approach in domain en-
gineering process because of object-oriented nature of domain engineering. Concepts de-
fined by ontology should be mapped to classes or, in other words, object-oriented generic
architecture should be derived from domain ontology. As pointed out Czarnecki and Eise-
necker (Czarnecki and Eisenecker, 2000), concepts and object-oriented classes have sev-
eral important distinguishes. Concepts define intensional sets, classes define extensional
sets. Objects are more specific as instances of concept. They are aggregates of descriptive,
operational and organisational properties. Objects have identity, state, and well-defined
behaviour. They can interact. Instances of concepts do not have such properties. Con-
cepts are defined on the basis of other concepts. They are aggregates of features, which
describe qualitative properties of concepts. Concepts are not stable. They evolve over
time. The meaning of the concept varies from person to person. It depends also on the
particular context. So it is impossible to map concepts to classes directly. The problem is
complicated also by so-called minimum ontological commitments criterion, or, in other
words, by the requirement that “an ontology should make as few claims as possible about
the world being modelled, allowing the parties committed to the ontology freedom to
specialise and instantiated the ontology as needed” (Gruber, 1993). Application of this
criterion, in general, causes that domain ontology is too abstract to be directly reused in
software development. In addition one must deal with common problems of conceptual
design: some concepts can be better mapped to attributes; some concepts should not be
mapped to architecture because they are important only in business but not in the system
or have been defined only to clarify some aspects of ontology; solution-specific classes
that have any counterparts in domain ontology should be added to architecture; etc.

Second, to insert ontology-driven modelling into enterprise engineering process, do-
main ontologies must be embedded within a more general framework. In other words,
they must be based on upper-level ontologies that form the superstructure to define lower-
level categories (Sherif, 1997). The question, how to define this superstructure and which
upper-level ontology it is better to use as a base, is still open.

3.2. An Ontological Approach to Domain Engineering

An ontology-based approach (ODE approach) to domain engineering has been proposed
by Falbo, Guizzardi, and Duarte (Falboet al., 2002). The main philosophy beyond this
approach is to use domain ontology as domain model and to derive object framework
for them. In ODE domain analysis is considered as ontology development phase, domain
design as mapping of the ontology to object model (infrastructure specification), and
domain design as Java components (infrastructure implementation) development phase.
ODE provides integration of the ontology under development with previously developed
more general (modular) ontologies. It allows wider reuse of domain knowledge.



The Role of Ontologies in Reusing Domain and Enterprise Engineering Assets 463

Domain ontology in ODE should be explicitly represented in a formal language. For-
mal axioms that constrain the interpretation of the domain terms should be written. ODE
approach uses four kinds of axioms: epistemological, consolidation, ontological, and def-
initions. Epistemological axioms describe the structure of the concepts (whole-part re-
lations, is-a relations, etc.), consolidation axioms impose constraints for relations, and
ontological axioms represent basic declarative knowledge. Constraints mostly define pre-
conditions that must be satisfied for a relation to be consistently established. Definition
axioms are used to define new concepts and relations. First-order logic is used to specify
the axioms.

Ontologies also should be represented graphically. The LINGO language (Falboet al.,
2002) is used for this aim. LINGO defines the basic notations (concepts and relations) to
represent a domain conceptualisation. Some types of relations have predefined semantic.
This enables automatically generate the epistemological axioms. Authors see LINGO as
meta-ontology. In our opinion it should be seen rather as a higher-level ontology used to
define domain-specific concepts.

To derive objects from ontologies a set of directives, design patterns, and transfor-
mation rules is used in ODE approach. In general, directives guide the mapping from the
epistemological structures to classes, design patterns are used to map ontological axioms,
and transformation rules are used to map consolidation axioms. However, some excep-
tions bias general rules. For example, whole-part design pattern is used to map whole-part
relations, defined by epistemological axioms.

A formalism that lies at an intermediate abstraction level, between first-order logic
and object-oriented language, is used as intermediate formalism based, predominantly,
on set theory. The primitives of this formalism are related to the constructs of LINGO
language. Computational structure is generated in two steps. First step translates formal
ontology to an epistemological conceptual model (conceptual view of class diagram)
represented using intermediate formalism. Second step translates conceptual model to
object-oriented design. So, intermediate formalism bridges conceptual and implementa-
tion levels, respectively represented by first-order logic axioms and object models.

The main shortcoming of ODE approach is that it is highly focused on structural
aspects and, consequently, should be extended by the techniques to address the dynamic
aspects of domain.

3.3. Ontologies in Enterprise Engineering

Several attempts have been done to incorporate ontologies in EE process. An integrated
system of ontologies to support enterprise modelling has been developed in Toronto Vir-
tual Enterprise (TOVE) project (Fox, 1992). This system consists of a number of generic
core ontologies, including an activity ontology (Fox and Grüninger, 1994), resource on-
tology (Fadelet al., 1994), organisation ontology (Foxet al., 1995), and a product on-
tology (Baid, 1994; Linet al., 1996). It also includes a set of extensions to these generic
ontologies that define additional concepts (cost, quality, etc.). Recently the attempt has
been done to develop an additional business process ontology (Grüningeret al., 2000).



464 A. Čaplinskas, A. Lupeikienė, O. Vasilecas

The system of ontologies in TOVE project has been designed and implemented us-
ing the logical approach. Ontologies are described using formal language. Alphabet of
the language consists of logical and non-logical symbols. Logical symbols (connectives,
variables, quantifiers) are defined by lexicon of Knowledge Interchange Format (Gene-
sereth and Fikes, 1992). Non-logical symbols (constants, functions, relations) refer to
concepts in appropriate domain. The model theory provides for each ontology a rigorous
mathematical characterisation of the terminology. The proof theory provides axioms for
the interpretation of terms in the ontology. Such approach allows a precise and rigorous
characterisation of the consistency and completeness of the ontology with respect to its
intended application and supports inference for enterprise model. An enterprise in TOVE
approach is seen as an engineering artefact, which is conceived, designed and then im-
plemented, using specific methods and tools. It is modelled as a set of logical constraints
represented using the TOVE system of ontologies. More exactly, an enterprise model is
thought as a set of constraints on activities, resources required by activities, organisation,
goals, products, and services. Constraints are represented as sentences in first-order logic
that are formulated in terms of appropriate ontology. Enterprise engineering problems are
formulated as constraint satisfaction or logical entailment problems.

The TOVE approach is criticised that it requires too many efforts to instantiate the
model for a particular enterprise. In order to easy this task, the authors are working on
the development of the automation tools.

Another important contribution to ontology-based EE has been done in The Enter-
prise Project at the University of Edinburgh (Uscholdet al., 1996). In this project ontol-
ogy (the Enterprise Ontology) for enterprise modelling that is intended to support an EE
environment has been developed. EE environment is thought as an integrated collection
of methods and tools for capturing and analysing key aspects of an enterprise. The En-
terprise Ontology provides five top-level classes for integrating the various aspects of an
enterprise: meta-ontology, activities and processes, organisation, strategy, and marketing.
Meta-ontology defines basic modelling concepts (entity, relationship, role, actor, state of
affairs). So, the Enterprise Ontology also can be seen as a system of integrated ontologies.
It is semi-formal. Terms are expressed in a restricted and structured form of natural lan-
guage supplemented with a few formal axioms using Ontolingua. Consequently, it does
not support automated reasoning.

4. Reusing Enterprise Engineering Assets: Problem Statement

The results of the analysis presented in above sections demonstrate that the current ap-
proaches to the reuse of enterprise engineering assets are not mature enough. They suffer
from the number of shortcomings:

• the lack of the theoretical backgrounds how to construct superstructure used to
define lower level ontologies in problem as well as in system domain;

• insufficient coverage of modelling views, especially in system domain, that is seri-
ous obstacle to develop many reusable assets (information architecture, data archi-
tecture, network architecture, etc.);



The Role of Ontologies in Reusing Domain and Enterprise Engineering Assets 465

• significant semantic gap between the modelling of business processes, information
processes, and applications;

• strong orientation of domain engineering techniques towards the reuse of software
solutions and, as a result, inability to model commonalities and variabilities at busi-
ness and information processing levels;

• too abstract level of models and, as a result, necessity to perform too many manual
operations in customising and instantiating reusable design;

• too strong emphasis on structural aspects, and, as a result, inability to reuse dy-
namic aspects, especially at business and information processing levels;

• monolithic structure of problem models and, as a result, inability reuse assets re-
lated to vertical domains (e.g., generic processes) in different enterprise informa-
tion systems.

In order to develop the approach free from above listed shortcomings, it is necessary
to solve a number of problems. One of the most important problems is the separation of
concerns. First of all it is required to separate problem and system concerns (Fig. 3) or, in
other words, customer and designer perspectives. It may be done separating problem and
system ontologies (Caplinskaset al., 2002a; Caplinskaset al., 2002b). System ontology
should allow to describe all levels of the enterprise information system architecture in
uniform manner. It is itself a difficult and complicated task. This task becomes even more
complicated because of possibility to conceptualise the system domain in different ways.

Further, domain and task knowledge inside the problem domain should be separated.
This can be done by replacing the monolithic structure of problem model with a layered
modular one (Fig. 4). In such structure upper-level ontology introduces generic concepts
that are shared by lower-level ontologies and reflect underlying theory about the nature of
enterprise’s social reality (discourse of interest). This ontology is functional or, in other
words, designed for specific purposes of enterprise information system design. Concepts
defined by upper-level ontology should be shared across domains (i.e., specialised area
of expertise) including across all areas of enterprise’s business (application domains),
process domains, problem domains, and system domain.

In this framework application domains are seen as horizontal domains. It means that
a number of processes including business processes can be located in the domain. In
other words, domain knowledge and process knowledge is separated. Generic process is
thought as an abstraction used to describe the family of particular process (process in-

Fig. 3. Ontologies in enterprise engineering.



466 A. Čaplinskas, A. Lupeikienė, O. Vasilecas

Fig. 4. Ontological framework.

stances). Process ontology introduces specific terms required to describe certain generic
process including task structure, artefacts, resources, roles, enacting mechanisms, precon-
ditions, and constraints. Collection of process ontologies specifies the behavioural view
on enterprise systems. Finally, a problem is defined as a process, located in a particular
application domain. When process is located in a particular application domain, entities
from domain should be assigned to the process roles. A single entity may perform mul-
tiple roles and a single role may be performed by multiple entities. It is true in case of
active as well as in case of passive roles. Process placing in application domain is one of
the set of activities that should be performed in the domain design stage.

Second important problem is the development of approaches to address all aspects
of enterprise, including dynamic ones. In order to do it, domain engineering techniques
should be extended in a way that these techniques could be applied to the whole enter-
prise model and to develop appropriate directives, design patterns, and transformations,
required to derive additional assets.

Finally, application engineering techniques must be enhanced in order automate de-
sign customisation and instantiation. One of the possible solutions is the development
of generative methods not only for software components development but for the whole
software system developing as well.

5. Conclusions

The paper analyses the problems related to reuse of enterprise engineering assets. The
state of affairs in rough can be characterised as follows: reuse techniques in this field are at
the very beginning. They focuses on reuse of business models and as a rule are ontology-
based. On the other hand, domain engineering techniques became mature enough and are
widely used in practice. The main challenge is to combine domain engineering techniques
with ontology-based modelling and to extend these combined techniques to cover all
aspects of enterprise.

The main problems that must be solved to realise this programme are as follows:

• development of shared ontologies that should support across all areas of enter-
prise’s business;



The Role of Ontologies in Reusing Domain and Enterprise Engineering Assets 467

• development of upper-level ontologies that should form the superstructure to define
lower-level categories;

• development of integrated set of ontologies including application domain ontolo-
gies, process ontologies, problem ontologies, and a system ontology;

• development of reuse techniques for all enterprise engineering assets including data
and information architectures, product line definitions, network architectures, etc.

References

Agarwal, R., B. Ghosh, A. Sarangi (1999). Designing reliable software using DAF. InProceedings of the Fast
Abstracts and Industrial Practices of the IEEE 10th International Symposium on Software Reliability Engi-
neering. ISSRE Boca Raton, Florida, November 2–5.
http://www.chillarege.com/fastabstracts/issre99/99104.pdf.

Allen, P., S. Frost (1998).Component-Based Development for Enterprise Systems: Applying the SELECT
PerspectiveTM . Cambridge University Press, SIGS Books, Cambridge.

ANSI (1996).Business Rules for the Enterprise Viewpoint of RM-ODP. ANSI X3H7-96-07R2, 7 December.
Arkin, A. (2002).Business Modelling Language. BPMI.org.

http://www.bpmi.org/bpml-spec.esp .
Baid, N. (1994)Toward an Ontology of Change for Concurrent Engineering. M.A. Sc. Department of Industrial

Engineering, University of Toronto.
Baxter, I.D. (1999). Transformation systems: domain-oriented component and implementation knowledge

reuse. In9th Annual Workshop on Institutionalizing Software Reuse (WISR9). The University of Texas at
Austin, USA, January 7–9, 1999. Full Position Papers.

Bernus, P., L. Nemes (1996). Enterprise integration – engineering tools for designing purposes. In P. Bernus,
L. Nemes (Eds.),Modelling and Methodologies for Enterprise Integration. Chapman & Hall. pp. 1–9.

Borst, P. (1997).Construction of Engineering Ontologies for Knowledge Sharing and Reuse. PhD Thesis, Uni-
versity of Twente, Enschede, The Netherlands.

Brash, D. (2001). Reuse in information systems development: classification and comparison. InProceedings
of the Twelfth Australasian Conference on Information Systems. Coffs Harbour, NSW, Australia, December
5–7, 2001. Conference Proceedings CD.
http://infotech.scu.edu.au/ACIS2001/Proceedings/PDFS/14.pdf.

Caplinskas, A., A. Lupeikiene, O. Vasilecas (2002a). Unified enterprise engineering environment: ontological
point of view. In H.-M. Haav, A. Kalja (Eds.),Proceedings of the Baltic Conference, BalticDB&IS 2002,
vol. 1. Institute of Cybernetics at Tallinn Technical University. pp. 30–50.

Caplinskas, A., A. Lupeikiene, O. Vasilecas (2002b). Shared conceptualisation of business systems, informa-
tion systems and supporting software. In H.-M. Haav, A. Kalja (Eds.),Databases and Information Systems
II, Selected Papers from the Fifth International Baltic Conference, BalticDB&IS’2002. Kluwer Academic
Publishers. pp. 109–320.

Cohen, S. (1997a). Object technology, architectures, and domain analysis – what’s the connection? In 8th

Annual Workshop on Institutionalizing Software Reuse (WISR8). Ohio State University, USA, March 23–26,
1997. The WISR 8 Position Papers.
http://www.umcs.maine.edu/∼ftp/wisr/wisr8/papers.html.

Cohen, S. (1997b). Object technology, architectures, and domain analysis – what’s the connection? Is there a
connection? In8th Annual Workshop on Institutionalizing Software Reuse (WISR8). Ohio State University,
USA, March 23–26, 1997. The WISR 8 Working Group Reports.
http://www.umcs.maine.edu/∼ftp/wisr/wisr8/papers.html.

Cohen, S. (1999). From use cases to domains and architecture. In9th Annual Workshop on Institutionalizing
Software Reuse (WISR9). The University of Texas at Austin, USA, January 7–9, 1999. Full Position Papers.
http://www.opengroup.org/combine/documents.htm.

COMBINE (2003).COMponent-Based INteroperable Enterprise System Development. D32.1 – COMBINE
Green Paper, Version 2.2 31/01/2003.

Cornwell, P. (1999). Scoping the task and application domain for knowledge acquisition. In9th Annual Work-
shop on Institutionalizing Software Reuse (WISR9). The University of Texas at Austin, USA, January 7–9,



468 A. Čaplinskas, A. Lupeikienė, O. Vasilecas

1999. Full Position Papers.
http://www.opengroup.org/combine/documents.htm.

Czarnecki, K. (1997). Leveraging reuse through domain-specific software architectures. In8th Annual Work-
shop on Institutionalizing Software Reuse (WISR8). Ohio State University, USA, March 23–26, 1997. The
WISR 8 Position Papers.
http://www.umcs.maine.edu/∼ftp/wisr/wisr8/papers.html.

Czarnecki, K., and W. Eisenecker (2000).Generative Programming: Methods, Tools, and Applications.
Addison–Wesley.

Dietsch, A. (2002). Adapting the UML to business modelling’s needs: experiences in situational method engi-
neering. InUML 2002, Lecture Notes in Computer Science, 2460, Springer–Verlag. pp. 73–83.

Dobson, J., and M. Martin (1997). The ontology of enterprise and information systems. InThird Americas
Conference on Information Systems in Indianapolis. Indiana, August 15–17, 1997, online papers.
http://hsb.baylor.edu/ramsower/ais.ac.97/papers/dobson.htm.

Eichman, D. (1997). Representing knowledge in domain engineering. In8th Annual Workshop on Institution-
alizing Software Reuse (WISR8). Ohio State University, USA, March 23–26, 1997. The WISR 8 Position
Papers.
http://www.umcs.maine.edu/∼ftp/wisr/wisr8/papers.html.

Fadel, F., M.S. Fox, M. Grüninger (1994). A generic enterprise resource ontology. InProceedings of the Third
Workshop on Enabling Technologies – Infrastructures for Collaborative Enterprises. West Virginia Univer-
sity.

Falbo, R., G. Guizzardi, K.C. Duarte (2002). An ontological approach to domain engineering. InProceedings
of the XIV International Conference on Software Engineering and Knowledge Engineering (SEKE-2002).
Ischia, Italy, 2002. ACM Press.

Fowler, M. (1997).Analysis Patterns: Reusable Object Models. Addison–Wesley.
Fox, M.S. (1992). The TOVE project: a common-sense model of the enterprise, industrial and engineering

applications of artificial intelligence and expert systems. In F. Belli and F.J. Radermacher (Eds.),Lecture
Notes in Artificial Intelligence, 604. Springer–Verlag. pp. 25–34.

Fox, M.S., and M. Grüninger (1994). Ontologies for enterprise integration. InProceedings of the 2nd Confer-
ence on Cooperative Information Systems. Toronto, Ontario.

Fox, M.S., M. Barbeceanu, M. Grüninger (1995). An organization ontology for enterprise modelling: prelimi-
nary concepts for linking structure and behaviour.Computers in Industry, 29, 123–134.

Frakes, B. (1997). Automating domain engineering. In8th Annual Workshop on Institutionalizing Software
Reuse (WISR8). Ohio State University, USA, March 23–26, 1997. The WISR 8 Position Papers.
http://www.umcs.maine.edu/∼ftp/wisr/wisr8/papers.html.

Gamma, E., R. Helm, R. Johnson, J. Vlissides (1994).Design Patterns: Elements of Reusable Object-Oriented
Software. Addison–Wesley.

Genesereth, M., and R. Fikes (1992).Knowledge Interchange Format Reference Manual. Report Logic-92-1,
Department of Computer Science, Stanford University.

Gruber, T. (1993). A translation approach to portable ontologies.Knowledge Acquisition, 5(2), 199–220.
Grüninger, M., K. Atefi, M.S. Fox (2000). Ontologies to support process integration in enterprise engineering.

Computational & Mathematical Organization Theory, 6, 381–394.
Hakimpour, F., and A. Geppert (2002). Global schema generation using formal ontologies. In S. Spaccapietra,

S.T. March, Y. Kambayashi (Eds.),Conceptual Modeling – ER 2002. 21st International Conference on
Conceptual Modeling. Tampere, Finland, October 2002, Proceedings. Lecture Notes in Computer Science,
2503. Springer–Verlag, Berlin, Heidelberg, New York. pp. 307–321.

Humphrey, W.S., and P.H. Feiler (1992).Software Process Development and Enactment: Concepts and Defi-
nitions. Technical Report SEI-92-TR-4, Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA.

Jacobson, I., M.L. Griss, P. Jonnson (1997).Software Reuse: Architecture, Process and Organization for Busi-
ness Success. Addison–Wesley Longman, New York.

Johnson, R. (1997). Frameworks = (components + patterns).Communications of the ACM, 40(10), 39–42.
Johnstone, M.N., and D.C. McDermid (2001). Using ontological ideas to facilitate the comparison of require-

ments elicitation methods. InProceedings of the Twelfth Australasian Conference on Information Systems.
Coffs Harbour, NSW, Australia, December 5–7, 2001. Conference Proceedings CD.
http://infotech.scu.edu.au/ACIS2001/Proceedings/PDFS/46b.pdf.



The Role of Ontologies in Reusing Domain and Enterprise Engineering Assets 469

Jones, N.D., C.K. Gomard, P. Sestoft (1993).Partial Evaluation and Automatic Program Generation. Prentice
Hall International.

Kang, K.C.et al. (1990).Feature-Oriented Domain Analysis (FODA). Technical report, CMU/SEI-90-TR-21,
Software Engineering Institute, Pittsburgh, PA.

Liles, D.H., M.E. Johnson, L. Meade (1998).The Enterprise Engineering Discipline. Enterprise Engineering
Homepage, Automation & Robotics Research Institute.
http://arri.uta.edu/eif/.

Lin, J., M.S. Fox, T. Bilgic (1996). A requirement ontology for engineering design.Concurrent Engineering:
Research and Applications, 4(4), 279–291.

Maccario, P.M. (1997). The domain analysis integrated in an object oriented development methodology. In8th

Annual Workshop on Institutionalizing Software Reuse (WISR8). Ohio State University, USA, March 23–26,
1997. The WISR 8 Position Papers.
http://www.umcs.maine.edu/∼ftp/wisr/wisr8/papers.html.

Masuhara, H. (1999).Architecture Design and Compilation Techniques Using Partial Evaluation in Reflective
Concurrent Object-Oriented Languages. PhD Thesis. University of Tokyo.

Mayer, R., Ch. Menzel, M. Painter, P. Witte, T. Blinn, B. Perakath (1995).Information Integration for Concur-
rent Engineering (IICE) IDEF3 Process Description Capture Method Report. Knowledge Based Systems
Inc. (KBSI), September 1995.
http://www.idef.com/Downloads/pdf/Idef3_fn.pdf.

Meerts, J. (2002).IT Management and Strategy: Enterprise Engineering White Paper. Lessius Hogeschool,
Antwerpen.
http://www.zwelgjes.be/files/2lic/ICTMgm/Enterprise_Engineering_V1R1.pdf.

NIST (1993).Integration Definition for Function Modelling (IDEF0). National Institute of Standards and Tech-
nology.

Robak, S. (2002). Developing software families. In J. Desel, M. Weske (Eds.),Proceedings of the PROMISE
2002 Prozessorientierte Methoden und Werkzeuge für die Entwicklung von Informationssystemen. Hasso–
Plattner-Institut für Softwaresystemtechnik an der Universität Potsdam, October 9–11.
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-
65/11robak.pdf.

Robertson, S., and J. Robertson (1999).Mastering the Requirements Process. Addison–Wesley.
Sherif, K. (1997). Software artifact reuse: a domain engineering approach. InThird Americas Conference on

Information Systems in Indianapolis. Indiana, August 15–17, 1997.
http://hsb.baylor.edu/ramsower/ais.ac.97/papers/sherif.htm.

Smith, B. (2002).Ontology and Information Systems. Stanford Encyclopedia of Philosophy.
http://ontology.buffalo.edu/smith//articles/ontologies.htm.

Sowa, J.F. (2000).Knowledge Representation: Logical, Philosophical, and Computational Foundations.
Brooks/Cole, Thomson Learning, Pacific Grove, CA.

Štuikys, V., and R. Damaševičius (2002). Relationship model of abstractions used for developing domain gen-
erators.Informatica, 13(1), 111–128.

Uschold, M. (1998). Knowledge level modelling: concepts and terminology.The Knowledge Engineering Re-
view, 13(1), 5–29.

Uschold, M., M. King, S. Moralee, Y. Zorgios (1996). The enterprise ontology.Knowledge Engineering Review,
13(1), 31–90.

Van Belle, J.-P. (1996). A critique of current system engineering methods: the case for ontology-augmented
methodologies. In K. Siau and W. Wand (Eds.),Proceedings of the Workshop on Evaluation of Modeling
Methods in Systems Analysis and Design. Crete, Greece.

Wand, Y., and R. Weber (1990). An ontological model of an information system.IEEE Transactions on Software
Engineering, 16(11), 1282–1292.

Weber, R. (1997). The link between data modeling approaches and philosophical assumptions: a critique. In
Third Americas Conference on Information Systems in Indianapolis. Indiana, August 15–17, 1997. Online
conference papers.
http://hsb.baylor.edu/ramsower/ais.ac.97/papers/weber.htm.

Weiss, D.M., and C.T.R. Lai (1999).Software Product-Line Engineering: A Family Based Software Develop-
ment Process. Addison–Wesley, New York.



470 A. Čaplinskas, A. Lupeikienė, O. Vasilecas

A. Čaplinskas is a principal researcher and a head of the Software Engineering De-
partment at the Institute of Mathematics and Informatics in Vilnius, Lithuania. He also
teaches as a part-time professor at the Vilnius University and at the Vilnius Gedimi-
nas Technical University. A.̌Caplinskas graduated in mathematics from the Moscow
Lomonosov State University. He defended his doctor thesis in computer sciences at the
Vytautas Magnus Dux University (Kaunas, Lithuania). He is author of two and co-author
of two books published over hundred research papers in information system engineering,
software engineering, legislative engineering, knowledge engineering and related areas.
A. Čaplinskas is member of AIS and of the Lithuanian Computer Society, permanently
works in programming committees of different international and local conferences.

A. Lupeikienė is a researcher at the Institute of Mathematics and Informatics in Vilnius,
Lithuania. She also teaches as a part-time assoc. professor at the Vilnius Gediminas Tech-
nical University. A. Lupeikiene received doctor degree from Vilnius Gediminas Technical
University in 1999. Her research interests include information system engineering, soft-
ware engineering, knowledge engineering. A. Lupeikiene is member of ECCAI and of
the Lithuanian Computer Society.

O. Vasilecasis an associated professor in Information systems Department and a prin-
cipal researcher and a head of the Information Systems Scientific Laboratory at Vilnius
Gediminas Technical University. He also teaches as a part-time professor at the Infor-
matics Department of Klaipeda University. O. Vasilecas defended his doctor thesis in
physics and mathematics sciences at the Vilnius University. He is author and co-author of
two books and published over one hundred twenty research papers in business, informa-
tion and software systems engineering, knowledge engineering, intelligent information
systems; process mathematical modelling and related areas. O. Vasilecas is member of
ACM, AIS, and Lithuanian Computer Society, permanently works in programming com-
mittees of different international and local conferences. He is co-ordinator of FP5 and
SOCRATES/ERASMUS projects.

Ontologij ↪u vaidmuo pakartotinai panaudojant organizacij ↪u ir
dalykini ↪u sriči ↪u inžinerijos artefaktus

AlbertasČAPLINSKAS, Audroṅe LUPEIKIENĖ, Olegas VASILECAS

Pagrindinis straipsnio tikslas yra palyginti ontologij↪u panaudojimu grindžiamas pakartotinio
panaudojimo technikas organizacij↪u inžinerijoje ir dalykini↪u srǐci ↪u inžinerijoje. Straipsnyje nag-
rinėjami bandymai apjungti klasikines domen↪u inžinerijos technikas su ontologij↪u panaudojimu
grindžiamomis technikomis ir bandymai integruoti ontologijas↪i organizacij↪u inžinerijos proce-
sus. Parodoma, kad, viena vertus, aptariamos technikos nėra pakankamai išvystytos, kad leist↪u
spr↪esti praktines pakartotinio panaudojimo problemas, tačiau, antra vertus, pasiūlytos iḋejos gali
būti realiai panaudotos tokioms technikoms sukurti. Pagrindinis straipsnyje pateikiamas rezultatas
yra problem↪u, kurias reikia spr↪esti norint sukurti ontologij↪u panaudojimu grindžiam↪a organizacijos
inžinerijos artefakt↪u pakartotinio panaudojimo metod↪a, išvardijimas ir detalizavimas.


