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Abstract. This paper deals with the absolute stability of single-input single-output time-delay sys-
tems with, in general, a finite number of non commensurate constant internal point delays for any
nonlinearity satisfying a time positivity inequality related to the first and third quadrants. The results
are obtained based on Lyapunov’s stability analysis via appropriate Lyapunov’s functions and the
related stability study is performed to obtain both delay independent and delay dependent results.
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1. Introduction

The absolute stability of dynamic is an interesting issue since it is referred to the global
asymptotic stability of a system under any feedback law provided by a wide class of
nonlinear devices. Such nonlinear devices have to satisfy a certain positivity sector-type
constraints. The problem has been widely studied for the plant delay-free case and non-
linear feedback devices within linear sectis, k2] and(k1, k2) in (0, 00). See, for in-
stance, Vidyasagar (1993), Bergen (1967), Sen (1986), Gregor (1996), Sen (1998, 2002).
Some of those results have been extended to single-delay cases provided that the transfer
function of the linear subsystem is (non critically) stable (i.e., with poles in Ré) pro-

vided that itsH ..-norm is upper-bounded with a sufficiently small upper-bound and that
the feedback nonlinear device satisfies certain local Liptschitzian regularity conditions,
(Goreckiet al., 1989), and to systems with external delays (i.e., in the input), (Popov and
Halanay, 1963). In this paper, such assumptions are removed by allowing nonlinearities
simply satisfying a (in general non symmetric) sector-type positivity constraints, mul-
tiple non commensurate internal (i.e., in the state) delays and either strictly stable (the
so-called Principal Case) or critically stable (the so-called Simplest Particular Case) lin-
ear plants with a single critically stable polesat 0. The paper is organized as follows.
Section 2 deals with the absolute stability independent of the sizes of the delays for all
nonlinearities belonging to a secffr co), what means simply that the nonlinearity out-

put is constrained to the first/third quadrants being zero if and only if the plant output is
zero. The system may be either in the Principal Case (or Direct Control); i.e., the linear
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plant in the forward loop is strictly stable or in the Simplest Particular Case (or Indirect
Control); i.e., the linear plant possess a single critically stable pele-a. These points

are discussed in the systems dealt with in Section 3. The above results are extended to
stability dependent of the sizes of the delays in Section 4. Section 5 extends the problem
of absolute stability to a new class of time-differentiable nonlinearities which do not nec-
essarily belong to a sector in the first/third quadrants. Some examples are given in Section
6 and, finally, conclusions end the paper.

1.1. Notation

— The setR, R* andRy denote, respectively, the sets of real numbers, positive
real numbers and non negative real numbers.

— An output- feedback nonlineari(y(¢)) in a Popov’s sectofky, k2] C [0, 00)
means that the scalar real functi@nR x ¢[0,t] — R is such thatk1y(t) <
D (y(t)) < koy(t) forall t > 0 with ®(y(¢)) = 0if and only if y(t) = 0.

— The Hardy spac® H,, of transfer functions or matrices G(s) are proper real ra-
tional functions with all its poles in Re s < 0 ( i.e., strictly stable) d&hg-norm
1G(8)[| oo = Sup+[)\11\/f§X(GT(—jw)G(jw))] with Ry = R* U {0} andAyiax(.)

wER,
being the maximoum eigenvalue of the (.) — symmetric matrix.

— Itis said that a transfer functiaf(s) or matrix is strictly stable i{7(s) € RH
and its characteristic polynomial (or quasi-polynomial in the presence of internal
delays) is strictly Hurwitzian.

— Alinear transfer functiod(s) is in the principal case if it belongs #®H ., and its
characteristic polynomial (or quasi-polynomial in the presence of internal delays)
is strictly Hurwitzian. It is in the simplest particular case(fs) = G“T(S) with
Go(s) € RH..

— An unforced linear system with finite internal point delay$,; of state equation
&(t) = Ax(t) + Y., A;z(t — h;) has two associate systems without delays,
namely:z;(t) = (A + >.._, A;)z1(t) which describes the above so-caltadrent
delay-free systertime-delay system wheh; = 0; i = 1,7; andz(t) = Az (t)
which is called themominal delay-free systewhich describes the above time-delay
system whe; = 0, or whenh; — oo; i = 1, 7.

Both systems have to be stable in order that the delay system be stable independent
of the delays.

— Thely-norm of a matrix (or vector )/ is denoted agM |2 = All\/fjx(MTM).
In vectors such a norm coincides with the Euclidean norm. A positive definite
(semidefinite) matrix)M/ is denoted as/ > 0 (M > 0). A negative definite
(semidefinite) matrix\/ is denoted ad/ < 0 (M < 0).



Absolute Stability of Single-Input Single-Output Systems 359

2. Descriptions of Time-Delay Systems under Sector-Type Nonlinear Feedback

Consider the single-input single-output linear and time-invariant system

x(t) = Ax(t) + 27: Az (t — hy) + bu(t), (1a)
y(t) = Talt) + de (o), (1b)

under one of the two nonlinear output-feedback control laws below:

u(t) =£(t) = - (y(t)) — Z ki® (y(t — hi)) (1c)
or Zjl
u(t) =£(t) = - (y(t) — Z ki (y(t — i), (1d)

wherez(t) € R*, u(t) € R, y(t) € R are the state, input and output, respectively, and
A, A;; i = 1,r, are real square-matricesp,c € R™, d(>0) € R andk;; i = 1,r

are real scalar gains. The initial condition of (1a) is any absolutely continuous function
¢:[—h,0] — R™ plus, eventually, a function of zero measure of isolated bounded dis-
continuities defined ofi-h, 0] whereh = 1lvgll_agxr(hi). The nonlinear feedback device is

defined via (1c) or (1d) by a nonlinear functi@R. x [0, {] — R satisfying®(y) = 0 if

and onlyify =0and < ®(y) < k. This property is abbreviated referred todag [0, k]

or ®(t) belongs to the sectdf, k]. In the same way) < ®(y) < k is abbreviated to

as® € [0, k) or ®(t) belongs to the sectdb, k). The paper main results are concerned
with the case when the sector upper-bound k is infinity. The configuration (1a)—(1c) is
called the Principal Case and (1a)—(1b) and (1d) is called the Simplest Particular Case,
both satisfying that the roots @fet(sl — A — Y_;_, A;e” %) = 0 implies Re s < 0 so

that the closed-loop system is globally asymptotically stable. In the Simplest Particular
Case, the linear device adds an open-loop critically stable simple pele=at. The
control law (1c) of the Principal Case (in Western terminology) is also called a Direct
Control (Lure’s /Popov’s terminology) while (1d) being the control law of the Simplest
Particular Case in Western terminology is also called Indirect Control (Lure’s /Popov’s
terminology). The standard problem of absolute stability is that of global Lyapunov’s
stability for all nonlinearities of the given class when independent of the delays; i.e., for
whenA; = 0; k; = 0; ¢ = 1, r for all nonlinearities of the given class in a certain sector
included in the first and third quadrants. In this paper, non zero daing = 1,r in

certain ranges are admitted as well as nonzero délglgslonging to certain ranges may
also be present; i.e., absolute stability dependent of the delays or forall0, oo); i.e.,
absolute stability independent of the delays. The second topic is addressed in Section 3
while the first one is addressed in Section 4.
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3. Absolute Stability Independent of the Delays

Consider the Lyapunov’s function candidate:

r 0

V() = 27 (t)Px(t) + / 2T (t 4+ 7)Siz(t + 7)dT + dE%(¢)

i=1_"

o

Y

r 0
+aq/¢@ma+ /ql y(t +7))dr, @)

0 i=1_",

i

whereP = PT > 0, S; = ST > 0 (i =1,r) are positive definite reat-matrices,
g >0, ¢; > 0(i =1,r)arereal constants. The following result is proved in Appendix A.

Theorem 1. Assume(1) in the Simplest Particular Case and that there exist real
matricesP = PT > 0,5, = SY > 0(i=1,7),andl € R*, w € R, ¢ € R*
ande € R™ which satisfy the following three identities:

ATP+PA+Y Si=—cP 1", (3a)
=1

+ AT¢)Te — Pb—wl =0, (3b)

w? = q(c"b+d), (3c)

and the matrix

[ —eP PA, ... PA, 0 mi ... my |
Afp —50 ... 0 qA c 0 ... 0
: 0... : : :
ATp 0 ... =S, qATc 0 0 O
_ A " 4
@ 0 qctA;...qcTA. —qo —q) ... —¢. )
mT 0o ... 0 -¢4 —q1 ... 0
| mT 0O ... 0 —-q. 0 ...—gr|
where

mo=kile = POl = a(eTb+ k) (=T,

q0 = 2¢q( d+ch ZqZ (5)

Thus, the systerfl) is absolutely stable independent of the delays for a nonlinear
feedback law(1d), obtained from any nonlinear functioh(y(t)) in the sector{0, o),
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so that(2T(¢), £(¢))T is bounded and converges asymptotically to zero as time tends to
infinity, provided thatl > 0 and(d + ¢*'b) > 0.

CoROLLARY 1. If (1) is in the Principal Case then it is absolutely stable independent
of the delays for a feedback law (1c) from any nonlinear funcfidn(t)) in the sector
[0, 0), if at least one of the two following sets of constraints hold:

1) (3)—(4) hold for the particular caske= 0 andc”b > 0;

2)c=Pb, d >0, d+cb > 0, (3a) holds with; = 0 andl = 0 (as a result (3b)—(3c)
hold withw = 0 andl = 0) and

—eP PA, ... PA,
ATpP —S0... 0
e R R (6)

ATp 0 ... -5,

Note that (3a) is a matrix Lyapunov’s equation for the nominal delay-free system so
that A is a stability matrix so that all its eigenvalues ar&ins < 0. If (1a)—(1b) is a mini-
mal state-space realization of dimension n of a given transfer function then a similar result
to Theorem 1 holds directly, but with dependence of the sizes of the delays, for any other
non minimal realizatior{4’, b, ¢1, d) of dimensionn;, > n for certain delay intervals
h; € [0,h;) provided that the pairgA’,b;) and(cI', A’) are, respectively, stabilizable
and detectable. This feature is obvious since therérare- n) stable zero-pole cancel-
lations in the transfer function of the nominal delay-free system of such a realization apart
from the n uncancelled poles, eigenvaluegiaind A’, which are guaranteed to be stable
from (3a). Note that the above stabilizability and detectability properties are associated
with the corresponding properties of the state-space realizations of the nominal delay-
free system of (1) for delays tending to infinity. The conclusion follows as a result of the
continuity of the eigenvalues of the matrix of the dynamics (naméehy,> ;_, A;e~")
with respect to the delays.

REMARK 1. Note that (4) holds by defininQ = Qo + AQ if
AQ<—QO:fBlockDiag(sP,Sl,...,ST,q(ch+d) -3 qi,ql,q2,....,qr) <0. (7)
1=1

The constraint (7) may be checked in terms of matrix norms as follows. Note from
(3a) that

P:/e(AT+€I)T(llT+ZS¢)€<A+€I)Td7‘, (8)
0 i=1
where
P12 = dP) < 2 (i S8} < = 2 (070 Aa(50)
max X 2p Pt 2 2 X 2p max K2
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< po =+ (171 +7 Max (Amax(S1)) ) ,

2p 1<i<r

and Apin(P) > po1 = %ﬁ%@ﬁmax(&)) for some real constant®” > 1, p >

0, po > 0 such|e(®+=Dt||, < Ke~rt. Thus, (7) holds using, if

18Q12 < By =2 D" IAlla + 18ll2 Y kilps + (a3 1Al + Y [kl el
i=1 i=1 i=1 i=1

+ rglcTb| + dqz |kz|] < €po1 < EAmin(P), 9)

i=1

if e is sufficiently small such thain(Qo) = eAmin(P) for given S;, ¢; (i = 1,r)

andg. Itis also possible to state some refinements of the above condition as follows. An
alternative condition may be derived after replacifigcalculating by using; andpo;,

with (35, calculating in the same way by usipg and

. (eKr . . .
Po2 = Min(S— Min (Anin(S5)) » Min (Auin(S2)) » a(c”b+d) =y g5, Min (q)).
=

Po 1<e<r

Thus,AQ < —Qo < 0if ||A;]|2 and|k;| (1= 1,r) are sufficiently small such that

R
B1 < po1 O B2 < po2 for some real constants> 0, ¢; > 0 (i = 1, 7) andg > %;5:;

0, n-real matricesS; = SI > 0, and a real vector = \/ﬁ[(l + ATq)c — Pb]
(from (3b)—(3c)) withP = PT > 0 defined in (8) (which then uniquely satisfies (3a)).

Thus, it becomes obvious that Theorem 1 holds, as expected, if the absolute stability
abscissa of the stability matrit, defining the unforced dynamics of the nominal delay-
free system, is sufficiently large arjdl;||» and|k;| (i = 1,r) are sufficiently small.

REMARK 2. Note that Theorem 1is fulfilled § < Q+AQ’ fulfills AQ' < —Q} < 0
where

[ —eP PA, ... 0 0 ... 0
ATpP -850 ... 0 0 ... 0
Q,=|ATP 0 ...-S. —q@ 0 ... 0 | <O (10)
: 0 : —q1 - .. 0
| O 0 ... : 0 ... —¢qr|
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0 0 0 0 my ... my

0 0 0 qgATc 0 ... 0

: 0 : : : I

0 0 0 qgAf¢ 0 0 0
AQ = ! 11
@ 0 gcTAy ... qcTA, 0 —q}... 0 (11)

mf 0 ... 0 —q¢; 0 0

mI’ 0 ... 0 —¢ 0 ...0 |

The above matrices are directly linked to a natural alternative expansibifzof
used from (A.1) to prove Theorem 1 by replacing (A.2) by

V(zy) < —ext (t)Px(t) — (1Tz(t) — wd)? — q(cTb + d)D?
— 20y — 2T (1) AQ'z(t) < 0,

forall z(t) # 0 and allt > 0.

It is interesting to link Theorem 1 and Corollary 1 with minimal state-space realiza-
tions of the nominal delay-free system associated with (1). In other words, it there are
strictly stable uncontrollable and/or unobservable modes in the forward loop of the nom-
inal delay-free system associated with (1), those ones may be removed from the transfer
function of such a nominal delay-free system. As a result, the orders of the relevant ma-
trices in testing Theorem 1/Corollary 1 may be reduced accordingly to the above men-
tioned strictly stable cancellations. Thus, consider a regular transformation defined by
the nonsingular reat-matrix T' = Block Diag(T;;; 4, = 1, 2) to obtain an equivalent
state-space realization to (1a), (1c) (i.e., a realization leading to identical transfer func-
tion) such that the dynamics matrix of the unforced delay-free nominal system takes a
triangular form, which is defined by:

Ay A b
-1 0 . -1 0| .
Ay =1 A7—[0 1,1}, by =1 b_[b’]’

with (Ao, by) and(cl’, Ao) being, respectively, a completely controllable pair and a com-
pletely observable pair. Both pairs are nontrivial in the sensebthahdc, are both non
zero if the linear forward part of (1) is stabilizable and detectable.
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COROLLARY 2. Assume thatA, b) is stabilizable(c”, A) is detectable and, = Pybg

with Py = P > 0 being am(< n) real matrix satisfying:

AgPO+P0AO+ZSOi:_5PO

i=1

7ATPbb DA
b d 0voVg L0410,

for some positive real constantandq andno— real matricesSo; = SZ > 0 (i = 1, 7).
Thus, A} is a stability matrix ifny < n and the pairg Ao, by) and (¢, Ag) are,
respectively, controllable and observable. Furthermore, the transfer fur@fion =

b Po(sI — Ag) by = cT'(sI — A)~'bis positive real; i.eRe (G(s)) = 0forRes > 0
andGi(s) = G(s) + d is strictly positive real; i.e.Re (G1(s)) > 0 for Res > 0, if

d > 0 and positive real itl > 0. In addition, ifQ, < 0 with Q5 being obtained from
(4) with the replacementd — Ag, b — by, ¢ — co, A; — Ao; (1 = 1,7), whereA,
andAg; (i = 1, r) are the (1,1) block matrices of the partitions in four block matrices of
Ay =T PAT andAy; = T7YA;T(i = 1,r), respectively.

Proof. Firstly, note thabd Py(sI — Ag)~tby = ¢L'(sI — A)~1b is positive real from di-
rect calculus, the second expression including (not including) strictly stable zero/pole
cancellations ifng < n (ng = n) since(4q,bo) and(ct, Ay) are, respectively, con-
trollable and observable pairs whild, b) and(c”, A) are, respectively, stabilizable and
detectable pairs so that] is a stability matrix ifny < n. Also, similar equations to
(3) are satisfied with the replacements — Py, A — Ag, b — by, ¢ — ¢o =
Poby, A; — Agi (i =1,7). Thus, the proof follows directly from Theorem 1 since
cdbo = bt Pobg +d > 0if d >0

Note thate” (sI — A)~!bincludes stable cancellations with = [bZ PT11, bl PTs)
since unstable or critically stable zero/pole cancellations(is) cannot exist sincéA, b)
is stabilizable andc”', A) is detectable.

4. Absolute Stability Dependent of the Sizes of the Delays

The Lyapunov’s function candidate (2) is modified to:

t

0
VO(xy) = v’(xt)+z{ / (/xT(Q)SZ—Oz(H)dG)dT

—h; t+T

+i / (/:ET(H)SijJ:(H)dH)dT}, (12)

I=l_pih;  t4r

;x(t + 7)d7T andV (z;) defined in (2)

With V() = V(o) = X0y [, a0+ 7
= r, j = 0,r) are real positive definite-

whereP:PT>0 S”_ST>O(
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matrices. Direct calculus performed with (12) to calcultifyz,) yields the following
result.

Theorem 2. Assumél) in the Simplest Particular Case and that there exist constant real
n-matricesP = P* >0, S;; =S, >0(i=1,7; j=0,r),andl€e R*, we R, g €
R* ande € R which satisfy(3) with (3a)being modified as follows:

X(P)+ 1T +eP =0, (13)

where
r T r r r
:(A+;Ai) P+P(A+;Ai)+;hg(5i+;&j), (14)

andq@ in (4) is replaced with

Q = Block Diag(Qij; i,j = 1,3) = QT <0, (15)
where
—eP hYPAM ... hQPAlM
RMTATP —hOR; ... 0 0
Q1 = : 0 : : <0, (16a)
: : : 0
ROMTATP 0 ...0 —hOR,

Ry, = Block Diag(Sko, Sk1, -.-s Skr); M = Block Diag(A, Ay, ..., A.),  (16b)
1o =10,g¢" A1, g A € RYEFIR: Qop = g(cTb+ d) — Z% (16¢)

k1(Pb—c¢)..k.(Pb—¢)] In
Qu=| . (€ Rixtnxr), (16d)
0 trn

Q5= [q(c"b+dk1), ..., q(c"b+dk, )] € RV"; Q33=Diag(—qi, ..., q). (16€)

Thus, the system is absolutely stable for @llin [0,00) and all delaysh; €
[0, h0]; (i =T, 7).

Guideline of proafUsing (12)—(16), one gefg®(x,) < —z7 (t)Qz(t) < 0 for all
time, the above inequality being strict for al{t) # 0.

REMARK 3. Note that it is necessary thdt= A + >"'_, A; + <[ is a stability matrix
with stability abscissé—p;) = —p + ¢ < 0in order that) < 0 where(—p) < 0 is the
stability abscissa of the stability matrpxd + >~'_, A;) of the current delay-free system
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(i.e., h; = 0;7 = 1,r) which is then stable as expected. Thus, for some real constant

I1P]|2 < 2(;_(2 5 e (1 (85 + Z $4))].

j=1
since from (13)—(14),
P= /eATTQ'eATdT; Q =1"+ Zh? (Si + Z Sij)-
0 i=1 j=1

Thus, all the constraints of Remark 1 to ensure @at < 0 andQ < 0 hold with the
replacements:

Ai — 1211 = h?AZM = thAz[A,Al, ...,AT],
S; — hYR; = hiBlock Diag[S;o, Si1, ..., Sir],

what yield the norm replacements:

[Aill2 = [1Ai]l2 = rho | Asl|l2Max(|| All2, Max([| A;[|2)) < rhoeiMax([| A2, 7)

NS

Srhpeda+el); ) = Max (e),
1<ir

1Sill2 = holl Rill2 < rhj Max ([[5i]]2)-
<JISr

Thus, for sufficiently small|4;|2, || (i = T,7),Q11 < 0 and@Q < 0 so that
depending on the sét! (i = 1,r), the system (1) is absolutely stable hoo) for
h; € [0,hY], (i =T,r). Note, in particular, that itd; = 0, h) = k; = 0 (i=T1,7r)
then z(t) is bounded and converges asymptotically to zero as time tends to infinity.
That follows by choosing = ¢; = 0, (i = 1,r) since the nominal delay-free system
2(t) = (A+ X1, Ay)z(t); i.e., that corresponding th; — oo(i = 1,r), is globally
exponentially stable what is corroborated by the application of Theorem 2 to this partic-
ular case. The above result is also valid for the General Case in a natural way but the
discussion is omitted.

REMARK 4. Corollary 2 may be directly extended in a natural way from Theorem 2
to the case of dependence with delays by replacing A with- >~'_, A;) and 4, by

the (1, 1) block matrixdy = [T-*(A + Y_;_, A;)T)11 resulting from a regular transfor-
mation7'. Thus, by using (3b)—(3c), it follows thaf Py (sI — Ag)~'by + d is positive
real.
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5. Extensions to Another Class of Nonlinear Devices
Now, the feedback nonlinear function is considered to possess time-derivative for all time.

For simplicity, it is assumed that = 0; i = 1, r. This results for the Simplest Particular
Case yield:

+2Azt7 ) —bB(y(1t)), (17a)
y(t) = cx(t) - dq)(y( )i ult) = &(t) = —D(y(1)). (17b)

It is assumed that for some appropriate time-varying gain k(t), the class of devices
under consideration satisfies:

by(t) = k()y(t); d>0. (17¢c)
The combination of (17) yields:

T (Az(t) + 3, Aiz(t — hy) — bD(2))

y(t) = T+ k(D) ; (18)
so that from (17c)—(18), one gets
o k()T (Ax(t) + D07 A(t — hy) — bD(t))
®(t) = 1+ dk(t) ' (19)
Consider the Lyapunov’s function candidate:
r 0
V(zy) = a7 (t)Px(t) + =7 (t)qox(t) + / T (t + 1) Ssx(t + 7)d7 + dE3(2)
=1 “ha
Yy Yy
+q [ @) + a*(w(0) + & [ (T (20)
0 0

for some reah-matricesP = PT > 0, S; = SI' > 0, i = 1,7 and some positive

P q"/ﬂ > 0. The

real constantg, ¢q; and¢o; qo is a n-real vector such tha{ T
Q/2 @

subsequent result is proved in Appendix B.

Theorem 3. Assume that there exist real constaifs; Ko > K; such thatK; <
1f$c(t) < K3 < oo forall t > 0. Thus, the systerfi7) is absolutely stable of0, co)

independent of the delays, for any nonlinearity within the given class, provided that



368 M. de la Sen

1. There exist reah-matricesP = PT > 0,5, = ST > 0fori = 1, r, some positive

real constants, ¢, ¢; andgs; andqe e R®, weR, [l €R™ such that[ ol /2 q21/2] >0.
0
2. The constraint¢3a), (3b) and
T k: |

AT + e)P + P(A+el igfzszih AccT A 21
(AT +eD)P + P +s)+;5‘ i A A (21)

—eP PA; ... PA, m(t)

) ATP -5, 0 qATc
Q'(t) = : : <—-7I<0 (22)

A?P 0 -5, quc

mT(t) qcT Ay ... qcT A, f(t)

for all + > 0 hold simultaneously for some real constgnt 0 if |ke| < d%; g < 0if
|k| > d=! ford > 0;andg > 0if d = 0; where

B 1 1 cTbk(t) q
m(t)be—i(ATquLch)qL T dk(0) < 5 o~ (k(t)(h + Q)ATC>7 (23a)
gy
f(t) qu0+dqQ+(2q1k(t)+q)HTZ(ﬂ (23b)

A similar result holds for the Principal Case and, on the other hand, extensions to
absolute stability dependent of the delays follow also directly as Theorem 2 (absolute
stability dependent of the delays) extends Theorem 1 (absolute stability independent of
the delays)for the system configuration (1). Both discussion are omitted in order not to
overlength the paper.

6. Examples

EXAMPLE 1. Consider (1) withh = 2, r = 1; b = (=1,8)k; ¢ = (1,0) and
0 1 0 1 .

A= i A = h . Th
[—aﬁ —(ﬁ+a)]’ 1 a1 {_a _1] witha > 0,3 > 0andd > 0 e
open-loop forward-loop is globally asymptotically stable for any nonlinear device of the
given class, namely, the system is absolutely stable in the séctay) if 5] < |;-| and
A is a stability matrix satisfyingl” P + PA = — L for some reah-matrix P = P7 > 0

for any given reah-matrix L = LT > 0. It is well-known thatP = [ A TLeATd 7.
0

Pb—
Vd
usinga < aplaay| andag <\/1 + (w‘ﬁ%) obtained from the calculations of the
relatedH..-norms. Thus, from Theorem 1, the feedback system (1) is absolutely stable
for any nonlinear device (1c) or (1d), i.e., for the feed forward linear plant being either

A simple calculation yields that Theorem 1 holds with=

€60 being calculated by
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in the Principal Case or in the Simplest Particular Case. The associate transfer function
posses a strictly stable zero/pole cancellation at — /3 which has not been taken into
accountin the above calculations. This is reasonable when the transfer function numerator
and denominator are not factored explicitly from the state-space description especially for
high order systems. If such a cancellation is known and removed for a minimum state-
space realization of (1d)—(1b) resulting ih = —a, Ay = —a, b = k, ¢ = 1 then

P = 1/k andq = 0 guarantee the result fép = wdﬁ‘é% and|d] € [0, do).

In this example, the calculations may also be performed from the real part of the transfer
function once the cancellation, if known, is removed. In this case, this leatls to6 and

|0] € [0,d0) for §p = ra:7 Which is the weakest found constraint. In this example, the
calculations may also be performed from the real part of the transfer function once the
cancellation, if known, is removed. However, obtaining factored transfer functions from a
state-space realization is not direct for high-order systems in the presence of delays. This
fact justifies the adequacy of the proposed method to practical problems.

ExXAMPLE 2. Assume that the transfer function of the linear feed forward loop (1a)—(1b)
is first-order and single-delayed given &ys) = ﬁ +d.If d > 0andc = pb

for any realp > 0 then the open-loop linear system is Lyapunov’s asymptotically stable
independent of the delay sizeif « > 0 and|é| € [0, dg) with dy < ra:7 from Theorem

1. Furthermore, the system (1) is absolutely stable indQsince Theorem 2 holgwith

g = 0 since

pb?(a — daj coswh)
[(a — daj coswh)? + (w + daq sin wh)]1/2

Re G(jw) = +d >0,

for all frequencyw. Since the transfer function of the time-invariant forward loop is pos-
itive real then the closed-loop configuration (1a)—(1c) is, in addition, asymptotically hy-
perstable (Sen, 1986; 2002), i.e., the nonlinear function may be even time-varying while
satisfying a Popov’s-type integral inequalif&y(v)@(y(v))df > —~¢ for all time and

the closed-loop system is globally Lyapunov’s stable Assume that in this exarpié

butd > |#’7‘al‘|. Thus, asymptotic hyperstability; i.e., global Lyapunov’s stability of
(1) follows even if the nonlinear function defining the control law (1c) or (1d) is time-
varying satisfying the above integral inequality (Bergen, 1967; Sen, 1986; Gregor, 1996;
Sen, 1998; 2002; Popov and Halanay, 1963). Thus, its absolute stability in the sector [0,
o0) holds as well as a particular result.

ExAMPLE 3. Assume that the transfer function of (1a)—(1b) is a second-order one in the
Simplest Particular Case and single-delayed givetrby) = m% + %. Thus,
the closed-loop system (1a)—(1b), (1d) is absolutely stable inc(0from Theorem 1
with g > 0if |§] € [0, dp) With §p < |a1] = da < awitha>0and) < XA < 1(i.e.,aisan

absolute upper-bound af ) provided thatl > %
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7. Conclusions

This paper has dealt with the absolute stability both independent and dependent of the
delays of single-input single-output feedback systems consisting of time-invariant linear
forward blocks including delayed dynamics with internal point delays subject to a wide
class of feedback nonlinearities subject to a class of saetgpe constraints. A class of
time-differentiable nonlinearities possessing time-derivative for all time while not being
restricted to such a sector has also been considered. The methodology used to derive the
sufficiency-type conditions for absolute stability is based on Lyapunov’s second method
through obtaining appropriate Lyapunov’s functions.
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Appendix A

Proof of Theoreni.. Direct calculations yield:
V(zy) = :tT(t)Px(t)erT(t)P:t(t)Jri (xT (t)Ssx(t) —x (t—hi) S (t—hy))
— 2dE(t)D(t) — 2dE(t Z@t— )+ 2¢®()(t)
+qui (®2(t) — ®2(t — hy)) (A.1)

where®(¢) denotes simply the implicit function of tim®(y(¢)). The substitution of(¢)
from (1c) via (1a)—(1b) and(¢t) from (1a) into (A.1) yields after grouping terms and
usingdé(t) = y(t) — cTa(t):

V(xt):fET(t)(ATP+PA+iSi) +22:p t)PA;x(t — hy)

=1

—Z:p (t — hy)Siz(t — hy) — 20(t)bT Pa(t) — 227 PbZk(I)tf
+2<1>( )e (I+qA) () — 2q(d+ch)<I>2( ) — 2y(t)®(t)

+2¢Ta(t Zk@ )+ 2q®(t) TZAJ;
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— 2¢®(t) TbZk(I)t— ) — 2qd ®(t Zkz@t—h)

=1
+Zqz (1) — B (t — hy))

< —exT () Pa(t) — (lz(t) — wd(t))? — q(d + cTb)D%(t) — 28 (t)y(t)
— T () AQ' z(t) < T (H)Qz(t) <0 forz(t) #0, (A.2)

from (3a)—(3c) and (4), sinad@ < 0, where:
z(t) = (@7 (t), 27 (t = h1), .oy 2T (t = hy), @(2), ®(t — ha),.., D(t — h,)) 7.

Thus,||Z(¢)|| is bounded o0, o) and converge asymptotically to zero as time tends
to infinity for all ® € [0, oc) if ¢ > 0. Thus, x(t) andu(t) = £(t) — 0 ast — oo since
®(y(t)) — 0. Thus,y(t) — 0 ast — oo. If d > 0 then, in addition{(t) — 0 from (1c)
ast — oo.

Outline of Proof of Corollaryl. The set of constraints (1) is a particular case of the
conditions of Theorem 1 fod = 0. Thus,||z(¢)|| is bounded and converges asymp-
totically to zero as time tends to infinity. Alsg(t) is bounded orf0, co) andy(t) —
d¢(t) — 0 = u(t) — 0 ast — oo sinced = 0. For the set of constraints (2), the particu-
lar Lyapunov’s function candidate obtained from (2) with= ¢ = ¢; = 0, i = 1, and
I = 0 is also a particular Lyapunov’s function of time-derivative satisfying:

V(ze) < (@7 (@), 2T (t = hy), ooy 2T (t — hy))T
x Q' (T (t), 2T (t — h1), ..., zT (t — h.))T <0,

and nonzero fog:(t) # 0. The proof follows directly as a result.

Appendix B

Proof of Theorem 3Direct calculations to obtain and upper-bound the time-derivative of
the Lyapunov’s function candidate (20) using (17)—(19) and (21)—(23) yield directly:

Vi) = 207 () Pa(t) + @(6) ()] + &7 (1)qo®(t) + 27 (t)qod(t)
+ @@ (t)y(t) + q@(t)y(t) — 2d&(t) (B.1)

T

_ (zT(t)AT —bTa() - Y ot - hi)AiT)Px(t)

=1

4T ()P (AJ; ) — bb(t ZA:C )
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- (xT(t)AT —bvTd(t) — Z a2 (t — hi)AiT) qQo®(t)

000 ()03 At~

+2q1@(t)%<14( ) — bd(t ZAxtf )

+ q2P(t) (ch(t) — d@(t))
T
+q<I>(t)Tdk(t)<Ax( ) —bd(t ZA x )

T — 1

<z (H)Q B)T'(t) <0 if F(t) #0, (B.2)

where then-matrix functionQ” (t) < —¢ I(§ > 0), sinceQ’(t) < —FI(7 > 0), is
identical toQ’ (t) in (23a) except for the (1, 1) matrix block which is now given by

T qok(t)
ATp 4+ pa4+ 2222 & 1+dk +ZS <0

andz' T(t) = (2T (t), 2T (t — h1),...,aT(t — h,),®(t))T. Thus, the proof follows di-
rectly from (B.2) since the Lyapunov’s function candidate (B.1) is proved to be a Lya-
punov’s function from (B.2).
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Vieno igjimo vieno i&jimo su pastoviais vidiniais laiko \elinimais
sisteny absoliutusis stabilumas

Manuel de la SEN

Straipsnyje nagrieiamas vienagjimo vieno i&jimo sisteny su laiko \elinimais absoliutusis
pirmame ir tréiame kvadratuose. Rezultatai gauti naudojant Liapunovo funkcijas iistidga-
punovo stabilumo analize. Sistemstabilumo analig atlikta, kai sistemojealinimai yra ir kai
nera.



