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Abstract. This paper considers an information aspect of the problem of the joint filtering and
generalized extrapolation, when the output of observation channels (data transmission) is the reali-
zations set of the processes with continuous and discrete time, which depend on both the current
and the past values of unobservable process (useful signal). The relations defining time evolution
of Shannon information are obtained. The particular problems of the memory channels information
efficiency and optimal transmission of stochastic processes, with applying the general results are
considered.
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1. Introduction

In the Kalman systems (Kalman, 1960; Kalman and Bucy, 1961) the pair of processes
{z:;y+} with continuous or discrete time, wherg is an unobservable process, apd

is an observable process, is the basic mathematical object. The situation is generali-
zed, whenz; is the process with continuous time, apd = y(t,t) = {2, n(tm)},

m = 0,1,...,i.e., one can observe set of the processes with continycarsd discrete

n(tm) time, which possess the memory relatively unobservable process and depend on
the current and the past values of procesd-or similar class of processes the filtering
problem was considered in (Abakumadtal., 1995a; 1995b), the generalized extrapola-
tion problem was considered in (Dyomnghal., 1997; 2000) and the recognition problem
was considered in (Dyomiet al., 2001).
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Any statistic problem has an informative aspect (Stratonovitch, 1975), the essence
of which is to find corresponding information amounts about unobservable process va-
lues (useful signal), which are contained in the realizations of the observable processes
(an output signals of a transmission channels). Furthermore, awareness of information
amount makes possible to investigate the questions those are specific in information the-
ory, such as minimization of the error of signal reproduction (Shannon and Weaver, 1949;
Gallager, 1968), maximization of the capacity of transmission channels (lhara, 1990),
optimal transmission of signals (Liptser, 1974), as well as the questions of information
substantiation of estimation problems (Arimoto, 1971; Tométal., 1976). Basing on
the results (Abakumowet al., 1995a; 1995b; Dyomiet al., 1997; 2000), with the use of
the methods (Liptser, 1974; Dyomin and Korotkevich, 1983; 1987) this paper considers
the questions of finding of Shannon measures of the information amount about the values
of the unobservable process in the currenaind the arbitrary numbers,, ..., zs, of
future instants, which are contained in the realizations of the observable proegsses
n(tm ), depending on the curremt and on the arbitrary number, , ..., =, of the past
values of unobservable process. The research of informative efficiency of memory chan-
nels relative to memoryless channels and the optimal transmission of stochastic processes
under feedback are carried out on the basis of general results in particular cases.

Used notationsP{-} is event probability;}/{-} denotes the expectation operator;
N{y;a, B} denotes Gaussian probability density function with given parametarsl
B; || is a determinant of the matrix;[-] is a trace of the matrixf, is the(k x k) identity
matrix; O is the zero matrix of the corresponding dimensiBiT;! is the inversion matrix
of B; B > 0 andB > 0 are the properties of positive and nonnegative definiteness of
the matrix B, respectively; vectog is a column-vector; ifp(x) is scalar function of.
-dimensional argument, thendy/dz is a column-vector with the componeidtg /dxy,

k = 1;n, andd?p/0x? is a matrix with the component® p/ 9z 0x;, k = 1;n,1 = 1;n;
Op(xy) )0z andd?p(x,)/0x? denotedp(x)/0z|r—s, aNdO?p(x) /022 | 1=, -

2. Statement of the Problem

On the probability spac?, F, F = (F;):>0, P) the unobsevable-dimensional process

x; (useful signal) and observahlelimensional process (an output signal of a continu-

ous transmission channel) are defined by the stochastic differential equations (Kallianpur,

1980; Liptser and Shiryayev, 1977; 1978)

dz; = f(t,z)dt + @1 (t)dwe, t2>0, (2.1)
dzy = h(t, @, Tryy o ooy Ty, 2)dE + Po(t, 2)d vy, (2.2)

and observable-dimansional process with discrete timé.,,) (an output signal of the
discrete transmission channel) has the form

N(tm) = G(Em, Tty s Trys ooy Trny 2) + P3(tm, 2)E(tm), m=0,1,..., (2.3)
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where0 < tp < 787 < ... < 71 < t < t. Itis assumed: 1)y, andv; arer;-
andr.-dimensional standard Wiener processes, respecté/ely, is thers-dimensional
standard white Gaussian sequencez@)w;, v, {(t,,) are assumed to be statistically
independent; 3)(-), ®2(-) andg(-), ®3(-) are nonanticipating functionals of the reali-
zationsz = z{ = {2,; 0 < ¢ < t} andz = z™, of observable process, respec-
tively; 4) coefficients of equations (2.1) and (2.2) are satisfied conditions (Kallianpur,
1980; Liptser and Shiryayev, 1977; 1978), providing an existence of solutiong,(and

is continuous for all arguments; B)(-) = ®,(-)®T(-) > 0, R(-) = ®o()®% () > 0,

V(:) = ®3(-)@%'(-) > 0; 6) the initial density functiom(zo) = = dP{zo < z}/dz is
given.

The following problem is stated: for a sequence of moments s; < ... <
sy is to be found relations defining time evolution of joint information amount
Itzy, s, ..., s, 5 26, mi] @bout the current values and the future values,, . . ., z5,

of the unobservable process which is contained in the realizationg set{z, : 0 <
o < tyandnd* = {n(to),n(t1),...,n(tm); tm <t} of the observable processes. In this
cases; = const,l = 1; L, i.e., the extrapolation is inverse (Dyonenal., 1997; Dyomin
et al., 2000).

The abstract variant of the formula for Shannon joint information which is contained
in the realizations: = xf, andy = y§, (Dobrushin, 1963; Kolmogorov, 1963) wheisg,
Ly, 1z, Are measures agreeable to the processegs, {x; y: } (see (Duncan, 1971) and
(Liptser and Shiryayev, 1978, chap. 16])

ool — dpa,y
It [$7 y] M {ln d [Mmﬂy] (‘Ta y)} ’ (24)
can’t be used in the stated problem. Thus, the solution of the stated problem can be
realized by the presentation of the information amount through probabilities distribu-
tion densites with the use of Ito formula (Kallianpur, 1980; Liptser and Shiryayev, 1977,
1978) and Ito-Ventzel formula (Rozovsky, 1973; Ocone and Pardoux, 1989), analogously
(Liptser, 1974; Dyomin and Korotkevich, 1983; Dyomin and Korotkevich, 1987).

If similar to (Dyominet al., 1997; Dyominet al., 2001), we introduce extended pro-
cesses and variables

Ty Tsq Tt N1 N
=N : L | - “N+L+1 _ | = | T || Tr
Ty = . y Ty = . ) xt,‘r,s = | T - ~L — | ~L+1 | >
IZ‘L :Es :Et,s
Try Ty, s
X IL'I T B ~
~ . ~ L . ~ ~ TN+1 TN
In=| |, "= ! |, ENngr+1=|2IN :[ b }:[jLH]’ (2.5)
~L
TN L T
then in the assumption of the probability densities existéfige= [r1,...,7n], 51 =

[81,. ..,SL])

ph(x;&") = 0" TP {ay < ay @l < &2, n} J0202", (2.6)
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p(t,z; 5., &%) = oL +ip {:L't < o T <xL}/8:E8:E (2.7)
the formula takes place

Lifae, @55 206" = M {In [pl(2;27) /p(t, 2351, )]} (2.8)

REMARK 1. Similar to (Liptser, 1974; Dyomin and Korotkevich, 1983; Dyomin and Ko-
rotkevich, 1987) it is assumed”) application conditions of Ito formula and Ito—Ventzel
formula are satisfied??) for stochastic integrald; = fO (1,w)dx, with respect to

Wiener processeg. the conditionM{f(;E U2(r,w)dr} < oo, providing the property
{fo T, W dxr} = 0 (Kallianpur, 1980; Liptser and Shiryayev, 1977; 1978) is satis-

fied; 3°) scalar finite functionso(7, y, ), ¥1(7,y, ), 2(7, ¥y, -) and their derivatives up
to second-order, and vector-functidtr, y), are assumed so that operators

= Ifi(r,y)e(r,y, )] | 1~ 8%[Qi(Ne(r,y, )]
L, y[e(T,y,-) Z 9 + 5 Z j@y-@y- , (2.9)
i=1 v ij=1 1Y)
~ oL
L fiotry) = Y flrp 200D LS g ay;y’ Pelrv) (510
i=1 1] 1 v
Lrylo1(T,y,); o2(1,y,°)] = %Lr,yk@(ﬂ Y,-)]
_ AT gpl(Tayv ):|
e2(7,y, ) L7, [r(ﬂ%.) (2.11)

are nonsingular. In accordance with (2.I)y] and L*[p] are the direct and inverse
Kolmogorov operators, corresponding #edimensional Markovian diffusion process
(Kallianpur, 1980; Liptser and Shiryayev, 1977; 1978), @ld:; v2] as superposition

of L[-] and L*[-] takes part in presentation of the solution of generalized extrapolation
problem (Dyomiret al., 1997; Dyominet al., 2000).

REMARK 2. The models of the processgsandr(t,,) of form (2.2), (2.3) are adequate

to the observations with fixed memory i = const, and observations with sliding
memory if7, = t — ¢ in (2.2) andry, = t,,, — ¢} in (2.3), wheret} = const,k = 1; N
(Dyomin et al., 1997; Dyominet al., 2000). The present paper consideres the case of
the fixed memory. The dependenicg) andg(-) of = means that observation channels
possess silent feedback relatively the procggshara, 1990; Liptser, 1974; Liptser and
Shiryayev, 1977; 1978). The absence of feedback, wi{enandg(-) do not depend on

z, is a particular case.

3. The General Relations
The solution of the stated problem is realized by the use of the posterior density

pl(z; TN & By= 8N+L+1P{xt<x ivgsz N ﬁgi |ZO7 }/81:85:N8£L. (3.1)
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PrRoPOSITION1. The density (3.1) on the time intervals < ¢ < t,,41 is defined by
the equation

depl(z;@n; 35) = Loy [ph(z; &N @ EY: py(a; Iy)|dt
+p’;(z;:iN;iL)[h(t,x,iN,z)fh(t,z)} R, 2) {dztf (. z)dt} (3.2)

subject to the initial condition

p (@333 3") = [C258851(tn), 2)/C(0(tm), )] e~ (@323 2"),  (3.3)
where
pe(w;in) = NP {ay <, #) <@nlzb g} /0x0EN, (3.4)
h(t,2) = M {h(t,z, 3N, 2) |28, m} (3.5)
C(tm),z) = M{C (z4,,, Y ,n(tm), 2) |26, 5"}, (3.6)
C (@ (tn). ) = exp { = 5 [tm) = gltms 2,2, 27 V" 0 2)
X tm) = 9ltms 2,20, 2)] |, 3.7)

andplm=0(x; ;%) = lim p () subject tot 1 ¢,,.

This proposition is valid, taking into account (2.9)—(2.11), from Corollary 1 in (Dy-
ominet al., 1997).

Theorem 1. The information amount (2.8) on the time intervals ¢,,, < t < ;41 IS
determined by equation

dIi[xe, &5 25, m0"/dt = (1/2)tr [M{Rfl(tvz) {h(ﬂvvz—%n’ff)
—h(t, z)} {h(ﬁv, 2|we, L) — h(t, Z)}TH
7%” [Q(t)M{anps(xt, S)(811110S xy; F )T

aiEt Gxt

81np(t ztava s)(alnp(t ztasLa 5
Gxt

Lt [Q(t)M{[alnpé(;t; ) B 3111610;16(%)} (81na]);f;pt))T

7|:81np(t7$t7<§ln‘%£) o alnp(tazt)} (8lnp(t,zt))T
5%: Gxt Gxt ’

(3.8)
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subject to theinitial condition

[;m[xtm’fg;zém,ngl] = I;m O[xtmast7ZO 7776n 1]
+ATIm [l’tm, g ,zo ,n(tm)] , (3.9
where
pi(x) = OP {xt < ac|zé, 176”} /ax, p(t,z) = 8’P{xt < z}/0x, (3.10)
h(7n, z|z, ZL) M{h (t,xe, @0, 2)|2e = x,iL 20,770 } (3.11)
ATl [actm,st,zO N (tm } M{ln[ ( m), Zlxt, S)/C( ]} (3.12)
C(n(t ), z|x,5c ) =
= MO (11 Y ). D e =, B = ) (319
and Itm Oz, &L;2im ni ™1 = lim I1(-) subjecttot T ¢,,,.

Proof. Sincepl(z;in;a") = pi(@nle,25)pi(z;25), po(@;n) = ph(@n|z)pe(2),
Wherepfr(ijEa :i'L) = aN'P{;Z'fy < Inlze = xng = ij 2677731)/85”% pi(j]ﬂl‘) =
ONP{zN < Znlae = =, 28, mi) /0% N, then integrating (3.2) and (3.3) with respect to
Zn taking into account (3.11), (3.13) yields that the posterior density (2.6) on the time
intervalst,, < t < t,,+1 is defined by the equation

dpl(z;20) = Lo [ ’;(x;ch);pt(x)] dt
+pl(z; &) [h(TN, z|lx, L) — h(t, z)}T R7Yt,2)dz, (3.14)

subject to the initial condition
pem (x385) = [C(n(tm), 2|2, &5) /C(n(tm), 2)] pim " (2; 25). (3.16)

Sincex, is Markov process, thept (7 |z, 1) = pt(Zx|x). The prior density (2.7) is
defined by the equation

dep(t, z;50,25) = Lop [p(t, 2550, 35); p(t, )] dt, (3.17)

which follows from (3.14). Innovation procegs, differential of which has the form
(3.15), is such thaZ, = (3, F7) is Wiener process with/{z, T | F7} = fo (1,2)dr
(Kallianpur, 1980; Liptser and Shiryayev 1977; 1978). Differentiation according to Ito
formula taking into account (2.11), (3.14), (3.17) yields

dtln{ G }{pl Loalpe(o)] - tpt({) L, {pi(x;ﬂ)]}dt

p(t,x;sL,xL) t(x) ps(x;xL) pt(l')
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p(t,z) I [p(t,x;éL,j;L)]}dt

p(t,z;50, &%) p(t, )

{ Lidplt.o)] -
1
2
[

T
(T, 2|z, BF h(t,z)} R™(t, 2)d 2.

301

p
[ (7n, 2|z, 7) — At z)rﬁil(t,z) [h(%N,zm,zL) - h(t,z)] dt

(3.18)

Applying to (3.18) Ito—Ventzel formula fat,, < ¢ < t,,,+1 and similar to (Liptser, 1974;

Dyomin and Korotkevich, 1983) we obtain

t ~L
P T5)
B ACTE ) B BT
" |:p(ta$t;§L7,f'L):| H[ ”t_tm
t

—l—; /tr [R Yo, 2) {h(%N,z|xU7j;sL) _ h(a,z)} []T} do

tm

%/trlQ(t){alnPs&(ria, é)(811520( ))

tm

_dlnp(o,20;51,75) (dlnp(-)
a;pg ( a$g ) do

+

1
2

/ttrlQ(t)[(alnpgé(xﬂig;izsL) B aln;);:xg)) (aln;);fxa))T

tm

dlnp(o,x,;51,7L) Olnp(o,z,)\ (0Inp(o,xs)\T
7( 0z, B 0z, )( 0z, ) do

2 2
n 1 &pslzs) 1 0 p(J,zU)H do

00 [ T e e

+ [ tr [R_l(a, z) [h(ﬁv, z|zy, ZL) — h(o, z)}

S T~

== 4T
« [o00,3Y 2) = o 0, 70)] |do

t
0 p? (2,5 3L
——In— g dw,
Jr/@xa . p(o, 25380, TL) H(o)dw

tm

t
T

+/[h(%N,z|xU,,%£)—h(U,z) R™Y(0,2)®5(0, 2)dv,.

tm

(3.19)
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Similar to (Liptser, 1974) and as well aH.(L3) in (Dyomin and Korotkevich, 1983), we
have

1 0%py(20) 1 0%lo,2,)) o
{pg(acg) oz - p(o,zs)  Ox2 } =MA{M{-|z§,n5"}}
*po (x 0%p(o,x
M{/;Tg)dx}/%dza (3.20)

Since, in accordance with (3.5),(3.11), we ha¥éh (o, 2o, 7, 2)} = M{M{ M{h()|z,=

x’j;sL = jL’ Zgan31}|237776"}} = M{M{h(ﬁv,z|$g,j£)|zg,776n}} = M{h(aaz)}
then

M {R—l(a,z) [h(fN,zumst)_h(a,z)} [h(a, m,,,:ziv,z)—h(m,zm,,,f;g)r}
= M{R (0 2)M {[][]7|=5.0"}} = O. (3.21)

The calculation of expectation of the left and right parts of (3.19) taking into account
(3.20), (3.21)2°) Remark 1 followed by differentiating with respectttgives (3.8), and
substitution of (3.3) in (2.8) gives (3.9).

COROLLARY 1. The information amount (see (3.10))

Ii[we; 25, m5"] = M {In [py () /p(t, )]} (3.22)

about the current values of the proces®n the time intervals,,, < t < t,,,+1 is defined
by the equation

dIi[we; 25, m°] /dt

%tr[Q(t)M{aln;;t(zt) (811161);15(%))3 81112)3(;, xt) (81112);1? xt))TH (3.23)

subject to the initial condition

LIty [@,5 20" 05') = Tep—ol@e,s 20" mg' ]+ ALy, [e,5.20™, 0(tm)], (3.24)
AL, 1,5 25" 0(tm)] = M I [Cn(tn), 2lxe,,)/C((tm), 2)]} , (3.25)
h(7n, z|lx) = M {h(t, z, N 2|y = 25,m0°} (3.26)
C(ntm), 2lx) = MA{C(r,,, &7 ,0(tm), 2)|2e,, = @, 26" 05 "'}, (3.27)

andl;, o[xs,,; 2, nd =t = lim I;[] subject tot 1 ¢,,,.

The formulated result is obtained as a limitary case from Theorem 1 subjgct tb
in (3.8) ands; | t,, in (3.12),] = 1; L, and defines of information amount in filtering
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problem. It follows from equations (3.14), (3.16) and (3.17) taking into account (2.9)—
(2.11), thatp;(z) on the time intervalg,, < ¢ < ¢,,41 is defined by the equation

depi(z) = Leolpe()dt + pe(2)[h(7n, 2l2) — h(t, 2)]"R™ (8, 2)d %, (3.28)
subject to the initial condition

P (2) = [C ((tm), 2[x) /C(1(tm), 2)] Pt —0 (@), (3.29)
andp(t, x) is defined by the equation.@d(¢,z) = L. .[p(t,x)]dt. Hence (3.23) and
(3.24) can be obtained immediately by analogy with (3.8) and (3.9). Similarly the proof

of Theorems 1, 3 in (Dyomin and Korotkevich, 1987) for the cA'se- 1 was made.
Along with (3.22) the information amount

ILEL; 26, 8] M{ln[pﬁ(:if)/p(é,:,jf)]} (3.30)

about the future valueg’ of the processy is of interest, i.e., information amount in
generalized extrapolation problem, where

(3.31)

Theorem 2. The information amount (3.30) on the time intervals ¢,,, < t < ty41 IS
defined by the equation

dIt[EL; 2t nin)/dt = (1/2)tr [M {R’l(t, 2) [h(ﬁv, t,270) — nlt, z)}

X [h(ﬁv,t,zﬁg) - h(t,z)]TH : (3.32)

subject to theinitial condition

I @h; zgm ,no]*ffm*o[iﬁ;%m,no e AL 5 26 n(tm)], (3.33)
AL &5 25 n(tn)] = M {In [C(n(tm), 2|25)/C(n(tm), 2)] } , (3.34)
h(7n,t, 2|ZL) = M{htxt, i 2)|ek =8 Ay (3.35)
C(n(tm), z2%) = MA{C (a1, 7 n(tm), 2)|E5 = &, 257, 5"}, (3.36)

and Itm=O[zL; 2 ni~] = lim I'[] subjectto ¢ T ¢,.
L) = pi(zan|ah)pl(zh), wherep! (z;2n|2") = OV

Proof. Since pt(z; 7N =
=gk, 28 i}t /0207 N, then integration (3.2) and (3.3) with

' T
b
Play < oy 2 < anlal
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respect to{x; 7 } taking into account (2.9)—(2.11), (3.35) and (3.36), yields that’)
on the time intervalg,, < t < t,,1 is defined by the equation

dept (L) = pt (&) [h(%N, t,2[aL) — hit, z)} R7Y(t,2)d3, (3.37)
subject to the initial condition
pim (") = [C(n(tm), &) /C(n(tm), 2)] pim = (E"). (3.38)

Since the prior density(t, z; 7, Zn; 51, %) in accordance with (3.2) is defined by the
equation

dip(t, 257w, En; 80, 85) =L [p(t, 7, En; 50, 25); p(t, 23 7y, En) | dE, (3.39)

then integrating (3.39) with respect {a; Z } taking into account (2.9)—(2.11) yields
d¢p(5r;2%) = 0. The further inference of (3.32) and (3.33) is similar to that of (3.8)
and (3.9).

4. Conditionally-Gaussian case

The effective determination of the filtering and extrapolation estimates was obtained in
(Abakumoveet al., 1995b; Dyomiret al., 1997; Dyominet al., 2000) under the condi-
tions (see (2.1)—(2.3), (2.5))

fO)=ft)+ F(t)ze, po(z) = N{z;po,To},
h() = h(tvz) + H(),N(tvz)zivjlv g( ) - g( )+ Go, N( m, 2 ) i\fnfiv (41)

Hon() = [Ho(t,z)EHl(t,z)E---EHN(t,z)] = {Ho(t,z)EHLN(t,z)] ,
Gon() = {Go(tm,z)EGl(tm,z)f G (tm, z)} :[Go(tm,z)fGLN(tm,z)} (4.2)

when the posterior densities for the procégff“ are Gaussian (see (4) in (Abaku-
movaet al., 1995b), (2.15), (2.34) in (Dyomigt al., 1997) and (3.3), (3.4) in (Dyomiet
al., 2000). Hence, if

pu(t) = M{x|25,15"},
fin (Fn,t) = M{EY |26, 5"}, ﬂf(t, §1) = M{z |z, ni'},
U(t) = M{[z; — p(®)][]" |26}, Tn(Fn,t) = M{[EY — v (Fn, O] 126, 16"}

FL(ﬁaSL)ZM{VL— FGr 01" 126 m5'),

Ton (7, t) = M{[z; — (f)][xiv—ﬂN(TNv N 126 m5'}

T8 g (8, 50) = M{[ae — p())[EF — @530, 0] 25,0}

T% nv (Pt 50) = M{[EY —NN(TNat)][fﬁ — (5, )" |25, g} (4.3)
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then under satistaction of conditions (4.1)

ph(z;an;ih) = N {i’N+L+1; fintpo1(Fnst,30), Tngns1 (P, 8, §L)}

T e ) fNON(%N,t) ~f5N+1(t, 51)
=N {fN]; {ﬂN(%Nvt)lv CTon() In(in.t) TRyu(Fatse)| o-(4.4)
T ﬂL(ta§L> (FOL,N-H('))T (FILV,N+1('))T FL(tng)

PROPOSITION2. Subject to (4.1) for posterior densipy(x; Zn; &%) of the process
it (see (2.5)) the condition (4.4) takes place and block parameters of this distri-
bution is defined by the differential-reccurence equations of Theorems 1, 2 in (Abaku-
movaet al., 1995b), Theorem 3 and Colollary 2 in (Dyonghal., 1997). Gaussianity

property takes place also for the posterior densiii€s), p;(z; Zn), pL(z1), pL(x; )
composinge,, {z¢; 2N}, 2L, {x; 2L}, of the process, ' ', the parameters of which

are obtained obviously from (4.4), taking into account (2.5).

REMARK 3. Since the process, defined by the equation & [f(t) + F(t)z:]dt +

®, (t)dwy, is Gaussian (Liptser and Shiryayev, 1977; 1978; Meditch, 1969), then for the
prior densityp(t, z; 7, Zn; 51, #) subject to (4.1) the Gaussianity property of the form
(4.4) with replacement(t) by a(t), in (7w, t) byan (7w, t), a* (¢, 51) bya’(¢,5.) and

the letterl” by the letterD takes place. Parameters of this density are obviously defined
(Meditch, 1969). The prior densitiegt, x), p(t,z; 7n,in), p(3r, L), p(t, =; 3, )

are Gaussian as well.

In this paragraph the results of the previous paragraph are concretized in case of con-
dition (4.1) fulfillment assuming that all the matrices of the second central moments are
reversible.

Theorem 3. The information amount (2.8) on the time intervals ¢, < ¢ < tpy41 IS
defined by the equation

A 12 foy, L5 2, ) /ot
= (1/2)tr [M{ R (4, 2) Hoa (1, 2) (T4 G, 0) L (4,2) ] -

—(1/2)tr [Q(t) [M AT (¢t|51)} — D™ (tl51)]] | (4.5)
subject to theinitial condition (3.9)where (see (4.3), (4.4) and Remark 3)
FLHl(r sy — | - ['(t) f(iNﬂ(tv 51)
I (t, L) - [(F&N+1('))T FL(t, =§L) ] ) (46)
T(t155) = T() = T8 w41 (8,50) (T (8, 50)) 7 (T v (8 50) (4.7)
D(t]51) = D(t) = Dg 41 (t:52) (D™ (t,5)) " (Df w41 (8,51)) 7 (4.8)

Hpo(t,2) = [Ho(t, 2):HL(t, 2)] = [Ho(t, 2):Hniq (8, 2)i - - ‘Hyy (8, 2)], (4.9)



306 N. Dyomin, |. Safronova, S Rozhkova

Hy(t, z) = Ho(t, 2)T(t) + Hy n(t, 2)T0y (7, 1), (4.10)
Hy(t, 2)=Ho(t, 2)Th oy (t, 80) + Hin ()T v (Fas tost), =1L (4.11)
AL = (1/2)M {In [IF54 (6 = 0,50)|/IT5 (b, 52)1 | } (4.12)

DX+ (ty, — 0,5,) = im TP+ (¢, 5,) subjectto t 1 t,,, Hi n(t, ) isdescribed in (4.2),
T n i1 (t,s1) isthe I-th element of the matrix D i1 (t,50), and Ty v (v, E, s1) s
I-th matrix column of the matrix Iy v, , (7w, t, 5L).

Proof. By the property of Gaussian densities (Liptser and Shiryayev, 1977; 1978; Med-
itch, 1969) forpt,, (in|z,zL) = ONP{aN < @n|v = =, 2L = 3L, 28,07} /0% N in

Tlt,s

accordance with (2.5) and (4.4), we have

Phioa() = N {@wifin wlt50), T (Pt 52) |
An(Tnlt,30) = fin (7w, 1)
+IN T (v, t, 50) TP (8, 5p)) 7 [#8T = pR (e, 5L)] (4.13)

T (Fnlt, 1) =N (7n, t) =Tk (v, ¢, 50) (TP (L, 52)) "L (TR (7w, 8, 51)) T,

s = | 0]

ﬂL (tv §L)

Tt (Fy,t,5L) = {ng(%N,t)EfQNH(%N,t,gL) . (4.14)

Formulae (2.5), (3.5), (3.11), (4.1)—(4.3), and (4.13) imply that

h(Tn, 2|z, L) — h(t, z)
= Holz — p(t)] + Hy NTEHTEY7 [2840 — gB 12, 5,)] (4.15)

Then from (4.15) taking into account (4.4) and (4.14), we obtain

M { [ 2lae, 7)1 2)| |6, | = HoUH]

+ {Hofgjvlﬂ + Hl,Nle] (YO HY

+H1,Nf§+1(f“1)*1(fgjvl+1)TH0T , (4.16)
_ ) i i 7 -
Toii(t5) =M {[wt —p@®)] [# =@ EL)] |20 }
= [F(t)sfé,N+1(ta EL)] : (4.17)

From (4.2), (4.9)~(4.11), (4.14), and (4.17), we obyT{ §', , + Hi nT &' = Hip41.
HenceH, yT'5k™' = Hyyy — HoI'g'i, and from (4.16)

M { (R, 2l ) = Bt 2)| 716, }
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= Hy (THY"1HT, + H, [1“ T O T TR )T BE. (4.18)

Assume that

~ -1
. r Tk Coo C
O l(fOLNH)T iji“] [ T 01]. (4.19)

Then, from (4.17) and (4.19), we obtain
S O Ry e

= I'Cool'+T'Coy (fé,N+1)T+fOL,N+1Cglr+f£,N+lcll (fg,NH)T- (4.20)

By the Frobenius formula (Gantmakher, 1988) in accordance with (4.19), we have

~ ~ ~ -1 ~ ~
Coo = |I' = FOL,N+1(FL)71(F£‘,N+1)T:| , Co1= *COOFOL,N-H(FL)ilv

Cuy = () + ()7 (T xy1) ool (TF) 7 (4.21)
Using the (4.21) in (4.20) gives
Lok @) IR =T (4.22)

Then, from (4.18) and (4.22), we obtain

M { [ 2o, 25) = Rt 2)| 1712, |
= Hp gt 2)(TF (850) T HE (8 2), (4.23)
Sincepl(z;2") = N'{-} (see Proposition 2), then ff (z|z") = 0P{z: < 2|z} =
L 28 mim} /Ox similar to (4.13) from (4.4) the property g)tls(zﬁL) = N{z; pu(t|8L),
I'(t|51)} takes place

p(tlse) = p(t) + T p g (M) 7 Hah — @ (¢, 50)], (4.24)

andI'(t|5.) is defined by the formula (4.7). Singé(xz; i) = P} (x|Z7)pi(z"), then,
we obtain

dn[pl(z; #")]/0x = dlnp}  («|z")] /0 = —T ' (t|5L)[x — p(t|5L)].  (4.25)
Thus, we have

M { Dy (w 3)]/ 0] [0Mnlp! (s 20)) /0] " |2, } = T (¢]51). (4.26)
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Relation (4.4) implies that (see Propositioni2jz) = N{z;u(t),I'(¢)}. Hence, we
obtain

Onlpu(@)] 0z = ~T 7 (1)[x — (b)), (4.27)
M {[9nfpi (w)] /0] [0 lpe(we)) /O] |28 m } =T (8). (4.28)

Formulae (4.24), (4.25), and (4.27) imply that
M{ On[pt (xs; 2L))/024) [0 In]pe ()] /Oxe) T |26, ) } r- (4.29)
Then, in accordance with (4.28) and (4.29), we have

o Onpl(xy;ay)  Olnpy(x) (alnpt(act))T
aiEt 61} aiEt

23,7]6”} = 0. (4.30)

Analogous calculations relative to the unconditional expectation for prior densities (see
Remark 3) result in the formulae

M { [O1n[p(t, z4; 51, 52)]/0xe] [0In]p(t, 2 gL,fg)]/axt}T} — D(t)3,),

alnp(ﬁawt;glm‘ilf) alnp(ﬁaxt) alnp(twrt) T
M s) _ — 0.
{[ Oz Oxy ( Oxy ) 0

(4.31)

Substitution (4.23), (4.26), (4.30), (4.31) in (3.8), taking into account the property
M{-} = M{M{-|zb,1§"}} gives (4.5).

Relation (3.16) implies thafp' (z; 3L)/ptm=0(x;3F)] = [C(n(tm), z|z zly/
C(n(tm),2)]. In accordance with (4.4), (4.6), and (4.14), we havézr;it) =
pl(zttt)y = N{altalti(t,5,), fL+1(t 51)}. Taking into accountM{-} =
M{M |z, g~y andM{-} = M{M{-|={", ni"}}, we obtain

M {In [C(n(tm), 2|21, 75)/C(n(tm), 2)] }
_ M{ In [/\/ {:EL“; A, 51), DL+ gL)}
/N{ L4l gL+l _0,§L)7fL+1(ﬁm_o,gL)H} —
= (1/2)M {m [|fL+1(tm_o, 5|/ [TE (s gL)@ } . (4.32)
Then, formulae (3.12), and (4.32) imply (4.12).

COROLLARY 2. The information amount (3.22) on the time intervials< t < t,,,41 IS
defined by the equation

d L =6, ]/dt = (1/2)tr [M{ R\t 2) Ho(t, 2)D (O H] (¢, 2)
—(1/2)tr [Q(t) [M{F‘l(t)} — D‘l(t)ﬂ , (4.33)
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subject to the initial condition (3.24), where
Al [] = (1/2)M {In ([T (tm — 0)|/[(En)I]} (4.34)
[(t,, — 0) = lim ['() subject tof 1 t,,, andHy(t, z) is defined in (4.10).

The formulated result is obtained as a limitary case from Theorem 3 subjgct tb
in (4.5) ands; | t,, in (4.12),l = 1; L. Note that the same result can be proved with the
use of Corollary 1, analogously to the proof of Theorem 3. Similarly proof of Theorems 2,
4 in (Dyomin and Korotkevich, 1987) for the ca8e= 1 was made.

Theorem 4. The information amount (3.30) on the time intervals ¢,,, < t < t,,41 iS
defined by the equation

dI{[z; 20, m5'] /dt
= (1/2)tr |M{ R (¢, 2)Hy (1, 2) (T (¢, 5)) " HE (1,2)}] (4.35)

subject to theinitial condition (3.33) where
AL = (1/2)M {1 [P (b = 0,50)|/IF (s 52)1 ] } (4.36)

TL(ty, —0,5;) = im 5 (¢, 5,) subjectto ¢ 1 ¢, and H (¢, z) is defined in (4.9).

L

~N+1 ~ ~ ~
t+ <$N+1|ZE&I,‘:IL' )

Proof. Forp! , (z,@n|Z") = pl  (En+1|2") = OV P{E};
zb,mi} /0% 41 similar to (4.13) it follows that (see (4.4))

P s (En1[EF) = N{En 15 i1 (P, H130), T (P, 830) 1
En+1(Tn, tSL) = in41(Tn, 1)
+Tk G, 50)(DE (¢, 52) M [&s — P (t,5.)]
N+1\/Ns bty oL y 9L H ySL)|
Ini1(Pn, t5L) = Tna(Tn, t)
—TX1 (P, 6, 80) (TF(4,50)) T (TR (P, ,32)) T, (4.37)

gnt1 (T, t)= [ MO ], fN-l—l(%Na t)= lfgjf)() rfozifv(())] ’

TR by SO0
FN+1(TN7taSL)_ ~L O . (438)
N,N+1

Formulae (3.5), (3.35), (4.1)—~(4.3), and (4.37) imply théty,t, z|2") — h(t,2) =
= Ho nT'%  (TF) "zl — 4%(¢, 51)]. In accordance with (4.2), (4.3), (4.9), and (4.38),
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we haveHoJ\,f[LVﬁL1 = Hy. Therefore, we obtaim(7y,t, z|il) — h(t,z) =
Hp(PL)=[zE — aL(t,5.)]. Thus, we have

M { [ b, 2135) — Bt 2)| [ |26, }
= Hp(t,z)(TE(t,5.)) " HE (¢, 2). (4.39)

Subsitution of (4.39) into (3.32) taking into accoumt{-} = M{M{:|z6,n{"}}, gives
(4.35). From (4.4) (see Proposition 2), we obtalite ) = N {z%; al(t,51), X (t, 51))
Therefore (4.36) is derived on the basis (3.34), (3.38) analogously (4.12).

COROLLARY 3. Letin (4.1) coefficients dependencenis absent. Then Theorems 3, 4

and Corollary 2 take place, where dependence and operatod/{-} are absent. Thus,

exact calculation[z;, ¥L; 28, nit), Li[ze; 28, nit], IL[xL; 2§, ni] is possible only in the
conditionally-Gaussian case in the absence of feedback in the observation channels (see
Remark 2).

In the next paragraphs some of the obtained results are applied to the problem inves-
tigation of stochastic process transmission on the continuous-discrete memory channels
in some particular cases.

5. The Information Efficiency of the Memory Observations in Relative to the
Memoryless Observations

The problem of efficiency of the memory observation, i.e., whether presence of memory
increases or decreases information amount, is of interest. The given investigation is to be
carried out for a particular case of the scalar stationary processes(t,,) defined by

the equations (see (2.1)—(2.3), (4.1), (4.2))

dzy = —azmdt +/Qdw;, a>0, po(x)=N{o;v0}
dz, = Hozdt + VRdv, n(tm) = Goxe,, + Grzr + VVE(tm), (5.1)

when continuous memoryless observation, and discrete memory observations of unit mul-
tiplicity, i.e., process; has the form as in (Dyomiet al., 2001, item 5). As the informa-
tion efficiency measure of the memory observatigfts, ) with regard to the memoryless
observationg/(¢,,), whenG; = 0, in extrapolation problem for the cage= 1 (51 = s)
one can accept the valud = ATllm[zg; 2im, n(tm)] — Al [zg; 2t 7i(tm)], where
AI'n[] andA It~ [-] are information amount increments (3.30)by= 1 in the time mo-
mentst,,,, incoming from the observationgt,,) and7(t.,), respectively. Consider the
case of sparse discrete time observations, when on the intergdls,,, t,,,11) solutions
of the differential equations for the elements of the mafﬂngT, t,s) (see (4.4)) attain the
stationary values, vo1 (t*), y11(t*), Y*1(T), 74 (T), 41 (t*,T), defined by the formula
(3.19) from (Dyominet al., 2000), wheré* =t — 7 andT = s — t are memory depth
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and extrapolation interval, respectively. Then, in accordance with (4.36) and Corollary 3
using (2.28), (2.33) from (Dyomiet al., 1997)

A=(1/2)In [ﬁll(s,tm)/’yu(s,tm)} , (5.2)

G (T) + Garl (7, 7))
11 yIm) = 1y — o L )
Y (8, tm) =y (T) V 4+ G3v + G311 (t*) + 2GoG1v01 (t*)

T (s, tm) =7 H(T) = (G5 (30 (T)*/(V + Go)l. (5.3)

There are two marginal situations with regard to memory depth: the case of small memory
depth, whent* — 0; the case of large memory depth, wh&n— oo. Assume that

Ay = lim A subject tot* — 0 andA,, = lim A subject tot* — oo. From (5.2), and

(5.3) taking into account (3.19) in (Dyomab al., 2000), we obtain

Ao = (1/2) 1n[1/(1 - 60)]7 Ay = (1/2) 111[1/(1 + 600)]7 (5.4)
e 2aV (G2 + 2GoG1) exp{—2aT'} (5.5)
O WV +7(Go+G1)2[Q(V +7G2) (1 —exp{—2aT})+2aVy exp{—24T}]"
§o— 202y GEG? exp{—2aT} (5.6)

[V+7(G3+267)|[Q(V +GF) (1 —exp{—2aT'}) +2aVy exp{—2aT'}]

Research of behavior of tha(¢*) as the function of the memory depth basing on
(5.2)—(5.6) with the use of (3.19) from (Dyoméhal., 2000), gives the result.

ProOPOSITION3. Assume that
M=MTUM™ :{(Go,Gl): G%+2GOG1 <0} (57)

If (Go,G1) ¢ M, then A(t*) is monotonically diminishing function of the memory
depth from the value\; > 0 up to the valueA,, < 0, and is equal to zero at the
pointt* = ¢7 , determined the formula

U G |(V + & G2)
TN TGV + @GR (V + &G 21V

(5.8)

where sign “-" if GoG1 = |Go| - |G1], and sign “+” if GoG1 = —|Gol| - |G1], A =
(a®>+0Q)'/?,6 = H3/R,®= (A +a)/2\, v = (1/§)(\ —a), and which can be defined
as an effective memory depth.(fy, G1) € M, thenA(t*) < 0 forall t* > 0.

A physical interpretation of this result is the following. In the case of large memory
deptht* > «y, whereay, = 1/a is the correlation time of the process, there is no
correlation between,, andz;, , «,. Therefore by great the signaly’(r) = Gz does
not contain information on the curremf  and on the future values, of the process
x; and plays the role of additional noise in the memory channel which leads to decrease
in the information amount increment as compared with the memoryless channel. Thus
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one can explain whyA, < 0 by random values of the transmission coefficigrgsand

G1. In the case of small memory depth, when< «, the correlation coefficient be-
tweenz, andz;,, is close to one, and therefore, the sighdt,,) = Goz:,, + Gix,

is accepted a¥ (t,,) = (Go + G1)xy,,. Since the conditionGo, G1) € M means

|Go + G1| > |G|, then the useful signal strengif(r,t,,) in the memory channel

is higher than the useful signal stren@z;,, in the memoryless channel, which pro-
vides great self-descriptivenesgr, t,,,) with regard toGoz:,, . This explains the prop-

erty Ag > 0in the cas€ Gy, G1) ¢ M and an inverse property by a contrary condition.
The condition(Gy, G1) ¢ M is an existence condition of the single positive root of the
equationA(t*) = 0, solution of which is given by (5.8). Influence of continuous observa-
tions on the discrete observation self-descriptiveness is carried out through the parameter
§ = HZ/R, which is proportional to the signal-noise ratio by the strengh in the continu-
ous observation channel.df— oo we obtainAT!"[] — 0 andﬁ]ﬁm [] — 0, that yields

A — 0. Hence, on obtaining absolutely accurate measurement in the continuous channel,
the discrete observations both with memory and without memory do not introduce new
information on the values, forall 7. If § = 0 that corresponds by the case of continuous
observation absence, formulae (5.2)—(5.8), where Q/2a, A = a, &= 1 are correct,

i.e., in this case we have evident dependeﬂjﬂa on the correlation timey, = 1/a of

the process;.

6. Optimal Transmission of the Gaussian Markov Process over the Memory
Channels by the Silent Feedback

The signalz;, an output message of the continuous transmission chapaeti an output
message of the discrete transmission chanftgl) are scalar and defined in accordance
with (2.1)—(2.3) in the form

dz; = F(t)z:dt + @1 (H)dwe, polx) = N{z;po, %}, (6.1)
dzt :h(ﬁ; Tty Tr, Z)dt+q)2(t)dvt; n(ﬁm) :g(tnu Lty s Ty z)+¢3(tm)€(tm)(62)

Problem formulation: in the class of coding function&ls= {H;G} = {h(-);9(-)},
satisfying energy limitation

M{R*(t,xy, 27, 2)} < h(t) < h, M{g*(tm,xe,, 20, 2)} < G(tm) <G, (6.3)

the functionalsh’(-) and ¢°(-), which provide the minimal decoding errdx’(¢) =
inf A(t) with regard to a filtering problem, are to be fouddt) = M {[z; —Z(t, z,1)]*}
is the filtering estimate errai(t, z, ) of the process; corresponding messagef; ;" }
accepted by the giveln(-) andg(+).

This problem is a generalization of the problem from (Liptser, 1974) for the case
continuous-discrete transmission with the memory of unit multiplichy= 1, n = 7).

REMARK 4. Up to the moment the transmission is proceeded an optimal manner.
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Since givenh(-) and g(-), a posteriori meam(t) = M{x|z{,n5'} (Liptser and
Shiryayev, 1977; 1978) is optimal in root-mean-square sense filtering estimate, then
A(t) = M{~(t)}, wherevy(t) = M{[z: — p(t)]?|28, ni}. Thus, we haveA’(¢) =
inf M{~(t)}.

Theorem 5. Intheclass K; = {H;; G;} of linear functionals

H; = {h(): h(t,zt,2r,2) = h(t, 2) + Ho(t, z)xs + Hi(t, 2)x, },
G = {g() g(tm,l‘tm,l‘.,-, ) = g( )+ GO( m, 2 ) Tt,, + Gl(tﬂwz)x‘r} (6.4)

1°) optimal coding functionals h°(+), ¢°(-) are defined in the form

hO(t, 2°%) = —Hy(t, 2°) " (1),

Hy(t,2°) = [a(t)/A°(®)]Y?,  H(t,2°) =0, (6.5)
9°(tm, 2°) = =G (tm, 2°)p° (£t —0),
Gg(tm,zo) = [g(tm)/AO( m )]UQ, G(l)(tmazo) = 0; (6.6)

29) optimal message {z;1°(t,»)} is defined by the equations
dzf = [h(t) /A" (]2 [z — uO(B)]dt + Bo(t)d v, (6.7)
0 (tm) = [§(tm) /A% (tm = O] *[t,,, — p° (b — 0)] + Pa(tm)E(tn); (6.8)

3%) optimal decoding 1:° (¢) and a minimal decoding error A°(¢) on theintervals
tm < t < timt1, aredefined by the equations

du(t) = F(t)u ()dt + R~ (1) [a(6) A°(¢)]/*d 2, (6.9)
dA°(t)/dt = [2F(t) — R™Y(t)h(t)]A(t) + Q(t), (6.10)

subject to theinitial condition

11 (tm) = 10 (tin = 0) + [§(tm ) A° (£ — O) 2 [V (tin) + G (tm)] ™" (£, (6.11)
A%t) = V() [V (tm) + §(tm)] 1A (¢, — 0), (6.12)

where Q(t) = ®1(t), R(t) = @3(t), V(tm) = PZ(tm), 4 (tm — 0) = lim u(t),
A°(t,, — 0) = lim A(t) subjectto t T t,,.

Proof. Given{h(-);g(-)} € K; on the intervalg,, <t < t,,+1 (see (Abakumovat al.,
1995b; Dyomiret al., 1997) and Proposition 2)(¢) and~(t) are defined by the equations

du(t) = F(t)u(t)dt + R~ (t)[Ho(t, 2)y(t) + Ha(t, 2)y01 (7, 1)][d 2
—(h(t, )+H0(t 2)p(t) + Hi(t, 2)p(r,t))dt], (6.13)
dv(t)/dt = 2F(t)y(t)— R~ (t)[Ho(t, 2)y(t)+ Hi(t, 2)y01 (7, )] +Q(t), (6.14)
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subject to the initial condition

fi(tm) = p(tm — 0) + [Gotm, 2)y(tm — 0) + G1(tm, 2)701 (Tt — 0)] W (t)
X [n(tm) = g(tm, 2) — Go(tm, 2)p(tm — 0) — G1(tm, 2)pu(7, tm — 0)], (6.15)
Y(tm) =7 (tm—0)=[Go(tm, 2)Y(tn—0)+G1(tm, 2)v01 (T, tm_o)]QW_l(tm)v (6.16)

where u(r,t) = M{x,|z5, 08"}, you (7, t) = M{[z: — p(t)][zr — p(r,0)]|28, 08"}
711(7_7 t) = M{[x‘r - :LL(T’ t)]2|237776n}1

W (tm) = Vtm) + G2(tm, 2)7(tm — 0) + G2 (tm, 2)711 (Tt — 0)
+2Go(tm, 2)G1(tm, 2)701 (T, tm — 0). (6.17)

Suppose up to the mometyt, the transmission was proceeded in an optimal manner.
Then, from (6.16), and (6.17), we obtain

V(tm) = V(tm) A%t = 0) (WO (t)) ™" + G (tm, 2°)

X (A%t —0) AT (7, 1 —0) = (AG1 (7, 1 —0)) ] (W (tn)) ™", (6.18)
whereW°(t,,) is defined by the formula (6.17) with replacemerity 2°, v(t,, — 0) by
At —0), 701 (7, tm — 0) by AY, (7, 1 — 0), Y11 (7, £, — 0) By AY, (7, £, — 0). Fort <
tm by Cauhy—Schwarz—Bunkavskii inequality in relative taM {-|z§, 176”*1} (Lipser
and Shiryayev, 1977; 1978), we hay@)y11(7,t) — 72, (1, ) = 0. SinceGZy(t,, —0) +
G%'yu(T, tm — 0)+ +2GOG1’}/01 (T, tm — 0) = M{[G0($tm — ,Lt(tm - 0)) + Gl(z‘r -
(Tt — O))]2|26, i1} = 0 thenW (t,,,) > 0. Thus, relation (6.18) implies that

Y(tm) = V() A (b — 0)(W (tm)) ™" (6.19)

By Jensen inequality (Lipser and Shiryayev, 1977; 1978), we hayeiv°(t,,)) =1} >
[M{WO(t,,)}]~L. Then forA(t,,) = M{vy(t,,)} from (6.17), (6.19), we obtain

Altm) = V(tm)A(tn — 0) [V(tm) + M{G2A°(t,, — 0)
FG2AY (7, b — 0) + 2GoG1AY, (7t — 0)}} - (6.20)
SinceM{-} = M{M{-|z5™, 0"~ '}}, the use of (6.4) in (6.3) yields
M{g*()} = M{ [9(tm, 2) + Gopiltm — 0) + G (7, b — 0)}2}

+M{G%’y(tm70) + G%'yu(T, tm70)+2G0G1701 (T, tm *0)}
< G(tm) (6.21)

Formulae (6.20), (6.21), and (6.12) imply that

Alty) = V(tm) A%t — ) [V (tm) + §(tm)] 7! = A%(t,). (6.22)
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Use of (6.6) in (6.18) yields thal (t,,) = V (t, ) AY (¢, —0)[V +§(tm )] ~t. Coincidence
7°(t,») with the low bound (6.22) foA(¢,,,) proves an optimality of the coding (6.6), and
(6.8), (6.11) (6 12) follow as a result of substitution (6.6) in (6.2), (6.15), (6.16) given

{zom 5" == {(")", (")5 -
Addition and subtraction in the right part (6.1&8) ' (t)H?(t, 2)y11(T,t) yieds an

equivalent (6.14) integral equation fof, < ¢t < t,,+1, taking into account that at the
momentt,,, the optimal functiona}®(-) is used

t

A(t) = A(t,) exp {2/F(o)do

tm

—/Rfl (o) [H02(O', 2y(0)+HE (0, 2)y11 (T, 0)+2Ho (0, 2) Hi (0, 2)Y01 (T, O’)] do

+/R‘l(a)Hf(a,z)['y(a)’YH(T, o) — o, (7, 0)]7_1(0)da}

+/tQ(J)exp{2/tF(u)du

—/Ril(u) [Hg(u,z) (u)+Hi(u, 2)y11 (7, u)+2Ho(u, 2)Hi (u, 2)y01 (7, u)|du

/ R () B2 (0, 2) [y () (7 0) — 20 (s )]y~ <>du}do, (6.23)

validity of which is proved by differetiating with respect to Since M{-} =
MA{M{-|zb,ni}}, then the use of (6.4) in (6.3) yields

M {B2(-)} = M{[h(t,2) + Ho(t, 2)u(t) + Hu(t, 2)u(r, 0] }

+M {H§(t, 2)y(t) + Hi (t, 2)y11 (7, t) + 2Ho(t, 2) H1(t, 2)y01 (7, 1) }
< h(b). (6.24)

By Cauhy-Schwarz—Bunyakovskii inequality as respests-|z{, nj*}, we have
Y(t)y11(7,t) — 3, (1, t) = 0. Then the use of Jensen inequalif{ (&)} > p(M{¢})
for the convex functionp(¢) = exp{{} in (6.23), taking into account (6.24) for
A(t) = M{~(t)} result in the inequality
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t

+/Q(0) exp { /t [QF(U) - R_l(u)il(“)} du}do, (6.25)

tm o

Use of (6.5) in (6.14) fot,,, < ¢ < t,,,+1 results in the equation

d+°(1)/dt = [2F(1) = R @0)R() (2°()/A°(0)]2°(1) + Q(1),
Y (tm) = A%(tm). (6.26)

SupposeA’(t) is the right part of (6.25). Then differentiatin’(¢) with respect tot
results in the equation (6.10) subject to the initial conditidi{t,,,). It is obvious that the
solution (6.10), (6.26) are coicident, i.e%(t) = A°(¢). Coicidencey(t) with the low
bound (6.25) forA(t) proves an optimal decoding (6.5), and (6.7), (6.9), (6.10) follow as
a result of substitution (6.5) in (6.2), (6.13), (6.14). The validity of this result for arbitrary
time intervalr < t,,, < t < t.,,+1 IS derived with respect to induction, taking into account
Remark 4.

REMARK 5. According to (6.5) and (6.6) in the clak§ under the limitations (6.3) in
the filtering problem, all energyh(t); G(t,,)} of the messagéh(-);¢(-)} is concen-
trated with respect to the signal in the current moment of time, sindé? (¢, z) = 0,
GY(tm,z) = 0. Thus, Theorem 5 provides the solution already at the time intgryal,
when the memory is absent, and Remark 4 losses its actuality.

REMARK 6. The proof of Theorem 5 indicates that under the energy limitations, differ-
ent from (6.3) and allocating general energy of the message on the cuyrent and
pastz, signal values, we obtain a different solution, whéf(¢, 2) # 0, G (t, ) # 0.

This problem is open for research.

Theorem 6. Coding functionalsin the class I; of linear functionals (6.4)are optimal in
the general class KC nonlinear functionals.

Proof. The idea of the proof is the following. Suppa&g(t) is a decoding error, attained
at{h(-);9(:)} € K. Sincek; C K, thenAy(t) < A°(t), whereA°(t) is defined by
Theorem 5. Analogously to Theorem 16.5 in (Liptser and Shiryayev, 1977; 1978), proof
by contradiction is carried out by means of proving the inequaligyt) > A°(t). Then
the contradiction is excluded only by the condition that(t) = A°(t).

Since under the conditions (4 4(t, ) = N{x;a(t), D(t)}, then on arbitrary coding
{h(-);g(-)} € K with respect to Corollary 1 fat,,, <t < t41

Llwes obon = I, [] + %(/t RY(o)M { [ 2fw) — e, z)r} do

- [ @) (M laalt - D) 0o ). (6.27)
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where J[z;] = M{[0n[p:(x+)]/0z)?|2§, ni*} is the Fisher conditional information
amount (Liptser, 1974). Sinck(t,z) = M{h(r, z|z,)|zbn5}, then M{[h(r,z|z:) —
[ 2 2

h(t,z)]?} = M{M{[ |z, m}} = M{M{h(r,z|z:)" + h(t,2) —2h(7.2|z:) -
ht2)|2b it = M{h(r,2lze) — h(t,2) } < M{R(r, z[z;) }. According to Jen-
sen inequality, taking into account (6.38{{h(r,z|:ct)2} = M{[M{h(-)|xt,z3,ngl}]2} <
MAMR? () |we, 26,15}y = M{R?(-)} < h(t). ThusM{[h(r, z|z¢) = h(t, 2)]*} < h(2)
and using Fisher inequality/ { J[x;]} > A~L(t) (Liptser, 1974) from (6.27) it follows
that

Llae; )< To, [-]+§( [ 7 @ity

/tQ(g) (A~ (o)—D7(0)] do). (6.28)

Suppose that the transmission took place in accordance with the ciefifg; ¢°(-)}
in the form (6.5), (6.6). Since for this cage(z) = N{z;u°(t), A%(t)} (Liptser and
Shiryayev, 1977; 1978), then from (6.27), taking into account (3.5), (3.26), (6.5), (6.6)

0= 1011+ 1( / R\ (0)h(0)do

—/Q(a) [(A°%(0))~" = D *(0)] da). (6.29)

Since[A™! — D71 = [A7L — (AY) 7Y + [(AY)~! — D], then by the transmission
on the intervat € [0,t,,] in accordance with the coding (6.5), (6.6) from (6.28), (6.29)
it follows that

<2l -5 [ Q@) [a ) - (2%) ] do (6.30)

According to (Liptser, 1974; Liptser and Shiryayev, 1977; 1978) (lhara inequality);
A(t) = D(t) exp{—21[]}, (6.31)

then from (6.30), (6.31)

t

A(t) = D(t)exp {—2I][]} exp {/Q(O‘) (A (o) = (A%(0)) ] da}. (6.32)

tm
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Since K; C K, then Ag(t) < A%), ie., Agt(t) > (A°t)~!. From (3.22)
given p(t,z) = N{z; a(t), D(t)}, pi(z) = N{a;u°(t), A(t)} it follows IP[] =
(1/2)In[D(t)/A°(t)]. Thus (6.32) givenA(t) = Ay(t) result in the required con-
tradiction Ag(t) > A°(t). The Theorem proof is concluded by the derivation of
the contradictory inequality\o(t,,) > A%(,) in the assumption that on the in-
terval ¢ € [0,t¢,) the transmission took place in accordance with the coding
{hY(-); ¢°(+)} in the form (6.5), (6.6). From (6.31), taking into account (3.24},,,) >
D(tm) exp{~21¢, _[]} exp{~2AL,, [1}. As given {h(-);9()} = {h%();¢°()}.
pt,,—o(x) = N{x;u°(t,, — 0),A%t,, — 0)} (Liptser and Shiryayev, 1977; 1978),
thenI) [] = (1/2)In[D(tm)/A"(tm —0)], and consequenth(,,) > A°(t,, —0)
exp{—2AI, []}. Multiplication of the last inequality by (t,,)[V (tm) + G(tm)]™*
yields, taking into account (6.12)

Alty) = A%t )V ) [V (tm) + §(tm)] exp {—2ATI,, []}. (6.33)

From (3.6), (3.7), (3.25), (3.27) using Jensen inequality and taking into account that
exp{—y} < (1 +y)~ 1 In{y} <y — 1, it follows that

Use of (6.34) in (6.33) giver\(t,,,) = Ag(tm) results in the required contradiction
Ao(tm) = A(t,,). The validity of the proved result for the arbitrary time intervak

tm <t <ty follows by induction, taking into account Remark 5.

Theorem 7. Suppose IP[z4; (22)§, (n°)5] is the information amount, attained on the
coding functionals (6.5), (6.6). The property takes place

I [45 (=)0, (0°)5'] = sup L4320, 157], (6.35)
where the supremum s taken for all {i(-);g(-)} € K = {H;G} and

19 [ (20 ()] = (1/2) S In[L+ (§(t)/V (2:))]

t; <t

+(1/2) U (R’l(a)ﬁ(a) —Q(o) [(AO(U))‘1 - D*l(g)]) da} (6.36)
0

Proof. From (6.27), taking into account (3.24), (3.25), foK t; < t,,, < t it follows

I [z 2,5 = (1/2) D MAI[C(n(t:), z|z1,)/Cn(ti), 2)]}

Tgtigt

+(1/2)(jR_1(0)M { [ 2f) — K72 2} do
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t
- / Qo) [M {(J[zs]}— D~ (0)] da). (6.37)

Use of (6.28), (6.34) in (6.37) yields that[z,; 25, ni*] < I7[], wherel;[] is defined

by the right part of the formula (6.36). Use of (3.25), (4.34), (6.5), (6.6), (6.12), (6.16) in
(6.37) yields that the upper bourfl]-] for I;[-] is attained on the coding functionai$(-)
andg®(-) in the form of (6.5), (6.6). Consequently (6.35) has been proved for,,, < t.

The validity of the result for the initial time intervél, 7] also follows taking into account
Remark 5.

REMARK 7. Itis obvious that fod}[-] is equivalent to (6.37) the differential-recurrence
presentationi?[-] on the intervalg,, <t < t,, 11 is defined by the equation

d1} [z ()5, ()] /dt = (1/2)(3—1(15)}3@)

—Q) [(A°(1) =D )] ) (6.38)
with the initial conditionz [] =I? _o[z,.; (z°)5, (n°)g~ "] + AL [], where
AL [we,; (2°)5, 1 (tm)] = (1/2) 1+ (§(tm)/V (tm))] - (6.39)

Since capacityC[0,T] of the transmission channel is defined in the form of
C[0,T] = sup{(1/T)Ir[]} (Gallager, 1968; Liptser and Shiryayev, 1977; 1978) then
according to Theorem 7 for the class of signals (6.1) by continuous-dicrete way of trans-
mission (6.2), (6.3) the coding functionals (6.5), (6.6) provide the transmission of a ma-
ximum possible information amount.

7. Conclusion

1. As it follows from the considered particular problem of paragraph 5 presence of
memory may both increase and decrease information efficiency of observations.

2. Obtained theoretical result can be applied for information efficiency analysis of
the continuous-discrete time observation system of stochastic objects, and also for
solution of information theory standard problems in the considered class of the pro-
cessesy, zt, 1)(t,, ) as an optimal of stochastic signals transmission on condituous-
discrete memory channels and for research of the capacity of these channels.
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Informacijos kiekio radimas bendrai stochastiniy procesy filtracijos
ir apibendrintos interpoliacijos problemai atzvilgiu tolydzios ir
diskreCios atminties stelgjimy

Nikolas DYOMIN, Irina SAFRONOVA, Svetlana ROZHKOVA

Darbe nagriejami bendros stochastinproces filtracijos ir apibendrintos interpoliacijos in-
formaciniai aspektai, kai yra stebimaskompomergs tolydziame arba diskteame laike. Rastos
Senono informacijos kiekio evoliucijos pereinanagb Bendri rezultatai yra taikomi informacijos
kanaly efektyvumui ir stochastinisignall perdavimo optimalumui tirti.



