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Abstract. Reinforcement learning addresses the question of how an autonomous agent can learn to
choose optimal actions to achieve its goals. Efficient exploration is of fundamental importance for
autonomous agents that learn to act. Previous approaches to exploration in reinforcement learning
usually address exploration in the case when the environment is fully observable. In contrast, we
study the case when the environment is only partially observable. We consider different exploration
techniques applied to the learning algorithm “Utile Suffix Memory”, and, in addition, discuss an
adaptive fringe depth. Experimental results in a partially observable maze show that exploration
techniques have serious impact on performance of learning algorithm.
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1. Introduction and Problem Statement

Reinforcement learning (Suttonet al., 1998; Kaelblinget al., 1996; Mitchel, 1999) ex-
amines how an autonomous agent (Maes, 1994) that senses and acts in its environment
can learn to choose optimal actions to achieve its goals. It is related to the problem how
such agents can learn successful control policies by experimenting in their environment.
It is assumed that the goals of the agent can be defined by a reward function that assigns
a numerical value to each distinct action the agent may take from each distinct state. The
task of the agent is to perform sequences of actions, observe their consequences, and to
learn a control policy. It is desired to find a control policy that maximizes the reward
accumulated over time by the agent.

The problem of learning a control policy to maximize cumulative reward is very gen-
eral and covers many problems beyond robot learning tasks. This includes, for example,
manufacturing optimization problems or sequential scheduling problems.

The task of the agent is to learn a target function that maps each possible state to the
optimal action. This learning task is defined as a Markov decision process. In the Markov
decision process the agent can perceive a set of distinct states of its environment and has
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a set of actions that it can perform. At each discrete time step, the agent senses the current
state, chooses a current action, and performs it. The environment responds by giving the
agent a reward and by producing the succeeding state. The structure of the environment
is not known to the agent and is presented by a black box.

Usually in practice multiple situations are indistinguishable from immediate percep-
tual input. These multiple situations may require different responses from the agent.
Usual reinforcement learning techniques, such asQ-learning (Mitchel, 1999), can’t be
applied in partially observable domains. So, there is a need to solve this incomplete per-
ception problem. One of the possible ways is to use short-term memory. This short-term
memory is used to overcome the incomplete perception problem. Using the short-term
memory it is possible to distinguish multiple situations that are indistinguishable from
immediate perceptual input.

Efficient exploration plays a fundamental role (Thrun, 1992b) for autonomous agents
that learn to act. In many reinforcement learning algorithms undirected exploration tech-
niques are used. While undirected exploration techniques, e.g., random walk exploration,
utilize no exploration-specific knowledge and ensure randomness into action selection,
directed techniques rely on knowledge about the learning process itself, allowing for ex-
ploring in a more directed manner (Thrun, 1992a). In many finite deterministic domains,
any learning technique based on undirected exploration is inefficient in terms of learning
time, i.e., learning time is expected to scale exponentially with the size of the state space
(Whitehead, 1991).

Efficient exploration in partially observable domains is a special difficulty (Chrisman,
1992). Previous approaches (Thrun, 1992a; Sutton, 1990) to exploration in reinforcement
learning usually address exploration in the case when the environment is fully observable.
In contrast, McCallum (McCallum, 1997) considers efficient exploration in the partially
observable environment. In our study, we continue this research by experimental com-
paring of McCallum’s techniques with some other different approaches. Like McCallum,
we also use his learning algorithm “Utile Suffix Memory” (USM).

2. Efficient Exploration with USM

Utile Suffix Memory (McCallum, 1995) is a reinforcement learning algorithm that uses
variable amounts of short-term memory in order to solve tasks in partially observable
environments. USM organizes its short-term memory in a Suffix Tree (Ronet al., 1994).
The agent maintains, using dynamic programming, learnedQ-values – estimates of ex-
pected future discounted reward for each state-action pair. TheseQ-values are used for
action selection. The leaves of the tree are the internal states of the agent (see Fig. 1;
percepts are indicated by integers, actions by letters; fringe nodes are drawn in dashed
lines; nodes labeled with aQ are nodes that holdQ-values).

The leaves may have different depths in different parts of the tree. Deeper branches of
the tree correspond to the distinctions based on observations and actions further back in
time. The structure can be understood as an-order Markov model (i.e., a lengthn history
window) with varying n in different parts of state space.
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Fig. 1. A USM-style suffix tree.

Before learning, the tree begins with a single layer of nodes below the root (an order-0
Markov model, no memory), then during training, the tree grows as the agent discovers
what memories are relevant to the task at hand. It finds these relevant memories by adding
branches to the tree below which are normally considered the leaves, and then performing
a Utile Distinctions Test on the hypothesis distinctions. The test asks the question “Is there
a statistically significant difference between the utilities (utility is calculated usingQ-
values) of the newly distinguished states?” When answer is “Yes” it means that we have
found a violation of the Markov property, and the hypothesis distinctions are promoted to
official leaves of the tree, thus becoming real distinctions of agent’s internal state space.
The layers of hypothesis distinctions are called “fringes”. The depth of the fringe is a
configurable parameter of USM.

2.1. Keeping Exploration Statistics in States or Fringes

USM has shown efficient learning in the partially observable domain (McCallum, 1995).
However, originally USM uses only undirected exploration technique: it selects a random
action with probabilitye. McCallum (1997) has improved that property, he has proposed
three more effective techniques. We will consider two techniques that have shown the
best results, these are:

• Counter-based Exploration uses counts of the number of times an action was taken
from a particular state (or fringe), and tries to choose actions that have been chosen
less frequently;

• Recency-based Exploration (Sutton, 1990) uses counts of the number of time steps
that have passed since an action was taken from a particular state (or fringe).

He has considered two cases: exploration statistics is associated with states (this is
usual for reinforcement learning) or it is associated with fringes in the same manner.
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2.2. Giving the Internal Reward for Exploration

We have found that McCallum techniques may fail in the case when the environment
isn’t reversible, for example, if there are one direction ways. In the last case, it may
be difficult to find a goal first time. USM usesQ-values to discover distinctions in the
environment, but theseQ-values are accessible only when the agent has reached the goal
and has received the reward from the environment at least one time. Until this, agent
is unable to discover history distinctions and, thus, is unable to overcome incomplete
perception problem. This problem can be solved by giving the agent additional internal
reward for state space exploration. Receiving additional internal reward for exploration
USM optimizes its control policy not only for exploiting the environment but also for
exploration in the same manner.

We rely on hypothesis thatthe perceptual distinctions discovered during exploration
will help the agent to reach the goal state. In general, there is no principal difference
between exploitation and exploration because in both cases the goal is to reach some
special states of the world. In many cases distinctions needed for reaching the goal state
are also needed for reaching some particular state.

For each step in the world, the USM does one step of value iteration (Bellman, 1957),
with the leaves of the tree as states. Value iteration consists of performing one step of
dynamic programming on theQ-values:

Qnew(s, a)← R(s, a) + γ
∑
s′

Pr (s′|s, a)U(s′), (1)

whereQ(s, a) are estimates of the expected future discounted reward for executing action
a from states, R(s, a) is the estimated immediate reward for executing actiona from
states, Pr(s′|s, a) is the estimated probability that the agent arrives at states′ given
that it executed actiona from states, andU(s′) is the utility of states′, calculated as
U(s′) = maxa Q(s′, a).

We propose to give the agent the reward for exploration by modifying the above value
iteration procedure in this way:

Qnew(s, a)← R(s, a) + γ
∑
s′

Pr(s′|s, a)U(s′) +
1
α

ER(s, a), (2)

whereER(s, a) is the internal reward for exploration – the reward for executing action
a from states, andα is a constant gain weighting exploration versus exploitation. This
exploration technique means that there is no need to use any additional undirected or di-
rected exploration for action selection. The agent can deterministically choose the action
with highestQ-value. The idea of using dynamic programming for efficient exploration
has been considered by (Sutton, 1990), but it was applied only in fully observable do-
mains.

The reward for exploration can be calculated in different ways, but we consider only
two:
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• Counter-based Exploration:

ER(s, a) =




δ
t

n
− c(s, a)

c(s, a) + 1 if c(s, a) < δ
t

n
,

0 otherwise;

(3)

• Recency-based Exploration:

ER(s, a) =




(
ρ(s, a)− n

δ

) δ

n
if ρ(s, a) >

n

δ
,

0 otherwise;
(4)

whereδ is a constant(0 < δ < 1) that defines how frequently each state-action pair must
be explored,c(s, a) (see formula 3) is the number of times actiona was executed from
states, ρ(s, a) is the number of steps since actiona was last executed from states, n is
a total amount of state-action pairs, calculated asn = (|A| × |S|), |A| is the count of
possible actions,|S| is the count of internal agent states (i.e., official leaves), andt is the
current time moment.

When selecting values of parameterδ, it is necessary to take into account its meaning

– the agent tries to explore the states of the environment until the conditionc(s, a) � δ
t

n
(or ρ(s, a) � n

δ
) holds for each states and each actiona. Too strong condition selection

may destroy the learning process.

2.3. Exploration Based on Expected Counter Value

Additionally, for comparison purposes we consider one more counter-based exploration
technique (Thrun, 1992a). McCallum has used (McCallum, 1997) only action-frequency
statistics kept in the current state for action selection but Thrun has described (Thrun,
1992a) the way to use the expected counter value. The action count is considered in
conjunction withQ-value to arrive at an exploration-adjusted utility value according to
the following formula:

Eval(s, a) = αQ(s, a) +
c(s)

E[c|s, a]
, (5)

whereE[c|s, a] denotes the expected counter value of the state obtained by applying
actiona at states, c(s) counts how often states occurred. The agent deterministically
chooses the action with highestEval.

3. Experimental Results

USM with different exploration techniques has been tested using ANIMAT problem (Wil-
son, 1985). It is a local perception grid world (see Fig. 2). The essence of this problem is
searching for immovable goals in a maze.
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Fig. 2.World1 (state1 andstate2 are perceptually identical).

The agent’s life consists of several cycles: it is placed in a random empty cell, after
which the agent has to find the goal (marked “F”) searched with the least possible number
of steps. Initially the agent has no any knowledge on the environment. Each cycle can be
treated as a task solved by the agent. In the course of cycle execution the agent has to
learn to quickly find this object.

The agent can move only to nearest empty cells (eight possible directions mean eight
possible actions that the agent can execute). If the agent tries to move onto barrier, it stays
at the same position. This creates many cycles in the environment, and makes the learning
task more difficult. The agent can perceive only the containment of nearest eight cells.
So, there are different, but perceptually identical, world states.

Additionally, the cells can contain special symbols – arrows. These are normal empty
cells, except the agent can move only in the direction defined by a corresponding arrow
(in other case it stays in the same position).

The agent receives reward100 upon reaching the goal (marked “F”). The agent used
a temporal discount factor,γ = 0.9, and a fringe of depth5. Other parameter settings are
presented in Table 1. We have found experimentally that these settings are most appro-
priate.

Table 1

Parameters used for the simulation (α – constant gain weighting exploration versus exploitation;δ – constant
defining state-action pairs exploration frequence;e – exploration probability)

Exploration kind e α δ

Undirected exploration 0.1

McCallum’s Statistics Counter-based 10

exploration in states Recency-based 4

techniques Statistics Counter-based 10

in fringes Recency-based 50

Giving the internal Counter-based 10 0.4

reward for exploration Recency-based 2 0.2

Exploration based on expected counter value 10
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To compare different exploration techniques, we have selected two grid worlds
world1 (see Fig. 2) andworld2 (see Fig. 6). Inworld1 the agent needs at average
9.8 ∗ 108 random steps to reach the goal from a typical cell. However,world2 is more
difficult. Firstly, it is much more complicated and larger, so, it is more difficult to learn it.
Then inworld2 the agent needs at average1.7∗1010 random steps to reach the goal from
a typical cell. And finally,world1 has only 2 perceptually aliased states, butworld2 has
38 perceptually aliased states. So, it is much more difficult to orient in it.

3.1. World1

USM with eight different exploration techniques has been tested inworld1 (see Fig. 2).
Fig. 3 shows the average number of steps (see “steps to goal”) performed by the agent
to reach the goal. The agent’s life consists of cycles: it is placed in a random empty cell,
after which the agent has to find the goal, so, “steps to goal” means the number of steps
in one cycle. After each cycle, the value “steps to goal” is calculated as an average value
using only last10% of all trials. Another axis labeled “steps” means time measured in
steps performed by the agent from the begging of experiment till the end. In the begging,
the agent needs much more time to reach the goal state than in the end, and the number
of “steps to goal” is converging to the theoretically optimal value. Additionally, Fig. 4
shows standard deviation of “steps to goal” that is converging to the zero value.

The undirected exploration technique or the techniques proposed by McCallum have
shown the negative results. These results aren’t presented because the agent hasn’t
reached the goal (the agent was able to do so only if it had been randomly placed near
to the goal cell). All other used techniques have shown approximately the same perfor-
mance, but Recency-based exploration has been less successful because the environment
is static and the actions performed at the beginning of learning aren’t less informative.

Why this simple grid world is so hard if the undirected exploration technique or the
techniques proposed by McCallum are applied? Because, it is very hard to reach the
goal in this world selecting random steps, for example, in our experiments the agent was
unable to reach the goal even performing106 random steps inworld1.

Fig. 3. The experimental results inworld1 (average of 10 runs).
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Fig. 4. The experimental results inworld1 (standard deviation of “steps to goal”).

Fig. 5. The dynamics of the step trace inworld1.

In contrast, Fig. 5 illustrates the dynamics of the step trace if the agent receives in-
ternal reward for exploration. The step trace is presented using a “vector-field” repre-
sentation of the agent movements, which indicates the number of actions executed at a
corresponding cell (the length of a vector is proportional to this number).

After 500 steps the agent hasn’t discovered any perceptual distinction, thus, it is un-
able to distinguish betweenstate1 andstate2. Then the agent makes multiple trials
of reaching any particular state from any other particular state.State1 andstate2 are
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presented as one internal state in the agent memory because these states are perceptually
identical. So, additional percepts (future back in time) can help to predict the success of
achieving some particular state from this internal state. Thus, the agent discovers per-
ceptual distinctions (it is not possible for original USM to discover distinctions before
receiving external reward) (see after2300 steps), and then after600 (see after2900 steps)
steps the agent reaches the goal using discovered distinctions.

After 20000 steps the agent has developed optimal control policy that efficiently com-
bines exploitation with exploration: the agent selects one action out of the most optimal
actions.

3.2. World2

USM with most successful exploration techniques has been tested in a harder environ-
mentworld2 (see Fig. 6). The key difficulty is existence of many perceptual identical
states that require different optimal actions. In our experiments the agent wasn’t able to
reach the goal even performing109 random steps inworld2.

Fig. 7 shows the average number of steps performed by the agent to reach the goal,
but Fig. 8 shows standard deviation of it. Very successful in the previous case exploration
based on the expected counter value has failed inworld2, and the results are not pre-
sented because the agent hasn’t reached the goal more than once during learning. Like
original USM this exploration technique is not able to discover distinctions before re-
ceiving external reward.World2 has so many perceptually identical states that it makes
impossible to perform efficient exploration without discovering distinctions. But it can be
improved giving internal reward for exploration.

Like in the previous case, the experimental results (see Fig. 7) show that the counter-
based exploration is more successful. In contract to the previous case, only near to optimal

Fig. 6.World2.
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Fig. 7. The experimental results inworld2 (average of10 runs).

Fig. 8. The experimental results inworld2 (standard deviation of “steps to goal”).

performance is achieved. At the same time the resulting step trace (see Fig. 9) (counter-
based exploration is applied) is optimal enough. That is because the efficient combination
of exploitation with exploration is harder achievable. Inworld1 most of states that need
exploration are situated on the main path to the goal but inworld2 there are many hard-
to-reach states that require many additional steps to reach them.

3.3. Distribution of the Internal Reward

The agent assigns the internal reward for exploration to each disctinct state-action pair.
To analyze the key features of the exploration techniques based on the internal reward
for exploration, we can use the distribution of this reward over the state-action pairs
(see Fig. 10). The presented distribution was computed at one particular time moment.

The form of the distribution consists of two parts: a small set of goals (on the right)
and other state-acton pairs (on the left). This form makes possible for agent to concentrate
on trying to achieve only hard-to-reach states – a small subset of all the internal states,
and to avoid the trials to achieve conflicting goals at one time moment.

It is possible to setup the form of such distribution by selecting values of parameterδ.
This value determine the exploration condition discussed before, so, too strong condi-
tion means too big set of goals, but too weak condition means too small set of goals.
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Fig. 9. The step trace inworld2 after80000 steps.

Fig. 10. The distribution of the internal reward for exploration over the state-action pairs (counter-based explo-
ration, experimental results inworld2).

Stronger exploration condition selection can speed up the learning process but may make
it unstable.

4. Adaptive Fringe Depth

Potential leaf nodes are represented in USM in a fixed-depth fringe, an extension of the
actual tree below the “official” leaf nodes. However, the use of a fringe of fixed depth
incurs a large cost in terms of tree size and provides a limited degree of lookahead capa-
bility. The addition of a fringe of fixed depth adds exponentially to the size of the tree that
must be stored or retained in memory. The same depth of fringe is maintained uniformly
below the leaf nodes of a tree, including those leafs that provide an adequate basis for
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prediction. So, to handle all these problems, the Greedy Util Suffix Memory (GUSM)
algorithm was introduced (Breslow, 1995).

GUSM has the adaptive fringe depth. It uses a positive criterion for splitting a leaf
node, similar to that used in USM, based on the immediate advantage of node splitting
and resultant tree expansion. In addition, GUSM includes a negative split criterion, based
on the inadequacy of a leaf node and the state it represents for determining the next
correct action to take.

On the basis of this negative criterion, the agent can expand a tree below a leaf node of
inadequate predictivity until it reaches a leaf node that is predictive. Rather than requiring
a large fixed-depth fringe to handle hard problem, GUSM can handle all such problems
with a fringe of depth 1.

The negative criterion used in GUSM is satisfied if a leaf node fails to offer a clear
action recommendation. Specifically, it is satisfied if the recommended action in the node
is not significantly superior to the action having the second-highestQ-value.

Experimental results in (Breslow, 1995) show that GUSM is able to solve problems
on which USM will sometimes fail (i.e., depending on the setting of the fringe depth
parametr).

In the previous section, the most efficient exploration technique – exploration based
on internal reward was applied to USM that uses only fixed-depth fringe. That’s why,
we have applied GUSM ideas to USM with the exploration technique based on internal
reward.

Fig. 11 shows the comparison of GUSM with USM inworld2. In both cases, the
agent uses exploration technique based on the internal reward.

In our experiments, we have not used the full GUSM implementation, instead, we
have applied only the idea of the negative criterion for the fringe depth increasing. At
each time, the agent has performed a simple test: if theQ-value of the best action differs

Fig. 11. The comparing of GUSM with USM inworld2.
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from theQ-value of the action having the second-highest value by value smaller than
10−7 then the agent increase the depth of the current fringe node by1.

Additionally, the agent used a different constant gain weighting exploration versus
exploitation,α = 1

3 , instead ofα = 10, and a fringe of depth1, instead of5.
So, GUSM with a fringe depth 1 has shown approximately the same performance

as USM with a fringe depth 5. That means that resulting learning algorithm was able
not only to discover perceptual distinctions before receiving external reward from the
environment but also to adapt its lookahead capability.

5. Conclusions

Eight different exploration techniques applied to the learning algorithm “Utile Suffix
Memory” have been considered and experimentally tested in the paper. The exploration
techniques that use internal reward for exploration have shown the best learning results.

The hypothesis thatthe perceptual distinctions discovered during exploration will
help the agent to reach the goal state has been successfully confirmed in experimental
way. In case of using internal reward for exploration the agent has been able to discover
perceptual distinctions before receiving external reward from the environment while it is
not possible using other exploration techniques.

In addition, the exploration technique has been successfully applied to Greedy Utile
Suffix Memory, that provides adaptive fringe depth.

Experimental results in a partially observable maze show that exploration techniques
have serious impact on performance of learning algorithm.
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Sustiprinto mokymosi efektyvus tyrimas remiantis “Utile Suffix”
atmintimi

Arthur PCHELKIN

Sustiprintas mokymasis nagrinėja kaip autonomiški agentai mokosi išsirinkti optimalius tikslo
atžvilgiu veiksmus, t.y. agentai mokosi efektyviai tirti aplink↪a. Egzistuojantys darbai sustiprinto
mokymosi srityje paprastai nagrinėja uždavinius su pilnai stebima aplinka.Čia nagriṅejamas už-
davinys, kuriame aplinka stebima tik iš dalies. Pasiremdami USM (angl. “Utile Suffix Memory”) al-
goritmu, naudojaňciu medžio tipo atminties struktūr ↪a, nagriṅejame↪ivairius aplinkos tyrimo b̄udus,
tame tarpe panaudojant adaptyvaus gylio medžius. Eksperimentiškai parodoma, kad aplinkos ty-
rimo būdo parinkimas iš dalies stebimame labirinte daro didel↪e ↪itak ↪a mokymosi algoritmo at-
likimui.


