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Abstract. This paper discusses the linear periodically time-varying (LPTV) system parameter es-
timation using a block approach. An block algorithm is proposed for optimal estimation of the
parameters of LPTV system from the input sequence and the output sequence corrupted by ad-
ditive Gaussianly distributed noise. In the proposed method, the least squares error criterion has
been used.The algorithm provides a useful computational tool based on an appropriate theoretical
foundation for parameter estimation of linear time-invariant (LTI) systems from input and output
data. Simulation results are presented that demonstrate the performance of the approach.
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1. Introduction

The problem of estimating parameters from noisy observed data has a long history in
engineering and experimental science in general. These problems have been analysed
in a large number works in many different fields (Ljung, 1999; Iserman, 1981; Eykhoff,
1974). Among many models, the autoregressive moving average (ARMA) model is one of
the most effective and practical. When the observations and the unknown parameters are
related by a linear model, and a stochastic setting is assumed, then the application of the
maximum likelihood principle (Berger and Wolpert, 1988) leads to the well known least-
squares parameter estimate. Main reason for the popularity of ARMA modeling is that it
is possible to obtain good estimates of the unknown parameters by solving a simultaneous
set of linear equations. Many well-known techniques developed for statistical time series
analysis have been used successfully in the deterministic case (Jackon, 1986).

A linear periodically time-varying discrete-time system with periodL is a system for
which a shift in the input sequence byL samples results in a shift ofL samples in the out-
put sequence. These systems are a generalization of linear time-invariant (LTI) systems
and are used frequently in control systems, signal processing and digital communications
(Mehr and Chen, 2001; Shenoyet al., 1994; Vaidyanathan, 1993). There are many ways
to represent LPTV systems: common ones include difference equations or state-space
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models with periodically time-varying coefficients, equivalent linear time-invariant mod-
els obtained by the blocking technique. For an LTI system, we can relate the inputs and
outputs of the system by a transfer matrix. For a LPTV system, we may use the block
model of the system (Meyer and Burrus, 1975; Chen and Qiu, 1997; Kazlauskas, 1997).

This paper deals with the problem of estimating the parameters of an LPTV system.
The least squares fitting error has been chosen as the objective optimality criterion. Seve-
ral simulation examples demonstrate the performance of the proposed approach.

The paper is arranged as follows: in Section 2, the problem is formulated. In Sec-
tion 3, the block model is defined. In Section 4, the nonrecursive estimation procedure is
presented. In Section 5, several simulation examples are given. Finally, in Section 6, the
paper is concluded with a discussion on the proposed algorithm.

2. Problem Formulation

It is assumed that a LPTV system is causal, linear with input sequencex(k), k = 0, 1, . . .
and output sequenceu(k), k = 0, 1, . . ., so that it can be described by a linear difference
equation

u(k) =
N∑

i=0

βi(k)x(k − i)−
M∑

j=1

αj(k)u(k − j), k = 0, 1, . . . ; N � M. (1)

The measured outputy(k) is assumed to be contaminated with the measurement noise
n(k)

y(k) = u(k) + n(k).

Equation (1) isL-periodic, i.e., parameters of LPTV system satisfies conditionsαj(k) =
αj(k + L), βi(k) = βi(k + L) for all k = 0, 1, . . . ;L is periodicity,L = 2, 3, . . .

A noisen(k) is a nonmeasurable, normally distributed, statistically independent (dis-
crete white noise) withE{n(k)} = 0, E{n(k)n(k + τ)} = σ2

nδ(τ), whereE{n(k)}
is a mean value,σ2

n is the variance andδ(τ) is the Kronecker delta function. The basis
of LPTV parameter estimation is the set of data{x(0), x(1), . . . , x(T ), y(0), y(1), . . . ,
y(T )} of observations of the input sequence {x(k)} and the noisy output sequence
{( y(k)}, k = 0, 1, . . . , T .

The purpose of the paper is to investigate the block parameter estimation approach in
the case of additive noisen(k), k = 0, 1, . . ., acting on the output of the LPTV system
(1) to be estimated.

3. Block Model

The objective of parameter estimation is to estimate the LPTV system parameters in (1)
based on measured sequencesx(k) andy(k). It is assumed that theM andN are known
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a priori. If this is not the case they can be determined by order search methods (Iserman,
1974). The noisen(k) is assumed to be stationary.

Consider that the input sequencex(k) and the output sequencey(k) of the LPTV sys-
tem are measured fork = 0, 1, . . . , T . The model of the LPTV system can be described
by a linear difference equation

y(k) +
M∑

j=1

aj(k)y(k − j) −
N∑

i=0

bi(k)x(k − i) = e(k), k = 0, 1, . . . ; N �M,

whereaj(k) = aj(k+L) andbi(k) = bi(k+L) – parameters of the model. The equation
error (residual)e(k) arises from the noise contaminated outputy(k) and from erroneous
parameter estimates.

Replacingk by l + (m − 1)L and blocking the input sequencex(k) and the output
sequencey(k), we obtain the equation of the block model

y(l + (m− 1)L) +
M∑

j=1

aj(l)y(l + (m− 1)L− j)

−
N∑

i=0

bi(l)x(l + (m− 1)L− i) =e(l + (m− 1)L),

or

y(l + (m− 1)L) =
N∑

i=0

bi(l)x(l + (m− 1)L− i)

−
M∑

j=1

aj(l)y(l+ (m− 1)L− j) + e(l+ (m− 1)L), (2)

wherel = M + 1, . . . ,M + L; m = 1, 2, . . . , p; p = fix((T −M − 1)/L) – rounds
the (T −M − 1)/L to the nearest integer towards zero.

The system of linear equations (2) can be expressed in a matrix form as follows:

ȳ(l) = A(l)θ(l) + ē(l), l =M + 1, . . . ,M + L, (3)

where

ȳ(l) = [y(l), y(l+ L), . . . , y(l+ (m− 1)L), . . . , y(l + (p− 1)L)]T (4)

is ap-element vector,

θ(l) = [b0(l), . . . , bi(l), . . . , bN(l), a1(l), . . . , aj(l), . . . , aM (l)]T (5)
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is a (N +M + 1)-element vector,

ē(l) = [e(l), e(l+ L), . . . , e(l + (m− 1)L), . . . , e(l + (p− 1)L)]T

is ap-element vector,

A(l) =

=




x(l), . . . , x(l−i), . . . , x(l−N),−y(l−1), . . . ,−y(l−j), . . . ,−y(l−M)
. . .

x(l+(m−1)L), . . . , x(l+(m−1)L−i), . . . , x(l+(m−1)L−N),
−y(l+(m−1)L−1), . . . ,−y(l+(m−1)L−j), . . . ,−y(l+(m−1)L−M)

. . .

x(l+(p−1)L), . . . , x(l+(p−1)L−i), . . . , x(l+(p−1)L−N),
−y(l+(p−1)L−1), . . . ,−y(l+(p−1)L−j), . . . ,−y(l+(p−1)L−M




(6)

is a(p× (N +M + 1)) data matrix.

4. Nonrecursive Estimation Procedure

Definexl(m) = x(l+(m−1)L) andyl(m) = y(l+(m−1)L), then errors of the block
model (2)

el(m) = yl(m) +
M∑

j=1

aj(l)yl(m− j) −
N∑

i=0

bi(l)xl(m− i),

m = 1, 2, . . . ; l = M + 1, . . . ,M + L,
(7)

whereel(m) = e(l + (m− 1)L) .
Minimization of the loss functions

Vl = min
θ(l)

ēT (l) ē (l) =
p∑

m=1

e2(l + (m− 1)L), l = M + 1, . . . ,M + L, (8)

and therefore∂Vl

∂θ(l)

∣∣∣
θ(l)=θ̂(l)

= 0, l = M+1, . . . ,M+L results in the optimal parameter

estimation. Assuming thatA is full rank, the least squares solution of the overdetermined
system of linear equations (2) is

θ̂(l) = (AT (l)A(l))−1AT (l)ȳ(l), l = M + 1, . . . ,M + L. (9)

whereθ̂(l) = [b̂0(l), . . . , b̂i(l), . . . , b̂N(l), â1(l), . . . , âj(l), . . . , âM (l)]T are the optimal
estimates.

The parameter estimation problem has been transformed into an one-dimensional
minimization problem (8) forL sets parameters of the LPTV system. This is nonrecur-
sive parameter estimation as the parameter estimates are obtained only after measuring
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and storing of all signal values. Apart from using the standard least squares approach,
the overdetermined system of equations (3) can be solved using the total least squares
method (Golub and Van Loan, 1983). This method assumes that there are estimation er-
rors in the elements of bothA andȳ. A andȳ are then modified so that the rank of the
extended matrix[A ȳ] equals to rank ofA.

Using the backward time-shift operatorz−1 such thatz−1y(k) = y(k− 1), the block
model (2) can be described in the form

el(m) = Al(z−1)yl(m) −Bl(z−1)xl(m),

l = M + 1, . . .M + L, m = 1, 2, . . . , (10)

where

Al(z−1) = 1 + a1(l)z−1 + . . .+ aM (l)z−M ,

Bl(z−1) = b0(l) + b1(l)z−1 + . . .+ bN(l)z−N

OperatorsAl(z−1) andBl(z−1) depend on parametersai(l) andbj(l). The errorsel(m)
of the block model are linear functions of the parameters.

The block estimation of the LPTV system parameters is shown in Fig. 1.The input
and the output registers reduce (decimate) the sampling rate of the input sequencex(k)
and of the output sequencey(k). The sampling rate reduction is achieved by forming the
subsequencesxM+i(m) andyM+i(m), i = 1, 2, . . . , L and by saving everyLth sample
of the sequencesx(k) andy(k). The decimation factor is equal to the periodicity of the
LPTV system, i.e., to the block lengthL of sequencesx(k) andy(k). The subsequencies
xM+i(m) andyM+i(m), i = 1, 2, . . . , L at the outputs of registers are used for the
parameter estimation. The parameter estimation we begin at the time momentl = M+1,
whereM is the order of the LPTV system. The estimation procedure can be accomplished
in a parallel manner forl = M + 1, . . . ,M + L (see Fig. 1).

In case the LPTV system periodicityL is unknown, we can repeat the parameter
estimation process with different periodicity valuesL∗ = 2, 3, and so on. IfL∗ �= L

(L is a true system periodicity), then we obtain large values of loss functions (8) and
bad parameter estimates, because the elements of the data matrixA(l) are not such as

Fig. 1. The block estimation of the LPTV system parameters.
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they must be in (6). In caseL∗ = L, we obtain small values of loss functions (8) and
optimal parameter estimates because the elements of the data matrixA(l) are just like
they must be in (6). Then, by repeating the estimation process with different values of
the periodicityL∗, calculating loss functions (8), and comparing these values, we can
estimate the true value of the LPTV system periodicityL.

5. Numerical Simulation

In this section we apply the described method to an example of LPTV system. The LPTV
system to be simulated is described by a linear difference equation

y(k) =
2∑

i=0

βi(k)x(k − i)−
2∑

j=1

αj(k)y(k − j) + λn(k), k = 0, 1, . . ., (11)

where

β0(0) = 1, β0(1) = 1.2, β0(2) = 1.5, β1(0) = 2, β1(1) = 2.2,
β1(2) = 2.5, β2(0) = 3, β2(1) = 3.2, β2(2) = 3.5, α1(0) = −1.1197,
α1(1) = −1.5, α1(2)=−1.036, α2(0)=0.3012, α2(1)=0.7, α2(2)=0.2636.

The periodicityL of the LPTV system (1) is equal to 3. The noise sequencen(k) is
generated as a zero-mean, unit-variance white noise sequence with a Gaussian distribu-
tion.λ is a constant that determines the intensity of additive noisen(k).

The sequences, including that of the noisen(k), k = 0, 1, . . . , 500 where gener-
ated using the MATLAB functions. For calculation of the LPTV system output we used
MATLAB m-file PERIOD. The matrix (6) was formed by usingm-file MATRICA.

The performance of the estimated model is summarized in Table 1, in which signal to
noise ratio (SNR) is defined asSNR = 20 log10

σu

σn
, whereσu – standard deviation (std)

of the LPTV system output without noise,σn – standard deviation of the noisen(k).
In Table 1α andβ are true parameters of the LPTV system andâ and b̂ are averaged
estimated parameters of the model.

For calculation of averaged estimated valuesâ andb̂we repeated estimation procedure
(9) 500 times, obtained 500 sets of estimated values, then calculated mean and standard
deviation of the estimated values for SNR = 43, 28, 22, 16 and 12 dB.

In Fig. 2 we show how the estimation quality of the LPTV system parameters depends
on the number of processed observations for SNR = 12 dB. We defined a measure of the
parameter estimation quality as:

B0 =

∣∣∣β0(0) − b̂0(0)
∣∣∣

|β0(0)| · 100%, A1 =
|α1(0) − â1(0)|

|α1(0)| · 100%, (12)

and so on, wherêb0(0), â1(0) denote averaged estimated parameters andβ0(0), α1(0)
denote true parameters of the LPTV system at time moment 0.
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Table 1

LPTV system parameter estimation using block model. True parameters and averaged estimated parameters of
the LPTV system (11) via SNR (dB)

True parame-
ter values

β0(0) = 1 β1(0) = 2 β2(0) = 3 α1(0) =
−1.1197

α2(0) =
0.3012

SNR
(dB)

Estimated
values

b̂0(0) b̂1(0) b̂2(0) â1(0) â2(0)

mean 1.0026 2.0026 3.0011 −1.1188 0.3004 43

std 0.0341 0.0379 0.0322 0.0071 0.0072
mean 1.0082 2.0281 3.0510 −1.0997 0.2827 28

std 0.1267 0.1929 0.1658 0.0453 0.0370

mean 1.0109 2.1205 3.1723 −1.0473 0.2346 22

std 0.2510 0.2847 0.2963 0.0557 0.0544

mean 0.9939 2.3361 3.5897 −0.9072 0.1060 16

std 0.4370 0.5232 0.7051 0.1295 0.1138

mean 0.9995 2.5328 3.9647 −0.7579 −0.0151 12

std 0.7933 0.9071 0.8420 0.1444 0.1324

True parame-
ter values

β0(1)=1.2 β1(1)=2.2 β2(1)=3.2 α1(1)=−1.5 α2(1)=0.7

Estimated
values

b̂0(1) b̂1(1) b̂2(1) â1(1) â2(1)

mean 1.1983 2.1976 3.2006 −1.4990 0.6997 43

std 0.0754 0.0824 0.0455 0.0164 0.0168

mean 1.2032 2.2618 3.2880 −1.4625 0.6654 28

std 0.1890 0.1957 0.2112 0.0432 0.0429

mean 1.1739 2.3298 3.4876 −1.3712 0.5829 22

std 0.3531 0.3460 0.3442 0.0814 0.0778

mean 1.1687 2.6061 4.0788 −1.1184 0.3461 16

std 0.7193 0.5577 0.9445 0.1850 0.1556

mean 1.2662 2.8081 4.6689 −0.8914 0.1482 12

std 0.8800 0.9134 1.2331 0.1792 0.1676

True parame-
ter values

β0(2)=1.5 β1(2)= 2.5 β2(2)=3.5 α1(2) =
−1.036

α2(2) =
0.264

Estimated
values

b̂0(2) b̂1(2) b̂2(2) â1(2) â2(2)

mean 1.5010 2.5005 3.5008 −1.0358 0.2635 43

std 0.0232 0.0248 0.0335 0.0052 0.0054

mean 1.5100 2.5125 3.5353 −1.0239 0.2507 28

std 0.1327 0.1607 0.1407 0.0221 0.0228

mean 1.4853 2.5572 3.6224 −0.9950 0.2248 22

std 0.2524 0.2484 0.3270 0.0433 0.0447

mean 1.4998 2.6579 3.8708 −0.8998 0.1343 16

std 0.5572 0.5645 0.5186 0.0815 0.0803

mean 1.4563 2.8607 4.2015 −0.7816 0.0259 12

std 0.6437 0.7949 0.8443 0.1068 0.1050



220 K. Kazlauskas

Fig. 2. The quality of the LPTV system parameter estimation vs the number of processed observations.
SNR = 12 dB.

The impulse responses of LPTV system (full lines) and impulse responses of the
estimated system (dotted lines) for time moments 0,1 and 2 in case SNR = 12dB are
shown in Fig. 3.

Fig. 3. Impulse responses of the LPTV system (11) (full lines) and the impulse responses of the estimated LPTV
system (dotted lines). SNR = 12 dB.
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Fig. 4. Magnitude frequency responses of the LPTV system (11) (full lines) and magnitude frequency responses
of the estimated LPTV system (dotted lines). SNR = 12 dB.

In Fig. 4 we show magnitude of the frequency responses of LPTV system (full lines)
and magnitude of the frequency responses of the estimated system (dotted lines) for 0,1,
and 2 time moments in case SNR = 12 dB.

6. Conclusion

We have discussed a block parameter estimation method for linear periodically time-
varying systems. Its performance strongly depends on the noise level and does not pro-
vide satisfactory parameter estimation results when the noise level is high. The estimated
values are seen to be close to the true parameter values at high SNR. This property can be
confirmed by the analysis of the simulation results of Table 1. We show that the parallel
parameter estimation structure can be realized. If periodicityL = 1, the block method
reduces to the conventional LTI system parameter estimation method. The results of nu-
merical simulation of the LPTV system by computer show efficiency of the proposed
approach.
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Tiesini ↪u periodiškai kintam ↪u sistem ↪u parametr ↪u optimalus

↪ivertinimas

Kazys KAZLAUSKAS

Nagriṅejamas tiesini↪u periodiškai kintam↪u sistem↪u blokinis parametr↪u ↪ivertinimo metodas. Šio
metodo efektyvumas labai priklauso nuo triukšmo lygio. Jei triukšmo lygis žemas, tai gauname
parametr↪u ↪iverčius, artimus sistemos parametrams. Parodyta, kad parametr↪u ↪iverčius galima ap-
skaǐciuoti lygiagrěciai. Jei sistemos periodiškumas lygus vienetui, tai blokinis metodas sutampa
su tiesini↪u pastovi↪u sistem↪u parametr↪u ↪ivertinimo metodu. Modeliavimo rezultatai parodo blokinio
metodo efektyvum↪a.


