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Abstract. A partially blind signature scheme allows the signer to inoculate a non-removable com-
mon information into his blind signature. This common information may represent the date or the
amount of e-cash. Due to its un-traceablility and partial blindness property, the partially blind sig-
nature plays an important role in many e-commerce applications. Based on the RSA scheme, we
propose a partially blind threshold signature with low-computational load for the client.
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1. Introduction

In 1983, based on RSA, D. Chaum first introduced the blind signature (Chaum, 1983). In
a blind signature, the client requests the signer to sign on a blinded data. The client then
derives the wanted signature from the signed blind data. When the client finally hands
in the message and its signature, the signer is able to verify this signature, but is unable
to link this signed message to the previous signing process instance. The blind signature,
with this unlinkability (blindness or untraceability), is widely used in many e-commerce
protocol or voting protocol designs (Ferguson, 1993; Shamir and Schnorr, 1984; Fan and
Lei, 1998; Fanet al., 2000; Coronet al., 1999; Abe and Fujisaki, 1996; Lin and Harn,
1999; Juanget al., 1999).

The blindness property of the blind signature also makes the signer no opportunity
to impose some common information on the signature. However, in some applications,
a blind signature embedded with some common information is required. For exam-
ple, the common information may represent the amount of an e-cash or the valid term
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of the signature (Ferguson, 1993; Camenischet al., 1995; Juanget al., 1999). There-
fore, Chaum (1983) proposed to sign signatures with different secret keys to represent
different-amount e-cashes. This approach will, unfortunately, incur complex key mana-
gement and, therefore, limits the number of different amounts.

Using RSA, Abe and Fujisaki (1996) proposed a partially blind signature scheme in
which the signer can impose the common information, for example- date, on the signature
such that the verifier needs the message, the common information and the signature to
check the validity of this signature (Abe and Fujisaki, 1996). In their scheme, the bank
is clearly notified the common information- the expiration date of an e-cash. With the
partially blind signature, the bank assures that the signed e-cash carry the agreed common
information- expiration date. With this common information, the bank needs only to keep
the still-alive e-cashes in the database to prevent double spending (Chaum, 1983; Fan and
Lei, 1998; Abe and Fujisaki, 1996). Those expired e-cashes could be eliminated from the
database without any trouble. Thispartial blindness property preserves the un-linkability
of the blind signature, but imposes the common information on the signature.

Based on the Rabin scheme (Rabin, 1979), Fan and Lei (1998) proposed their low-
computation partially blind signature. Their scheme requires low computational load on
the client side. This makes it attractive for the low-computing-power client implementa-
tion (such as smart card or mobile phone). Because the Abe-Fujisaki’s RSA-based par-
tially blind signature incurs lots of computation on the client side, we (Chienet al., 2001)
had proposed a novel RSA-based partially blind signature with low computational load
on the client side.

Based on the discrete logarithm problem, Miyazaki, Abe and Sakurai (Miyazaki,
1997) proposed a partially blind signature, and proposed an efficient E-cash system
(Miyazaki and Sakurai, 1998) using the partially blind signature. Later, Juang and Lei
(1999), based on the discrete logarithm problem, proposed a partially blind(t, n) thre-
shold signature scheme in which anyt out ofn signers in a group can represent the group
to sign the partially blind threshold signature.

In this paper, we shall propose an RSA-based partially blind(t, n) threshold signature
in which anyt out of n signers in a group can represent the group to sign the partially
blind threshold signature and the computational load of the client side is very low, based
on Desmedt-Frankel’s threshold signature (1991). The proposed scheme only requires
several modular additions and multiplications for the client to acquire and to verify the
partially blind threshold signature. This feature makes it attractive for the smart-card-
based devices implementations. The rest of this paper is organized as follows. Section 2
reviews Desmedt-Frankel’s RSA-based threshold signature, and Section 3 presents our
partially blind threshold signature scheme. Section 4 examines the security properties.
Section 5 examines the performance of our scheme. Finally, the conclusion is given in
Section 6.

2. Review of Desmedt-Frankel’s Threshold Signature

Based on RSA, Desmedt and Frankel (1991) proposed(t, n) threshold signature schemes
in which anyt out ofn signers in a group can represent the group to sign the threshold
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signature. The public key of the RSA scheme is(e, N = p · q), wherep andq are large
strong primes. To apply the Lagrange interpolation to have a threshold scheme, it is not
trivial to circumvent the problem of calculating inverses in the exponent while theφ(N)
function and theλ(N) function (the Carmichael function) must remain secret to the group
members. Now we review Desmedt-Frankel’s threshold signature as follows.

Let A = {Signer1, Signer2, . . . , Signern} be the set of group members, where
Signeri has his identityIDi andIDi is odd.Trusted Authority (TA) choosesN = p · q
as the group’s RSA public key, wherep = 2p′ +1 andq = 2q′ +1 are two strong primes,
p′ andq′ are two large primes. Now the Carmichael functionλ(N) = 2p′q′. The group
secret keyd is chosen at random such thate · d ≡ 1 modλ(N) andgcd(d, λ(N)) = 1.
Sod is odd. Now(e,N) is the group public key, andd is the group secret key. To secretly
share the group secret key among members, TA has a secret polynomialf(x) of degree
t− 1, where the coefficients are even andf(0) = d− 1 modλ(N). TA computes

Si =
f(IDi)/2( ∏

j∈A
j �=i

(IDi − IDj)
)
/2

( modp′q′), 1 � i � n. (1)

Now TA secretly distributesSi toSigneri, 1 � i � n, as his secret shadow. Then the
polynomialf(x) can be reconstructed by the following equation without the calculating
of inverse (the correctness of (1), (2) was proved by Desmedt and Frankel (1991)).

f(x) =
∑
i∈B

Si

∏
j /∈B
j∈A

(IDi − IDj)
∏
j∈B
j �=i

(x− IDj)( mod2p′q′). (2)

Let B with |B| = t andB ⊂ A be the set of members who co-operate to sign the
threshold signature. Without lose of generality, we assumeB = {Signer1, Signer2, . . . ,
Signert}. Now the members ofB execute the following calculations to have the thre-
shold signature on messagem (m is a redundancy-contained message).

1. For eachSigneri ∈ B computesqi,B =
∏

j /∈B
j∈A

(IDi − IDj)
∏

j∈B
j �=i

(0 − IDj) and

si,B = Si · qi,B (please notice that
∑
i∈B

si,B = d− 1 modλ(N)).

2. For eachSigneri ∈ B signs the message by computingSigi,B,m =msi,B modN .
EachSigneri submits his partial signatureSigi,B,m to a combiner (who could be
one of the members). Then, the combiner computesSigm = m ·

∏
i∈B

Sigi,B,m as

the group threshold signature.

3. Partially Blind Threshold Signature

Based on Desmedt-Frankel’s threshold signature, we propose a partially blind threshold
signature in which the computational load of the client is low. In a partially blind thre-
shold signature scheme, the client would request a partially blind threshold signature from
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a group (which may be a company or a joint issuer consists of several banks). Firstly, the
client prepares a blinded data and the common information, and sends the data to the
group. If the group agrees on this common information, then they sign the blinded data
with the common information imposed on the signature, using the threshold signature
introduced in Section 2. The client, then, derives the signature from the signed message
without being able to remove or change the imposed common information. To success-
fully verify the signature, the signature holder should hand in the message, the signature
and also the agreed common information. So the agreed common information would be
genuinely shared among the client, the group and the verifiers. This common informa-
tion could represent the date or the amount of an e-cash, depending on its applications
(Chaum, 1983; Fan and Lei, 1998; Abe and Fujisaki, 1996; Juanget al., 1999).

Our scheme consists of four phases: (1) initialization, (2) requesting, (3) signing, and
(4) extraction and verification. TA publishes the necessary information and secretly dis-
tributes the shadowSi to the group members in the initialization phase. In the requesting
phase, the client prepares the common information and the blinded data, using some
blind factors and the message. The group, then, signs the blinded data with the common
information imposed on it. Finally, the client derives the signature from the signed data,
and verifies the signature in the extraction and verification phase. We now describe our
scheme as follows.

(1) Initialization. TA sets up the system parameters as in Section 2, bute = 3 and
gcd(e, λ(N)) = 1. TA publishes(e,N) as the group public key, and secretly is-
suesSi to the group memberSigneri, where the group is represented byA =
{Signer1, Signer2, . . . , Signern}. TA also publishes a secure one-way hash func-
tion such as SHA-1 or MD5 (Menezeset al., 1997).Let h( ) denotes the one-way
hash function, and h(m) denotes the hash value on the message m. Z∗

N denotes
the set of positive integers that are smaller than N and co-prime to N . That is,
Z∗

N = {x|1 � x � N , gcd(x,N) = 1}.

(2) Requesting.The client prepares the messagem and the common informationa, ac-
cording to the predefined format. He also randomly chooses three numbersr, r′ and
u, wherer, r′ andu ∈ Z∗

N . The client, then, computesα = (r3r′)eh(m)(u2 +
1) modN , and sends the pair(a, α) to the groupA.
AssumeB = {Signer1, Signer2, . . . , Signert} ⊂ A be the set of members of the
group who co-operate to sign the threshold signature. After verifying the common
informationa, the groupB randomly chooses a positive integerx less thanN and
sends it to the client.
Upon receivingx, the client letsb = rmodN . Finally, he computesβ = be(u −
x) modN , and sendsβ to the signers.

(3) Signing.Now the groupB computesβ−1 modN , and runs the threshold signature
introduced in Section 2 to haveT = h(a)d−1(α(x2 + 1)β−2)2(d−1) modN , and
then submits(β−1, T ) to the client.Please notice the probability that β has common
factor with N and has no inverse is negligible; otherwise, the RSA scheme is not
computationally secure.
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(4) Extraction and verification. Upon receiving(β−1, T ), the client derives the signa-
ture by computing

c = (ux+ 1) · β−1 · be = (ux+ 1)(u− x)−1 modN,

and
s = T · h(a) · h(m)2 · r2e−2 · r′(2e−2) · (c2 + 1)2 modN.

The tuple(a, c, s) is a threshold signature on the messagem. Any one can verify this
signature by checking if

se ≡ h(a)h(m)2(c2 + 1)2 modN. (3)

Now we show the correctness of the proposed protocol by proving that the
signature(a, c, s) of the messagem produced by the proposed protocol satisfies
se ≡ h(a)h(m)2(c2 + 1)2 modn.

Theorem 1. If (a, c, s) is a threshold signature of the message m produced by the pro-
posed partially blind threshold signature scheme, then

se ≡ h(a)h(m)2(c2 + 1)2 modn.

Proof. If (a, c, s) is a signature generated by our scheme, then we have the following
equations.

s ≡ T · h(a) · h(m)2 · r2e−2 · r′(2e−2) · (c2 + 1)2

≡ h(a)d−1
[
r3e · r′e · h(m) · (u2 + 1)(x2 + 1)β−2

]2(d−1)

×h(a) · h(m)2· r2e−2· r′(2e−2)· (c2+1)2

≡ h(a)d · h(m)2d
[
r3e · r′e · (u2 + 1)(x2 + 1) · r−2e · (u− x)−2

]2(d−1)

×r2e−2· r′2e−2· (c2+1)2

≡ h(a)d · h(m)2d
[
(u2x2 + u2 + x2 + 1) · (u− x)−2 · re · r′e

]2(d−1)

×r2e−2 · r′2e−2 · (c2 + 1)2

≡ h(a)d · h(m)2d
[(

(ux+ 1)2 + (u− x)2
)
· (u − x)−2 · re · r′e

]2(d−1)

×r2e−2 · r′2e−2 · (c2 + 1)2

≡ h(a)d · h(m)2d
[
(c2 + 1) · re · r′e

]2(d−1) · r2e−2 · r′2e−2 · (c2 + 1)2

≡ h(a)d · h(m)2d(c2 + 1)2(d−1) · r2−2e · r′(2−2e) · r2e−2 · r′2e−2 · (c2 + 1)2

≡ h(a)d · h(m)2d · (c2 + 1)2d modN.

So, we havese = h(a) ·h(m)2 · (c2 +1)2 modN , and the proposed protocol provides
a partially blind threshold signature scheme. The common informationa could represent
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the expired date of an e-cash, the amount of an e-cash, or the value amount of an anony-
mous ticket used in wireless communication, depending on its applications. It could even
contain the information for both the value of a ticket and its expired date. If the common
informationa is used as an expired date of an e-cash, then the tuple(a, c, s,m) repre-
sents an anonymous e-cash issued by the banks (signers), where(a, c, s) is a threshold
signature of the messagem produced by our partially blind threshold signature scheme.
Since the signature carries the expired date information, the banks need only keep those
un-expired e-cashes in their database to prevent the double-spending. Those expired
e-cashes could be removed from the database without any trouble (Fan and Lei, 1998; Abe
and Fujisaki, 1996). If the common informationa represents the value for an anonymous
ticket used in anonymous wireless communication (Juanget al., 1999), then the tuple
(a, c, s,m) represents a value-carried anonymous ticket issued by the service providers.
Thus, the clients can purchase different anonymous tickets with distinct values, and their
service providers will deducts different money accordingly (Juanget al., 1999).

4. Security Analysis

In this section, we discuss some security properties of our proposed scheme. The thre-
shold rule is enforced by applying the Desmedt-Frankel’s threshold signature scheme.
The other properties are examined as follows.

4.1. Randomization

In our scheme, the group (the signers) randomizes the blinded data using the random fac-
torx before signing it in the signing phase. Thisrandomization property (Ferguson, 1993)
keeps the blind signature scheme away from some chosen-plain-text attacks (Shamir and
Schnorr, 1984, Fan and Lei, 1998; Fanet al., 2000; Coronet al., 1999). Our scheme and
the blind signature schemes of literatures (Ferguson, 1993; Fan and Lei, 1998; Fanet al.,
2000; Camenischet al., 1995; Pointcheval and Stern, 1996; Chienet al., 2001) have this
randomization property, while the blind signature schemes of Chaum (1983); Abe and
Fujisaki (1996) do not possess the randomization property.

In the requesting phase, the client submitsa andα to the signers, and then the signers
return the random factorx to the client. If the client tries to get rid of this random factor
x and derives the valueT , he has to computeβ′ such thatβ′2 ≡ (x2 + 1) modN in the
requesting phase. However, givenx andN , it is computationally infeasible to compute
theβ′ without factoringN , which is believed to be a very hard problem (Rabin, 1979).

4.2. Partial Blindness

In our partially blind threshold signature scheme, the client has to submit the common
informationa and the valueα to the signers. If the signers agree on this common informa-
tiona, they sign on the prepared data with the common information embedded. The client
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is unable to remove or change the embedded informationa while keeping the verification
of the signature successful.

To successfully remove or change the common informationa embedded in the sig-
nature, the client has to compute eitherα′ or β′ , and includes them in the submitted
values such that they satisfyα′2 ≡ h(a)−1 modN or β′4 ≡ h(a) modN . However, it is
computationally infeasible to acquire such anα′ or β′ without factoringN .

4.3. Unforgability

The attacker may try to derive some forged signatures with or without some valid
signatures. We will show that all of the attacks fail on our scheme. First, we con-
sider the attacks with no given valid signatures. To successfully pass the verification
equationse ≡ h(a)h(m)2(c2 + 1)2 modN , the attacker has to computes such that
s ≡ h(a)dh(m)2d(c2 + 1)2d modN , given the valuesh(a), h(m) and c. However,
it is computationally infeasible to acquire the valued without the factorization ofN .
On the other hand, givens, h(a) and h(m), it is intractable to computec such that
c2 ≡ (se · h(a)−1 · h(m)−2)1/2 − 1 modN without the factorization ofN .

Given a valid signature(a, c, s,m), we will show that the attacker has no way to
derive another valid signature(a′, c′, s′) for anotherm′ with h(m) 
= h(m′) modN .
Given the valuesa and c, he is unable to acquire the values′ such thats′ ≡ s ·
h(m)−2dh(m′)2d modN without knowingd. Without the factorization ofN , it is in-
tractable to computec′ such thatc′2 ≡ (se · h(a)−1 · h(m′)−2)1/2 − 1 modN . It is
also difficult to derive another messagem′ with m′ 
= mmodN such thath(m) ≡
h(m′) modN , sinceh() is a secure one-way hash function.

Given pairs of valid signatures(a, c1, s1,m1) and (a, c2, s2,m2), then we have
(s1s2)e ≡ h(a)2h(m1)2h(m2)2(c21 + 1)2(c22 + 1)2 modN . If the attacker letss3 ≡
s1s2 modN and tries to derive the validc3, then he has to computec23 ≡ (h(a)h(m1)2

h(m2)2h(m3)−2(c21 + 1)2(c22 + 1)2)1/2 − 1 modN . However, without the factorization
of N , it is computationally infeasible to acquire such ac3.

4.4. Unlinkability

For any given valid signature(a, c, s,m), no one except the client is able to link this
signature to its previous signing process instance. This is theunlinkability property of a
blind signature. We will show that our partially blind threshold signature preserves this
property in the following theorem.

Theorem 2. For any given signature (a, c, s,m) and each signing process instance of
the past signing processes, which are represented by the tuple (a, αi, xi, βi, Ti)1�i�k ,
the signers can derive bi, r′i and ui such that they satisfy the following equations.

αi = (b3i · r′i)eh(m)(u2
i + 1) modN, (4)

βi = bei (ui − xi) modN, (5)

c = (uixi + 1)(ui − xi)−1 modN. (6)
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Proof. From (6), we derive

ui ≡ (cxi + 1)(c− xi)−1 modN. (7)

Substituting (7) into (5), then we have

βi = bei ((cxi + 1)(c− xi)−1 − xi) modN,

and then

bi ≡ βd
i · ((cxi + 1)(c− xi)−1 − xi)−d modN. (8)

Substituting (7)–(8) into (4), we have

αi = (b3i · r′i)e · h(m)
(
(cxi + 1)2(c− xi)−2 + 1

)

= b3e
i · r′ei · h(m) ·

(
(cxi + 1)2(c− xi)−2 + 1

)
modN,

and then

r′i ≡ αd
i · b−3

i · h(m)−d ·
(
(cxi + 1)2(c− xi)−2 + 1

)−d
modN. (9)

From (7)–(9), we conclude that for any given signature(a, c, s,m) and each signing
process instance with the common informationa, the group (the signers) can find the
values(bi, r′i, ui) that satisfy (4)–(6). This implies that the signers are unable to find the
link between the signature and its corresponding signing process instance.

4.5. Immunity to Low-Exponent RSA Protocol Failure

Since the low-exponent RSA is adopted in our scheme, we have to examine the possibility
of the low-exponent RSA attacks. There are some known attacks to low-exponent RSA
(Moore, 1988; Hastad, 1985). The first known attack is: if the same message is encrypted
with the same low exponent for several different modulus, then the message could be
easily recovered from the cipher texts. Takee = 3 as an example. SupposeUser1 decides
to send the same messageM to User2, User3, andUser4. The cipher texts are as follows.

C2 = M3 modn2,

C3 = M3 modn3,

C4 = M3 modn4.

Then the attacker can easily recover the messageM from the cipher texts (Moore,
1988). Hastad further showed that even several messages with low-entropy difference
are transmitted to different receivers using low-exponent RSA, it is easy for the attacker
to recover the message (Hastad, 1985). We can easily see that such kind of attacks do
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not work on our scheme due the following reasons. For the applications of our scheme,
the messagem should contain some random number (Juanget al., 1999). Further, each
message transmitted from the client to the signers will be randomized by some random
factors. So, our scheme is immune to the low-exponent attacks.

5. Computation Complexity

For a comparison of the performance of different schemes, we adopt the same assump-
tions as (Fan and Lei, 1998; Dimitrov and Cooklev, 1995). With a modulusN , the com-
putation for a modular exponentiation operation is taken as0.3246 |N | modular multipli-
cations, where|N | denotes the bit length ofN . An inverse computation inZ∗

N demands
the same amount of computation time as a modular exponentiation operation. A hashing
computation requires no longer time than a modular multiplication computation.In the
following comparisons, let Te denote the time for one exponentiation computation, Ti the
time for one inverse computation, Tm the time for one modular multiplication computa-
tion, and Th the time for one hashing computation. Under a 1024-bit modulus N , one Te

is around 330* Tm.
For many of the applications of the blind signature schemes, the requesters (the

clients) are the smart cards or mobile units; therefore, the computation complexity
on the client side deserves special concern. For most of the previous blind signature
schemes (Chaum, 1983; Ferguson, 1993; Abe and Fujisaki, 1996; Camenischet al.,
1995; Pointcheval and Stern, 1996; Miyazakiet al., 1997; Juang and Lei, 1999), se-
veral modular exponentiation computations and inverse computations are required on
the client side.Based on RSA, Abe-Fujisaki’s partially blind signature scheme requires
2Te + 1Ti + 4Th + 4Tm on the client side. However, based on Rabin’s scheme, Fan-
Lei’s partially blind signature demands only 20Tm + 3Th on the client side. Fan-Lei’s
scheme reduces the amount of computation time on the client side by almost 98% (Fan
and Lei, 1998), under a 1024-bit modulusN . Our previous work (a partially blind signa-
ture scheme) (Chien et al., 2001), based on RSA, demands 21Tm +2Th on the client side.
Compared with Abe-Fujisaki’s scheme, our previous partially blind signature reduces the
amount of computations by almost 98%, under a 1024-bit modulus N .

Regarding the case of partially blind threshold signature, our current scheme requires
27Tm+2Th on the client side. Juang-Lei’s partially blind threshold signature is based on
the discrete logarithm problem. Juang-Lei’s scheme requires (2n+10)Te +(2t−1)Ti +
(4n+ t+ 3)Tm + 2Th, where n the group size and t is the threshold value. Compared to
Juang-Lei’s partially blind threshold signature scheme, our scheme reduces the amount
of computations by almost 99.6%, under a 1024-bit modulus N , n = 5 and t = 3. With
n = 10 and t = 5, our scheme reduces the computations by almost 99.88%.

We summarize the computation complexity of the client and other properties for the
partially blind signature schemes in Table 1.
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Table 1

Summaries for the partially blind signature schemes

Fan-Lei’s
partially
blind sig.

Abe-
Fujisaki’s
partially
blind sig.

Chien-Jan-
Tseng’s
partially
blind sig.

Juang-Lei’s
partially blind
threshold sig.

Chien-Jan-
Tseng’s

partially blind
threshold sig.

Mathematical
foundation

QR RSA RSA Discrete
Logarithm
(Elgamal)

RSA

Randomization
property

Yes No Yes Yes Yes

Computations
for the client

20Tm+3Th 2Te + 1Ti

+4Th+4Tm

21Tm+2Th (2n + 10)Te

+ (2t − 1)Ti

+ (4n + t + 3)
× Tm + 2Th

27Tm+2Th

Te – time for one exponentiation computation;Ti – time for one inverse computation;Tm – time
for one modular multiplication computation;Th – time for one hashing computation.

6. Conclusions

In this paper, based on RSA, we have proposed a partially blind threshold signature
scheme. Without modular exponentiation computations and inverse computations, our
scheme requires much less computational load on the client side, compared with its coun-
terpart(Juang-Lei’s partially blind theshold signature scheme). This low-computation
property makes our scheme very attractive in many e-commerce applications.
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Dalinai aklasis slenkstinis RSA parašas

Hung-Yu CHIEN, Jinn-Ke JAN, Yuh-Min TSENG

Aklojo parašo schemoje klientas paprašo dokument↪a pasirašant↪i asmen↪i pasirašyti pasl̇eptus
duomenis, o po to iš j↪u gali gauti paraš↪a. Kada klientas pateikia pasirašyt↪a dokument↪a, pasiraš↪es
dokument↪a asmuo gali jo paraš↪a patikrinti. Aklasis parašas labai svarbus elektoninėje prekyboje.
Straipsnyje pasīulytas nesuḋetingas dalinai aklasis slenkstinis RSA parašas.


