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Abstract. Recent publications on multidimensional scaling express contradicting opinion on mul-
timodality of STRESSriterion. An example has been published with rigorously provable mul-
timodality of STRESSWe present an example of data and the rigorous proof of multimodality of
SSTRESH®r this data. Some comments are included on widely accepted opinion that minimization
of SSTRESS easier than minimization 8TRESS
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1. Introduction

Multidimensional scaling (MDS) is an approach to exploratory analysis and visualiza-
tion of multidimensional data (Borg and Groenen, 1997; Cox and Cox, 2001; Mathar,
1997). In the present paper metric MDS is considered. Let dissimilarities betwelen
jects are given by a symmetric dissimilarity matfix= (d;;), ¢, = 1,...,n, whose
diagonal elements are equal to zero. The pointsahdimensional embedding space
z1,...,z, are soughtz; € R™, whose interpoint distances;(X) = |lz; — ||,

X = (x1,...,x,), fit the given dissimilarities. To represent a vecforby means of
coordinates of points; in the embedding spacg;,: = 1,...,n,j = 1,...,m arow

form X = (211, ..., Zn1; %12, .., Tn2; - . ., Tnm) IS USed. Most frequently the measure
of fit is defined either by th& TRES $riterion

o(X) =Y wi (55 — diy(X))?, 1)

i<j
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proposed by Kruskal (1964) for the case of hon metric scaling, or by so G88&RESS
criterion (see, e.g., Cox and Cox, 2001)

s(X) = Zwij (51'23' - dz?j(X))27 2

i<j

wherew;; are the weights; in the present paper weights are assumed equal toxd n#
dimensional vectoX,,;,, should be found by means of minimization of the chosen cri-
terion. Many authors agree that these minimization problems are difficult, particularly
because of multimodality of the criteria, e.g., see the theses by Groenen (1993). Various
global optimization methods have been tested to attack MDS problems (Groenen, 1993;
Groenen and Heiser, 1996; Groenen, Heiser and Meulman, 1999; Mathar and Zilinskas
1993; Klock and Buhman, 2000). The results of comparison of efficiency of different al-
gorithms are presented in (Mathar, 1996, 2000). A class of test functions based on MDS
problems has been proposed in (Mathar and Zilinskas, 1994) for testing global optimiza-
tion algorithms. However, the multimodality of MDS problems in all the mentioned cases
has been demonstrated empirically, e.g., in (Groenen, 1993) a problem is described where
1098 local minima have been indicated by the stopping of the popular in the field algo-
rithm SMACOF-I. On the other hand, the paper by Kearsley, Tapia and Trosset (1998)
has cast doubts on the real multimodality of MDS problems showing that SMACOF-I
frequently stops prematurely, but the Newton’s method makes further progress from dif-
ferent found by SMACOF-I points towards a global minimizer. To resolve the controversy
to the favor of multimodality of MDS problems, the examples should be found with ri-
gorously provable multimodality. The problems mentioned earlier are not suited because
of complexity of the analysis implied by their multidimensionality. An example of mul-
timodality of STRES$s proposed in (Trosset and Mathar, 1997). In the present paper a
similar example has been constructed$&TRESSor that purpose we have applied the
symbolic computation tool of Maple7, see reference to Symbolic Computation Group.

2. Two Examples ConcerningSTRESS

The first example due to de Leeuw (1988) is defined by the dissimilarity mgjrix 1,
i # j. In the three dimensional embedding space the global minimizer comprises the
vertices of a tetrahedron and has z8MRESSn the two dimensional embedding space
the global minimizer is believed to comprise the vertices of a square with the side length
equal to2£2. It was claimed thaf * = (0,24, a, a,0,0, av/3,a+/3/3) is a non global
minimizer, wherea = (3 + /3)/8. The configuration of points corresponding X0
comprises the vertices of an equilateral triangle plus its centroid. However, it has been
proved in (Trosset and Mathar, 1997) thét is a saddle point.

The example by Trosset and Mathar (1997) with at least two different local mini-
mizers of STRES$s defined by the dissimilarity matri& s = 614 = do3 = d34 = 1,
513 = dag = /2. A global minimizer (with the zer& TRESBobviously corresponds
to the vertices of the unit square. It is proved in (Trosset and Mathar, 1997) that
X5 = (0,b,0,b,0,0,a,a) is anon global minimizer, wheite= (3 4+ /3)/6, a = b\/2.
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3. An Example of Multimodality of SSTRESS

In the case of a smooth objective function the rigorous prove that a point is a local min-
imizer normally is based on the analysis of the gradient and of the matrix of second
derivatives. It is easy to show that gardient and Hessias{ &f) are defined by the fol-
lowing formulae

 (0s(X) ds(X) 0s(X) ds(X) 9s(X)
ValX) = ( Oz11 7 Oxpr T Ozin T Ompe T <9$nm)7
ds(X S 2 >
ag([:ij) = 4;wik (i (X) = 03%) (i — w1j),
Hyi(X) ... Hin(X) 8?s(X)
H(X)= ; Hij(X):(m)’

Hpa(X) ooo Hyp (X)

Ps(X) _ Zwkj ((d7;(X) = 0ks)” + 2(xni — 20)?)

2
oxy, et
9?s(X)
021011 = —dwpy ((dil(X) - 5/%0 + 2(wk; — $li)2) )
9%s5(X) o
Doz, —Swp (g — wi) ey —x15), G5 =1,...,m, kl=1,...n

However, the criteria (1) and (2) are invariant with respect to translations and rotations
of the point configuration;, -, . . ., z,, in the embedding space involving the degener-
acy of the matrices of second derivatives. It means that the local and global minimizers
are not isolated, but minima are attained on some hypersurfaces. To exclude such an in-
variance some restrictions should be introduced. Configurations centered at the origin of
the embedding space are considered by means of the majorization approach, see, e.g.,
(Borg and Groenen, 1997; Cox and Cox, 2001). In such a case only the invariance with
respect to translations is excluded, but not the invariance with respect to rotations. To
exclude the invariances of both kinds Mathar and Zilinskas (1993, 1994) have proposed
to solve a constrained optimization problem whose feasible optimization region consists
from centered configurations with orthogonal components, i.e.,

n n
inj:o’ jil,..,m, injxik:o’ Z#k
i=1 =1

However, analysis of optimality conditions for restricted problems is more complicated
than for unconstrained problems. Therefore, we will use here another approach normally
used in distance geometry. Several coordinates$ afe fixed equal to zero; the number of
fixed coordinates is equal to the number of degrees of freedom in the original formulation
of unrestricted optimization problem, see, e.g., (Kearsley, Tapia and Trosset, 1998).
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Let us start with the example by Trosset and Mathar (1997) but conce8SMRESS
criterion. Four point configuration is considered in two dimensional embedding space; the
data of the example is presented in previous section. Since the embedding space is two
dimensional a configuration is invariant with respect of translations along two coordinates
and with respect to rotation around the origin. Therefore three degrees of freedom should
be excluded. Following the approach used in distance geometry we assume that the first
point coincides with the origin, and the second point is on the horizontal axes:

T11 = T12 = T22 = 0. (3

A four point configuration in the two dimensional embedding space is defined by a five
dimensional vectoZ consisting of free coordinates &f which are denoted as follows

21 = X921, B2 = X31, 23 = I32, 24 = T41, B5 = T42. The SSTRESSriterion as a
function of Z is denoted by (7). The analysis of the stationary points€?) involves

its gradients and matrices of second derivatVe$~Z) and H(Z) which may be easily
obtained from the formulae 6Fs(X) andH (X ) presented above.

We analyze stationary points #fZ) following the approach proposed by Trosset and
Mathar (1997). It is assumed there that at least some of local minimizers correspond to
the rectangular configurations of points in the two dimensional embedding space. This
is equivalent to the assumption that either= 20 = u, 23 = 25 = v, 24 = 0 or
21 = 24 = u, 23 = 25 = v, 22 = 0, enabling to reduce the minimization &f2) to the
minimization of SSTRES®ith respect to only two variablés, v). The first case version
of s(Z) may be expressed as

5(Z) = Si(u,v) = 2(u? — 1)® + 2(u® +v? — 2)% + 2(v* — 1)?,
and the second case versions¢f) may be expressed as
s(Z) = Sa(u,v) = 2(u? — 1)% + 2(u? + v? — 1)% + (v — 2)%

We start with analytical solution of the systems of equati®s (v, v) = 0 and
VSs2(u,v) = 0 defining the stationary points &§STRES®r the set of rectangular con-
figurations

43 — 6u + 2uv? = 0,
40® — 6v + 2u’v = 0,

and

4 — du + 2uv? =0,
403 — 6v 4 2u%v = 0.

The first system of equations has the following solutions

3 3
ulzla Ulzla UQZO, U2:O7 u3:07 ’U3:\/;7 U4:\/;, U4:0)
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and the second system of equations has the following solutions

3 1 2
ug =0, v2=0, us =1, v5 =0, ug =0, UB\/; Ua\/;, Ua\/;-

Six stationary points found in the two dimensional spacey) are presented in the
Table 1. However, these points have been found assuming the configuration rectangular. A
pointZ corresponding to a two dimensional stationary point need not be a stationary point
of s(Z) considered as a function in the five dimensional space. Therefore the obtained
solutions should be tested by means of analysis of gradients and Hessid#g af the
corresponding five dimensional points.

The classification of the stationary points is important to draw conclusions on
multimodality of s(Z) in the five dimensional space, defined28TRES&inimization
space by means of fixing some variables (3). Analytical investigation of a gradient and
a Hessian ofs(Z) is difficult because of complexity of corresponding formulae. The
analysis of necessary minimum conditions at the candidate points may be aided by the
symbolic computation tool Maple, see reference to (Symbolic Computation Group). Let
us specify the goal of the analysis. The two dimensional ve¢tgrs;) in Table 1 and
(3) define a four point configurations in the two dimensional embedding space. On the
other hand, théw;, v;) corresponds to the five dimensional poifit and the latter is a
candidate to be a stationary point. The testing of the optimality conditions at thefoint
includes testing of equalitys(Z;) = 0 and positve definiteness &f(Z;). Of course,
gradient and Hessian af Z) may be obtained using general formulae presented above
for s(X). However, such analytical manipulations are rather cumbersome bed@jse
does not posses symmetry specific 0% ), which is lost by fixing specific values of
some variables (3). The formula efZ) has been programmed in Maple7. Using the
symbolic differentiation subroutingiff the formulae of the gradient and of the Hessian
have been obtained. The calculation of values of the gradient norm has shown that all
points Z; are stationary points except the poiy. To test definiteness the eigenvalues
of H(Z;) have been computed. The results confirmed the obvious fact that ggiatsd
Z5 are global minimizer and local maximizer correspondingly. The pdigtandZ, are
saddle points. Because of the similarity of our case with the case in (Trosset and Mathar,
1997) the pointZs might be expected to be a local minimizer. However, it is a saddle

Table 1
Stationary points in the two dimensional sp&agv)

Point number 1 2 3 4 5 6

u 1 0 0 3/2 1 1A/3
v 1 0 3/2 0 0 2A3
12 3 3
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point. The Hessian and the vector of its eigenvalligare presented below

c —d d c 0
—-d ¢ —d 0 0
HZs)=| d -d e 0 al, 4)
c 0 0 c d
0 0 a d e

Ag = (—3.484, 0.802, 5.119, 18.694, 24.203),

wherec = 22, d = 53, ¢ = 182, and eigenvalues are presented with the truncated
precision10~3, although they were calculated by the procedgigenvals of Maple7
with the precision 0~1°.

We must conclude that for the data of (Trosset and Mathar, 1937) is unimodal
over the region corresponding to configurations comprising vertices of rectangles. In this
special casSTRES&nd SSTRES®ehave differently: the latter is unimodal, but the
former has two different local minima. To tegtZ) for the multimodality in a practically
interesting regions(Z) has been minimized by means of the damped Newton's method
100 times from random starting points uniformly distributed in the hyperetbsg z; <
2,7 =1,...,5. AMATLAB code has been used with the formulae of first and second
derivatives imported from Maple?. In all cases the descent was convergent to the point
Z1. Therefore, the hypothesis of unimodalitysg¥ ) for the data of (Trosset and Mathar,
1997) can not be rejected.

Although the analysis of the example by Mathar and Trosset (1997) has not supported
the hypothesis on multimodality @STRESSt has induced an idea of the following
example:

012 =014 = 023 = 034 = 1, 613 = dog = 1.2. (5)

We have not carried out in this case an analytical investigation of stationary points
of s(Z) corresponding to rectangular configurations, since we had no intention to com-
pare the behaviour 8STRES8ndSTRES$or the data set (5). Instead, a version of the
damped Newton’s method mentioned above has been used to migifffizeith the data
(5) from the starting pointg; andZs. The approximations of two different local mini-
mizers have been found. The latter have been used to define the ranges of the variables
for the Maple7 procedurisolve used to solve the system of equatidnsg(Z) = 0 with
precision10~1°, The solutions are presented below with the truncated precisioft

s(Z7) =0.209, Zr = (0.902,0.902,0.902,0,0.902),
s(Zs) =1.382, Zs = (0.721,0,0.980,0.721,0.980).

Both points are local minimizers, as follows from the eigenvalues of the matrices of the
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second derivatives presented below:

12267 0.747 0  —7.253 6.507
0.747 12267 6.507 —5.760 0
H(Z7) = 0 6507 12267 0 0.747 |,

—7.253 —5.760 0 12.267 —6.507
6.507 0 0.747 —6.507 12.267

A7 =(1.759,5.529,8.611, 18.231, 27.203),

6.400 —6.080 5.652  1.920 0
—6.080 6.400 —5.652 —2.240 0

H(Zg) = 5.652 —5.652 13.440 0 1.920 |,
1.920 —2.240 0 6.400  5.652
0 0 1.920 5.652  13.440

As = (0.294,1.440, 6.727, 15.683, 21.936).

The configurations corresponding to the global optimum pdinand to the local
optimum pointZg are shown in Fig. 1 by and x correspondingly.

The results of analysis of two examples above confirm the empirical evidence that
minimization of SSTRES® normally less complicated with respect to multimodality
than minimization of STRESS. The number of local minimizerS8TRES$icreases
when increases the difference in structure of dissimilarities data and a structure of dis-
tances in embedding space. The hypersurfa@SafRESBay have many saddle points.
Therefore a version of Newton method (Trosset and Mathar, 1997) or a version of conju-
gate gradient method (Zilinskas, 1996) seem most appropriate for local minimization of
SSTRESS

o 4 +3

1 2 5
! 1 ! 1 1 1 |
0.1 02 0.3 04 05 08 0.” 08 ($ 1

x1

Fig. 1. Optimal configuration is shown by, and suboptimal configuration is shown ky
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4. Conclusions

There exist rather simple examples of the rigorously provable multimodalBpdRESS
Although hypersurface 8STRESBormally is less picky than hypersurfacefRESS
minimization of SSTRES®&ay be difficult for the algorithms not using information on
second derivatives. The difficulties may be caused by the saddle points, particularly cor-
responding to the coalescencewfandz;, i # j not possible foSTRESST he results of

the present paper support the opinion that the development of efficient algorithms for the
metric MDS may be prospective in combining global search strategies with local descent
guided by the quadratic model of an objective function.
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Daugiadimensiny skaliy SSTRESS kriterijaus daugiaekstremalumas

Antanas ZILINSKAS, Aurelija PODLIPSKYE

Pastanju met publikacijose iSrySkjo prieStara @l daugiaméiy skalu sudaryme varto-
jamy kriteriju STRESS bei SSTRESS daugiaekstremalumo. Neseniai buvo paskelbtas pavyzdys,
kuriam STRESS daugiaekstremalumas grieiftalytas. Siame straipsnyje sukonstruotas panasus
SSTRESS daugiaekstremalumo pavyzdys. Diskutuojantéplzaplitusi nuomoa, kad SSTRESS
minimizavimo uzdavinys paprastesnis uzZ STRESS minimizavimo uzZdavin



