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Abstract. Recent publications on multidimensional scaling express contradicting opinion on mul-
timodality of STRESScriterion. An example has been published with rigorously provable mul-
timodality of STRESS. We present an example of data and the rigorous proof of multimodality of
SSTRESSfor this data. Some comments are included on widely accepted opinion that minimization
of SSTRESSis easier than minimization ofSTRESS.
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1. Introduction

Multidimensional scaling (MDS) is an approach to exploratory analysis and visualiza-
tion of multidimensional data (Borg and Groenen, 1997; Cox and Cox, 2001; Mathar,
1997). In the present paper metric MDS is considered. Let dissimilarities betweenn ob-
jects are given by a symmetric dissimilarity matrixδ = (δij), i, j = 1, . . . , n, whose
diagonal elements are equal to zero. The points inm-dimensional embedding space
x1, . . . , xn are sought,xi ∈ Rm, whose interpoint distancesdij(X) = ||xi − xj ||,
X = (x1, . . . , xn), fit the given dissimilarities. To represent a vectorX by means of
coordinates of pointsxi in the embedding spacexij , i = 1, . . . , n, j = 1, . . . , m a row
form X = (x11, . . . , xn1; x12, . . . , xn2; . . . , xnm) is used. Most frequently the measure
of fit is defined either by theSTRESScriterion

σ(X) =
∑
i<j

wij (δij − dij(X))2 , (1)
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proposed by Kruskal (1964) for the case of non metric scaling, or by so calledSSTRESS
criterion (see, e.g., Cox and Cox, 2001)

s(X) =
∑
i<j

wij

(
δ2
ij − d2

ij(X)
)2

, (2)

wherewij are the weights; in the present paper weights are assumed equal to 1. An×m

dimensional vectorXmin should be found by means of minimization of the chosen cri-
terion. Many authors agree that these minimization problems are difficult, particularly
because of multimodality of the criteria, e.g., see the theses by Groenen (1993). Various
global optimization methods have been tested to attack MDS problems (Groenen, 1993;
Groenen and Heiser, 1996; Groenen, Heiser and Meulman, 1999; Mathar and Zilinskas
1993; Klock and Buhman, 2000). The results of comparison of efficiency of different al-
gorithms are presented in (Mathar, 1996, 2000). A class of test functions based on MDS
problems has been proposed in (Mathar and Zilinskas, 1994) for testing global optimiza-
tion algorithms. However, the multimodality of MDS problems in all the mentioned cases
has been demonstrated empirically, e.g., in (Groenen, 1993) a problem is described where
1098 local minima have been indicated by the stopping of the popular in the field algo-
rithm SMACOF-I. On the other hand, the paper by Kearsley, Tapia and Trosset (1998)
has cast doubts on the real multimodality of MDS problems showing that SMACOF-I
frequently stops prematurely, but the Newton’s method makes further progress from dif-
ferent found by SMACOF-I points towards a global minimizer. To resolve the controversy
to the favor of multimodality of MDS problems, the examples should be found with ri-
gorously provable multimodality. The problems mentioned earlier are not suited because
of complexity of the analysis implied by their multidimensionality. An example of mul-
timodality of STRESSis proposed in (Trosset and Mathar, 1997). In the present paper a
similar example has been constructed forSSTRESS; for that purpose we have applied the
symbolic computation tool of Maple7, see reference to Symbolic Computation Group.

2. Two Examples ConcerningSTRESS

The first example due to de Leeuw (1988) is defined by the dissimilarity matrixδij = 1,
i �= j. In the three dimensional embedding space the global minimizer comprises the
vertices of a tetrahedron and has zeroSTRESS. In the two dimensional embedding space
the global minimizer is believed to comprise the vertices of a square with the side length
equal to2+

√
2

4 . It was claimed thatX∗ = (0, 2a, a, a, 0, 0, a
√

3, a
√

3/3) is a non global
minimizer, wherea = (3 +

√
3)/8. The configuration of points corresponding toX∗

comprises the vertices of an equilateral triangle plus its centroid. However, it has been
proved in (Trosset and Mathar, 1997) thatX∗ is a saddle point.

The example by Trosset and Mathar (1997) with at least two different local mini-
mizers ofSTRESSis defined by the dissimilarity matrixδ12 = δ14 = δ23 = δ34 = 1,
δ13 = δ24 =

√
2. A global minimizer (with the zeroSTRESS) obviously corresponds

to the vertices of the unit square. It is proved in (Trosset and Mathar, 1997) that
X2 = (0, b, 0, b, 0, 0, a, a) is a non global minimizer, whereb = (3 +

√
3)/6, a = b

√
2.
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3. An Example of Multimodality of SSTRESS

In the case of a smooth objective function the rigorous prove that a point is a local min-
imizer normally is based on the analysis of the gradient and of the matrix of second
derivatives. It is easy to show that gardient and Hessian ofs(X) are defined by the fol-
lowing formulae

∇s(X) =
(

∂s(X)
∂x11

, . . . ,
∂s(X)
∂xn1

,
∂s(X)
∂x12

, . . . ,
∂s(X)
∂xn2

, . . . ,
∂s(X)
∂xnm

)
,

∂s(X)
∂xij

= 4
n∑

k=1

wik

(
d2

ik(X) − δ2
ik

)
(xij − xkj),

H(X) =


 H11(X) . . . H1m(X)

. . . . . . . . .

Hm1(X) . . . Hmm(X)


 , Hij(X) =

(
∂2s(X)
∂xki∂xlj

)
,

∂2s(X)
∂x2

ki

=
n∑

j=1

wkj

(
(d2

kj(X) − δkj)2 + 2(xki − xji)2
)
,

∂2s(X)
∂xki∂xli

= −4wkl

(
(d2

kl(X) − δ2
kl) + 2(xki − xli)2

)
,

∂2s(X)
∂xki∂xlj

= −8wkl(xki − xli)(xkj − xlj), i, j = 1, . . . , m, k, l = 1, . . . , n.

However, the criteria (1) and (2) are invariant with respect to translations and rotations
of the point configurationx1, x2, . . . , xn in the embedding space involving the degener-
acy of the matrices of second derivatives. It means that the local and global minimizers
are not isolated, but minima are attained on some hypersurfaces. To exclude such an in-
variance some restrictions should be introduced. Configurations centered at the origin of
the embedding space are considered by means of the majorization approach, see, e.g.,
(Borg and Groenen, 1997; Cox and Cox, 2001). In such a case only the invariance with
respect to translations is excluded, but not the invariance with respect to rotations. To
exclude the invariances of both kinds Mathar and Zilinskas (1993, 1994) have proposed
to solve a constrained optimization problem whose feasible optimization region consists
from centered configurations with orthogonal components, i.e.,

n∑
i=1

xij = 0, j = 1, .., m,

n∑
i=1

xijxik = 0, i �= k.

However, analysis of optimality conditions for restricted problems is more complicated
than for unconstrained problems. Therefore, we will use here another approach normally
used in distance geometry. Several coordinates ofX are fixed equal to zero; the number of
fixed coordinates is equal to the number of degrees of freedom in the original formulation
of unrestricted optimization problem, see, e.g., (Kearsley, Tapia and Trosset, 1998).
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Let us start with the example by Trosset and Mathar (1997) but concerningSSTRESS
criterion. Four point configuration is considered in two dimensional embedding space; the
data of the example is presented in previous section. Since the embedding space is two
dimensional a configuration is invariant with respect of translations along two coordinates
and with respect to rotation around the origin. Therefore three degrees of freedom should
be excluded. Following the approach used in distance geometry we assume that the first
point coincides with the origin, and the second point is on the horizontal axes:

x11 = x12 = x22 = 0. (3)

A four point configuration in the two dimensional embedding space is defined by a five
dimensional vectorZ consisting of free coordinates ofX which are denoted as follows
z1 = x21, z2 = x31, z3 = x32, z4 = x41, z5 = x42. The SSTRESScriterion as a
function ofZ is denoted bys(Z). The analysis of the stationary points ofs(Z) involves
its gradients and matrices of second derivatives∇s(Z) andH(Z) which may be easily
obtained from the formulae of∇s(X) andH(X) presented above.

We analyze stationary points ofs(Z) following the approach proposed by Trosset and
Mathar (1997). It is assumed there that at least some of local minimizers correspond to
the rectangular configurations of points in the two dimensional embedding space. This
is equivalent to the assumption that eitherz1 = z2 = u, z3 = z5 = v, z4 = 0 or
z1 = z4 = u, z3 = z5 = v, z2 = 0, enabling to reduce the minimization ofs(Z) to the
minimization ofSSTRESSwith respect to only two variables(u, v). The first case version
of s(Z) may be expressed as

s(Z) = S1(u, v) = 2(u2 − 1)2 + 2(u2 + v2 − 2)2 + 2(v2 − 1)2,

and the second case version ofs(Z) may be expressed as

s(Z) = S2(u, v) = 2(u2 − 1)2 + 2(u2 + v2 − 1)2 + (v2 − 2)2.

We start with analytical solution of the systems of equations∇S1(u, v) = 0 and
∇S2(u, v) = 0 defining the stationary points ofSSTRESSfor the set of rectangular con-
figurations

4u3 − 6u + 2uv2 = 0,

4v3 − 6v + 2u2v = 0,

and

4u3 − 4u + 2uv2 = 0,

4v3 − 6v + 2u2v = 0.

The first system of equations has the following solutions

u1 = 1, v1 = 1, u2 = 0, v2 = 0, u3 = 0, v3 =

√
3
2
, u4 =

√
3
2
, v4 = 0,
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and the second system of equations has the following solutions

u2 = 0, v2 = 0, u5 = 1, v5 = 0, u3 = 0, v3 =

√
3
2
, u6 =

√
1
3
, v6 =

√
2
3
.

Six stationary points found in the two dimensional space(u, v) are presented in the
Table 1. However, these points have been found assuming the configuration rectangular. A
pointZ corresponding to a two dimensional stationary point need not be a stationary point
of s(Z) considered as a function in the five dimensional space. Therefore the obtained
solutions should be tested by means of analysis of gradients and Hessians ofs(Z) at the
corresponding five dimensional points.

The classification of the stationary pointsZi is important to draw conclusions on
multimodality ofs(Z) in the five dimensional space, defined asSSTRESSminimization
space by means of fixing some variables (3). Analytical investigation of a gradient and
a Hessian ofs(Z) is difficult because of complexity of corresponding formulae. The
analysis of necessary minimum conditions at the candidate points may be aided by the
symbolic computation tool Maple, see reference to (Symbolic Computation Group). Let
us specify the goal of the analysis. The two dimensional vectors(ui, vi) in Table 1 and
(3) define a four point configurations in the two dimensional embedding space. On the
other hand, the(ui, vi) corresponds to the five dimensional pointZi, and the latter is a
candidate to be a stationary point. The testing of the optimality conditions at the pointZi

includes testing of equality∇s(Zi) = 0 and positve definiteness ofH(Zi). Of course,
gradient and Hessian ofs(Z) may be obtained using general formulae presented above
for s(X). However, such analytical manipulations are rather cumbersome becauses(Z)
does not posses symmetry specific fors(X), which is lost by fixing specific values of
some variables (3). The formula ofs(Z) has been programmed in Maple7. Using the
symbolic differentiation subroutinediff the formulae of the gradient and of the Hessian
have been obtained. The calculation of values of the gradient norm has shown that all
pointsZi are stationary points except the pointZ5. To test definiteness the eigenvalues
of H(Zi) have been computed. The results confirmed the obvious fact that pointsZ1 and
Z2 are global minimizer and local maximizer correspondingly. The pointsZ3 andZ4 are
saddle points. Because of the similarity of our case with the case in (Trosset and Mathar,
1997) the pointZ6 might be expected to be a local minimizer. However, it is a saddle

Table 1

Stationary points in the two dimensional space(u, v)

Point number 1 2 3 4 5 6

u 1 0 0
√

3/2 1 1/
√

3

v 1 0
√

3/2 0 0 2/
√

3

s 0 12 3 3 4 2 2/3
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point. The Hessian and the vector of its eigenvaluesΛ6 are presented below

H(Z6) =




c −d d c 0
−d c − d 0 0
d −d e 0 a

c 0 0 c d

0 0 a d e


 , (4)

Λ6 = (−3.484, 0.802, 5.119, 18.694, 24.203),

wherec = 2 2
3 , d = 5 1

3 , e = 18 2
3 , and eigenvalues are presented with the truncated

precision10−3, although they were calculated by the procedureEigenvalsof Maple7
with the precision10−10.

We must conclude that for the data of (Trosset and Mathar, 1997)s(Z) is unimodal
over the region corresponding to configurations comprising vertices of rectangles. In this
special caseSTRESSand SSTRESSbehave differently: the latter is unimodal, but the
former has two different local minima. To tests(Z) for the multimodality in a practically
interesting region,s(Z) has been minimized by means of the damped Newton’s method
100 times from random starting points uniformly distributed in the hypercube−2 � zi �
2, i = 1, . . . , 5. A MATLAB code has been used with the formulae of first and second
derivatives imported from Maple7. In all cases the descent was convergent to the point
Z1. Therefore, the hypothesis of unimodality ofs(Z) for the data of (Trosset and Mathar,
1997) can not be rejected.

Although the analysis of the example by Mathar and Trosset (1997) has not supported
the hypothesis on multimodality ofSSTRESS, it has induced an idea of the following
example:

δ12 = δ14 = δ23 = δ34 = 1, δ13 = δ24 = 1.2. (5)

We have not carried out in this case an analytical investigation of stationary points
of s(Z) corresponding to rectangular configurations, since we had no intention to com-
pare the behaviour ofSSTRESSandSTRESSfor the data set (5). Instead, a version of the
damped Newton’s method mentioned above has been used to minimizes(Z) with the data
(5) from the starting pointsZ1 andZ6. The approximations of two different local mini-
mizers have been found. The latter have been used to define the ranges of the variables
for the Maple7 procedurefsolveused to solve the system of equations∇s(Z) = 0 with
precision10−10. The solutions are presented below with the truncated precision10−3:

s(Z7) = 0.209, Z7 = (0.902, 0.902, 0.902, 0, 0.902),

s(Z8) = 1.382, Z8 = (0.721, 0, 0.980, 0.721, 0.980).

Both points are local minimizers, as follows from the eigenvalues of the matrices of the
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second derivatives presented below:

H(Z7) =




12.267 0.747 0 −7.253 6.507
0.747 12.267 6.507 −5.760 0

0 6.507 12.267 0 0.747
−7.253 −5.760 0 12.267 −6.507
6.507 0 0.747 −6.507 12.267


 ,

Λ7 = (1.759, 5.529, 8.611, 18.231, 27.203),

H(Z8) =




6.400 −6.080 5.652 1.920 0
−6.080 6.400 −5.652 −2.240 0
5.652 −5.652 13.440 0 1.920
1.920 −2.240 0 6.400 5.652

0 0 1.920 5.652 13.440


 ,

Λ8 = (0.294, 1.440, 6.727, 15.683, 21.936).

The configurations corresponding to the global optimum pointZ7 and to the local
optimum pointZ8 are shown in Fig. 1 by+ and× correspondingly.

The results of analysis of two examples above confirm the empirical evidence that
minimization ofSSTRESSis normally less complicated with respect to multimodality
than minimization of STRESS. The number of local minimizers ofSSTRESSincreases
when increases the difference in structure of dissimilarities data and a structure of dis-
tances in embedding space. The hypersurface ofSSTRESSmay have many saddle points.
Therefore a version of Newton method (Trosset and Mathar, 1997) or a version of conju-
gate gradient method (Zilinskas, 1996) seem most appropriate for local minimization of
SSTRESS.

Fig. 1. Optimal configuration is shown by+, and suboptimal configuration is shown by×.
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4. Conclusions

There exist rather simple examples of the rigorously provable multimodality ofSSTRESS.
Although hypersurface ofSSTRESSnormally is less picky than hypersurface ofSTRESS,
minimization ofSSTRESSmay be difficult for the algorithms not using information on
second derivatives. The difficulties may be caused by the saddle points, particularly cor-
responding to the coalescence ofxi andxj , i �= j not possible forSTRESS. The results of
the present paper support the opinion that the development of efficient algorithms for the
metric MDS may be prospective in combining global search strategies with local descent
guided by the quadratic model of an objective function.
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Daugiadimensini ↪u skali ↪u SSTRESS kriterijaus daugiaekstremalumas

Antanas ŽILINSKAS, Aurelija PODLIPSKYṪE

Pastar↪uj ↪u met↪u publikacijose išryšk̇ejo prieštara ḋel daugiamǎci ↪u skali ↪u sudaryme varto-
jam ↪u kriterij ↪u STRESS bei SSTRESS daugiaekstremalumo. Neseniai buvo paskelbtas pavyzdys,
kuriam STRESS daugiaekstremalumas griežtai↪irodytas. Šiame straipsnyje sukonstruotas panašus
SSTRESS daugiaekstremalumo pavyzdys. Diskutuojama plačiai paplitusi nuomoṅe, kad SSTRESS
minimizavimo uždavinys paprastesnis už STRESS minimizavimo uždavin↪i.


