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Abstract. In the generalized group-oriented cryptosystem, the sender can send a conditional mes-
sage to a group of users such that only the specified sets of users in this group can cooperate to
decrypt this message. In this paper, we will use an EIGamal cryptosystem and an elliptic curve EI-
Gamal cryptosystem to achieve the purposes of generalization and group-orientation, respectively.
Both of our schemes are more efficient than Esal.’s scheme in terms of sender’s computational
complexity.
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1. Introduction

The concept of group-oriented cryptosystem was first introduced by Desmedt (1987).
In the generalized group-oriented cryptosystem (GGOC), a sender sends an encrypted
message to a group such that the received message can only be decrypted by the autho-
rized subsets of users in the receiver group. An authorized subset of the receiver group is
called an access instance denoted aghe collection of the access instances for a par-
ticular type of message is called the access structure denotédAs access structure

can be denoted in the disjunctive normal form (DNF), ile= f1 + fo + --- + fi. Let

Uy, Us,---, Uy be all of the users in the group, and the access instaficesU; UsUy,

fo = UsUs, f3 = U7. The access structure can be representédasy, UsUy + UsUs +

Uz. The ciphertext sent by a sender can only be decrypted by the cooperation of either
Uy, Uy andU, or Us andUs or Uy alone. If F = Uy +Us + - - -+ Uy, it means the urgent
message can be decrypted by any user in the group.
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Lin and Chang (1994) proposed a GGOC based on the Diffie—Hellman key distri-
bution scheme (Diffie and Hellman, 1976). Later, Teal. (1999) proposed a more
efficient GGOC than Lin and Chang’s scheme that was also based on the Diffie—Hellman
key distribution scheme. However, Lin and Chang’s scheme andefalas scheme em-
ployed none of the existing asymmetric cryptosystems (ElGamal, 1985; Hetaalg
2002). They proposed new schemes to live up to the requirements of GGOC and used
additional asymmetric cryptosystems to encrypt/decrypt the message. The computational
complexity on the sender’s side increases, causing both the number of users in the access
structure and that of the access instances to grow in (Lin and Chang, 1994) and making
the number of users in the access structure in (&sali, 1999) go up.

In this paper, we will propose a new GGOC to further reduce the computational
complexity on the sender’s side, and there will be no symmetric cryptosystem to en-
crypt/decrypt the message. Our scheme only uses the ElGamal cryptosystem (ElGamal,
1985) to achieve the purpose of generalization and group-orientation. Compared with
Tsai et al.’s scheme, our scheme performs better in lowering the computational com-
plexity of the sender. On the other hand, many researchers have explored the concept
of elliptic curve cryptosystem, which was firstly proposed by Miller (1986) and Koblitz
(1987). The elliptic curve cryptosystem provides smaller key sizes, more bandwidth sav-
ings and faster implementations, features which are especially attractive to applications
of security demands (Koblitet al., 2000). Taking advantage of such features, we will
also propose the elliptic curve version of our proposed GGOC.

This article is organized as follows: In Section 2, we will briefly review T&ail.'s
GGOC. In Section 3, our new GGOC scheme based on ElGamal cryptosystem will be
proposed, and the security will be analyzed. Moreover, the elliptic curve version of our
proposed GGOC will also be presented. In Section 4, the performance of our schemes
and Tsaiet al.'s scheme will be compared. In Section 5, there will be some discussions.
Finally, Section 6 will present our conclusion.

2. Review of Tsaiet al.'s GGOC

In this section, we shall briefly review Tsatial.'s scheme. Assume th&, is the sender,
andU,, Us, - - -, Uy are all the users in the receiver group. b&e a large prime such that
p—1 has a large prime factor with ordein the Galosis field7F'(p). Each uset/; in the
group has a secret kay in GF(p) and the corresponding public kgy = ¢* mod p,

fori =1,2,---, N. Anyone can get the public keys via some authentication service (e.g.,
the X.509 directory authentication service (Stallings, 1999)). To send the mekstge

the group, the sendéf firstly determines the access structitte= f1 + fo + -+ + fx

for M. Assume that/1,Us,---, U, (n <= N) are all the users in the access structure.
ThenU, performs the following steps.

Sep 1. Choose a random numbein GF(p) and computé = ¢g" mod p.
Sep 2. Compute; = (y;)" mod p, fori =1,2,--- n.
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Sep 3. Choose a random encrypting kéfey in GF(p) and compute the ciphertext
C = Ex.y(M), whereE is the encryption algorithm in the symmetric cryptosys-
tem such as DES (Smid and Branstad, 1988) and Rijndael (Daemen and Rijem,
1999; Daemen and Rijem, 2001).

Sep 4. Compute; = Key @ (T]y, ey, ti mod p), forj = 1,2, -, k.
Sep 5. Send F,b,ry, 79, -, 71, C} to the receiver group.

After receiving{ F,b,r1,r2,- -, 1, C}, the userd/;s (fori = ji,ja, -+, Jy) in the
access instancg; can cooperate to decrypt the message by using their secret keys as
follows:

Sep 1. Compute; = b* mod p, fori = j1, ja, -+, Jo-
Step 2. Computeley = r; & ([ ]y, e, ts mod p).

Sep 3. RecovelM = Dk, (C), whereD is the encryption algorithm in the symmetric
cryptosystem.

In Tsaiet al.'s scheme, each uséf; in the receiver group has the secret kgyand
the corresponding public kay in the system. However, to live up to the requirements of
GGOC, their scheme requires an additional symmetric cryptosystem to encrypt/decrypt
the message.

3. Our Proposed GGOC Schemes

In this section, we will first propose our GGOC scheme with the EIGamal cryptosystem
and then present the elliptic curve version of our proposed scheme.

3.1. GGOC with the EIGamal Cryptosystem

The parameterép, q, g, z;, y;) are the same as those in Tshial.'s scheme. Suppose
Uy wants to send the messagé to the access structuié = f; + fo + --- + fx, and
Uy, Us,---,U, are all the users in the access structure. Tigperforms the following
steps.

Sep 1. Choose a random numbein GF'(p) and computé = ¢g” mod p.
Step 2. ComputeC; = M - ([[y, ¢y, yi)" mod p, forj =1,2,--- k.
Sep 3. Send{ F,b,Cy,Cs, - -+, C} to the receiver group.

After receiving{F,b,C1,Cs, - - -, Ci}, the userdJ;s (fori = j1,72, -, J,) in the
access instancg; can cooperate to decrypt the message by using their secret keys as
follows:

Sep 1. Compute; = b* mod p, fori = j1, 52, -, Jo-
Sep 2. RecoveM = C; - [Ty, ey, ti) ' mod p.
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In our scheme, the sender encrypts the message by multiplying the users’ public keys
y:S to be the public key in the original EIGamal cryptosystem. Then, the Usslis the
access instancg can cooperate to recover the messafe

Theorem 1. Theusers U;s (for i = j1, j, - - -, ju) iN the access instance f; can cooper-
ate to recover the message M.

Proof. Because

C; = M- ( H y;)" mod p
U;ef;

(] 7 modp
U.ef;

= M- (gZUiEfj JJi)r mod p,

thus
M = C] . (gZUiEfj 7«'1')_7
= G- (s ™)

=C;-( H t;)~" mod p.

U;ef;

“mod p

! modp

According to the descriptions above, in our scheme, if the access structure has only
one single user and the sender encrypts the message for each user in this access structure,
then the function of our scheme is exactly the same as that of the EIGamal cryptosystem.

Itis clear that the security of the proposed GGOC is based on the ElIGamal cryptosys-
tem, which in turn is based on the intractability of the discrete logarithm problem (DLP).

It is very difficult for an adversary to compute the secret kewgf userU; from the equa-
tiony; = g* mod p. For the same reason, to obtain the random numlgemerated by
U, from the equation = ¢g" mod p is also difficult. In addition, it is also very difficult for
the legal user#/;s (fori = j1, jo,- - -, j») in the access instangk to reveal secret keys
xS of other user#/ys from the equation, = b™ mod p (¢ # k, k = j1, 52, jv)-
On the other hand, to recovéf from the messagéF’, b, Cy,Cs, - - -, Ci} sent byU,,
the adversary has to break the Diffie—Hellman scheme and find all the tgrmvighout
knowingz;s,i € f;.

3.2. GGOC with the Elliptic Curve EIGamal Cryptosystem

Let £ be the elliptic curve defined over a finite field, and letG be a publicly known
base point with ordep on FE, preferably a generator df (Koblitz et al., 2000). Each
userU; in the group has a secret key € [1,p — 1] and the corresponding public key
Y; =x;-G,fori =1,2,---, N. Similarly, suppos&/; wants to send the messageto
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the access structuté = f; + fo + - - - + fr, andUy, Uy, - - -, U, are all the users in the
access structure. Théfy performs the following steps.
Sep 1. Choose a random numbee [1,p — 1] and compute the poil® = r - G.

Sep 2. ExpressV as thex-coordinate of a poin,; on E (Koblitz, 1998). Then, com-
puteC; = Py + (Xy,ep, Vi) i forj=1,2,--- k.

Sep 3. Send{F, B,C4,Cs, -+, Cy} to the receiver group.

After receiving{F, B,C1,Cs, - - -, Cy}, the userdJ;s (fori = j1,j2,- -+, j,) in the
access instancg; can cooperate to decrypt the message by using their secret keys as
follows:

Sep 1. Compute the poirt; = z; - B, fori = ji,j2,- -+, Jo-
Step 2. ComputePys = Cj — (ZUi s T;) and recove/ from thez-coordinate ofP,.

The correctness of the elliptic curve version of our proposed GGOC is described as
follows:

Theorem 2. Theusers U;s (for ¢ = j1, j2, - - -, ju) iN the access instance f; can cooper-
ate to compute P, and then recover the message M.

Proof. Because

Cj = PM-l-(Z Yi)-r
Uiefj

:PM+(Z z-G) -,

Uiefj

U;€f;
=Cj— (Y xi-B),
Uiefj
=C;—( Z T;)
Uiefj

For the same reason, if the access structure has only one single user, the function of
this scheme is exactly the same as that of the elliptic curve EIGamal cryptosystem. The
security of the elliptic curve version of GGOC, which is the same as that of the elliptic
curve ElGamal cryptosystem, is based on the elliptic curve discrete logarithm problem
(ECDLP).
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4. Performances and Comparisons

In this section, we shall compare the computational complexity performance of our
schemes with that of Tsat al.'s scheme. To analyze the computational complexity, we
first define the following notations.

Trx p: the time for computing modular exponentiation.

Thrur: the time for computing modular multiplication.

Trnv: the time for computing modular inverse.

Txor: the time for computing eXclusive-OR operation.

Trc_mur: the time for computing the multiplication of a number and a point on the
elliptic curve.

Trec_app/Tec_sups: the time for computing the addition/subtraction of two points
on the elliptic curve.

Te., )/ TDx., (0" the time for encrypting/decrypting the messadg¢C' by using
the symmetric cryptosystem.

n: the number of different users in the access structure.

m:m = Y . (#(U;) — 1), where #U;) denotes the number of access instances
containingU;.

k: the number of access instances.

v: the number of users in the access instafice

In our GGOC with the ElIGamal cryptosystem, to encrypt the messagie sender
Uy computes in Step 1, which requires x T xp. Then, in Step 2, the ciphertextgs
(fori =1,2,---,k) are computed, which requirésx Tpxp + (m + 1) x Ty The
total computational complexity for encrypting the message is theréfore ) x Tex p+
(m+1)x Thyur-

After receiving{ F, b, C1,Cs, - - -, Cx} sent byUy, U;s (fori = j1, ja,- -, ju) in the
access instancg as a whole computess in Step 1, which requirasx Tgx p. Then, in
Step 2, they can cooperate to recover the messagehich requires) x Ty + 1 %
Trnv- The total computational complexity for decrypting the messagexsi'exp +
v X Tyurp +1 X Tiny.

Like we have just seen in the performance analysis of the GGOC with the ElGamal
cryptosystem, the sender’s total computations Arglcomputations in the elliptic curve
version of our proposed GGOC afe+ 1) X Tge_mur + (m+ 1) X Tge_app and
v X Tpe_mur +v X Tec_app + 1 x Tec_su B, respectively.

The computational complexity of Tsat al.'s scheme has been shown in (Tshi
al., 1999). Sincé g x p is much larger thafly;y 1., Txor andTiyy, we only compare
the number off ' x p in the following descriptions. According to Table 1, the numbers of
Texp in f;'s computations of both Tsat al.'s scheme and our scheme with the EIGamal
cryptosystem increase hy Due to the sender’s computations, the numberggf p in
Tsaiet al.’s scheme and our scheme with the EIGamal cryptosystem are increased by
andk, respectively. Becauseandk are different variables, we will have to discuss what
scheme is suitable for real-world applications.

On the other hand, the authors of (Kobkzal., 2000; Schroeppedt al., 1995; Win
et al., 1996) have pointed out that the base painwith orderp is a 160-bit prime in the
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Table 1

Computational complexities of Tsei al.'s scheme and our schemes

Sender’'s computations

f;'s computations

Tsaiet al.'s scheme (n+1)xTgxp +mx
Tyvur +k X Txor+1
XTB ey (M)

vXTegxp+ (’U— 1)><
Tvur +k X Txort
LXTpy, (o)

Our scheme using the (k+1) xTpxp + (m+
ElGamal cryptosystem 1) x Tmur

vxTepxp+vXxXTyurL
+1x Trny

The elliptic curve version (k+ 1) X Tec_mur + (
our proposed scheme m+1) X TEc_ADD

v X Tpe_mur +vX
Tec.app +1 X Tpc_suB

117

elliptic curve ElIGamal cryptosystem that offers approximately the same level of security
as modulus a 1024-bit prime in the EIGamal cryptosyst€pr_nvr can be expected

to be about 8 times faster th&kxp (8 X Tec_mur = Texp). Hence, the sender’s
computations and;'s computations in the elliptic curve version are much more efficient.

5. Discussions

In this section, we shall consider a practical application of the GGOC and discuss the
three scenarios( > k, n = k andn < k). For example, suppose company hés
employees and departments. Here, we can take the company as the receiver group,
the departments as the access instarfees;, - - -, fx, and the employees as the users

U15U27"'7UN-

Casel:n >k

Assume that each department has more than one director. A managing director wants
to send the messag¥l to the directors of all the departments such as the personnel

department, administrative department etc., and only the directors in the same department
can cooperate to decrypt this message. Heres the number of directors whom the
managing director sends the message to. In this case, no matter how many employees in
the same department can cooperate to decrypt the messag@ways greater thah

Case2:n=k%k

A managing director wants to send the urgent mesddg® some specific employees
in the company. Each of these employees can decrypt the message independently. The
access structure can be presented’as Uy + Us + --- + U,,. For the same reason,
if a managing director wants to send the urgent mesddge all the employees in the
company, the access structure can be presentédas¢/; + Us + --- + Un. Heren is

equal tok.
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Case3:n <k

If the same employee belongs to more than one department at the same tarless

thank. Obviously, this rarely occurs. However, this situation occurs when GGOC extends
to the threshold cryptosystem. In threshold cryptosystems such as (Desmedt and Frankel,
1989; Frankel, 1989; Hwang, 1990), the authorized subsets are all subseaismbre
members of this group. The access structure with the thresholdiedunebe represented

asF =UUs--- U +U1Us - - - U 1Upp1 + - -+ Un—t+1Un—t42-- - Un. The number

of access instances is= N!/t!(N — t)! = nl/t!(n — t)!. However, when the GGOC
schemes extend to be threshold cryptosystems, they become inefficient. The sender only
encrypts the message by using the group’s public key in the threshold cryptosystem.

The sender’s computations in our scheme using EIGamal cryptosystem are more ef-
ficient than that in Tsaét al.’s scheme. The elliptic curve version of GGOC can further
reduce the computations the sender gintave to do. Furthermore, Tsetial.’s scheme
requires an additional symmetric cryptosystem to encrypt/decrypt the message, but ours
do not.

6. Conclusions

Several GGOCs have been proposed previously (Chang and Lee, 1992; Chang and Lee,
1993; Lin and Chang, 1994). Among those GGOC-related schemestBs&8 scheme
(Tsaiet al., 1999), reviewed in this paper, is one of the most efficient. In this article, we
have shown that the computational complexity of our scheme using the ElGamal cryp-
tosystem is lower than that of Tsel al.'s scheme. Besides, our elliptic curve version

of GGOC is much more efficient in the sender’s computations gisdcomputations.
Furthermore, Tsagt al.'s scheme requires an additional symmetric cryptosystem to en-
crypt/decrypt the message, while ours do not.
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Nesucktingas, grupei skirtas, apibendrintas Sifravimas, naudojant
ElGamal Sifravimo sistema

Chou-Chen YANG, Ting-Yi CHANG, Jian-Wei LI, Min-Shiang HWANG

Apibendrintoje, grupei skirtoje Sifravimo sistemoje vartotojas galssisalygini, praneSina
vartotoj grupei taip, kad tik iSskirtiniai vartotgjpogrupiai, isSifruodamigt Zinug, gali bendrauti
grupeje. Tam, kad bty galima pasiekti apibendrinimo ir grupinio bendravimo tikslus, Siame straips-
nyje naudojamos dvi Sifravimo sistemos: EIGamal Sifravimas ir EIGamal elipdireies Sifravi-
mas. Abi pasilytos sistemos yra efektyvess uZ Tsaiet al. schena skatiavimo su@tingumo
siungjo pugje atzvilgiu.



